| Citation: | WANG Y,WANG Y J,YANG J S,et al.,2025. Sedimentary records of Holocene paleoflood events in the northern branch of the Daqing River[J]. Journal of Geomechanics,31(5):990−1005 doi: 10.12090/j.issn.1006-6616.2025136 |
| [1] |
AN Z S, PORTER S C, KUTZBACH J E, et al., 2000. Asynchronous Holocene optimum of the East Asian monsoon[J]. Quaternary Science Reviews, 19(8): 743-762. doi: 10.1016/S0277-3791(99)00031-1
|
| [2] |
BAKER V R, 2008. Paleoflood hydrology: origin, progress, prospects[J]. Geomorphology, 101(1-2): 1-13. doi: 10.1016/j.geomorph.2008.05.016
|
| [3] |
BAKER V R, BENITO G, BROWN A G, et al., 2022. Fluvial palaeohydrology in the 21st century and beyond[J]. Earth Surface Processes and Landforms, 47(1): 58-81. doi: 10.1002/esp.5275
|
| [4] |
BENITO G, THORNDYCRAFT V R, 2005. Palaeoflood hydrology and its role in applied hydrological sciences[J]. Journal of Hydrology, 313(1-2): 3-15. doi: 10.1016/j.jhydrol.2005.02.002
|
| [5] |
BERTOLA M, BLÖSCHL G, BOHAC M, et al., 2023. Megafloods in Europe can be anticipated from observations in hydrologically similar catchments[J]. Nature Geoscience, 16(11): 982-988. doi: 10.1038/s41561-023-01300-5
|
| [6] |
BLÖSCHL G, HALL J, VIGLIONE A, et al., 2019. Changing climate both increases and decreases European river floods[J]. Nature, 573(7772): 108-111. doi: 10.1038/s41586-019-1495-6
|
| [7] |
BLOTT S J, PYE K, 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 26(11): 1237-1248. doi: 10.1002/esp.261
|
| [8] |
CHEN C, ZHENG Y W, ZHENG Z, et al., 2023. Holocene millennial-scale megaflood events point to ENSO-driven extreme climate changes[J]. Science China Earth Sciences, 66(11): 2530-2545. (in Chinese with English abstract) doi: 10.1007/s11430-023-1196-y
|
| [9] |
CHEN C J, WU Y, LI J Y, et al., 2025a. Hydrological changes in the East Asian monsoon region around 4.2 ka precisely reconstructed from multi-proxy stalagmites[J]. Quaternary Science Reviews, 357: 109321 doi: 10.1016/j.quascirev.2025.109321
|
| [10] |
CHEN F H, XU Q H, CHEN J H, et al. , 2015. East Asian summer monsoon precipitation variability since the last deglaciation. Sci Rep 5, 11186 (2015).
|
| [11] |
CHEN H, WANG X Y, LU H Y, et al., 2024. The impacts of climate change, early agriculture and internal fluvial dynamics on paleo-flooding episodes in central China[J]. Science of the Total Environment, 954: 176431. doi: 10.1016/j.scitotenv.2024.176431
|
| [12] |
CHEN P, XIAN B Z, LIU M J, et al., 2025b. Distinct grain-size patterns in sandy turbidites: implications for identifying the triggers of ancient turbidity currents in lacustrine settings[J]. Sedimentary Geology, 476: 106806. doi: 10.1016/j.sedgeo.2025.106806
|
| [13] |
FAN B X, YANG B, WANG F, et al., 2025. Spatio-temporal characteristics of the 8.2 and 4.2 ka BP climate events in the East Asian summer monsoon region recorded by stalagmite δ18O data[J]. Science China Earth Sciences, 68(9): 2839-2852. (in Chinese with English abstract) doi: 10.1007/s11430-025-1621-5
|
| [14] |
FOLK R L, WARD W C, 1957. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 27(1): 3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
|
| [15] |
GAO W H, LI K F, MIAO X D, et al., 2025. Holocene extreme flood distribution patterns in the upper and middle Yellow River: a review based on slackwater deposits[J]. Earth-Science Reviews, 261: 105039. doi: 10.1016/j.earscirev.2024.105039
|
| [16] |
GUO Y Q, GE Y G, CHEN X Q, et al., 2021. Progress in the reconstruction of palaeoflood events in the mountain canyon valleys around the Tibetan Plateau[J]. Earth Science Frontiers, 28(2): 168-180. (in Chinese with English abstract)
|
| [17] |
HAO Z X, XIONG D Y, GE Q S, 2018. Reconstruction of the chronology and characteristics of flood disasters in the Xiong'an New Area over the last 300 years[J]. Chinese Science Bulletin, 63(22): 2302-2310. (in Chinese with English abstract) doi: 10.1360/N972018-00068
|
| [18] |
HARDENG J, BAKKE J, SABATIER P, et al., 2022. Lake sediments from southern Norway capture Holocene variations in flood seasonality[J]. Quaternary Science Reviews, 290: 107643. doi: 10.1016/j.quascirev.2022.107643
|
| [19] |
Hebei Provincial Water Resources Department Water Conservancy Annals Editorial Office, 1996. Hebei water conservancy annals[M]. Shijiazhuang: Hebei People's Publishing House. (in Chinese)
|
| [20] |
HUANG C C, ZHA X C, LI Y Q, et al., 2025. Progress and prospect of the Holocene palaeoflood hydrology in the middle-upper reaches of the Huaihe River Basin[J]. Geographical Science, 45(1): 36-46. (in Chinese with English abstract)
|
| [21] |
Institute of Regional Geological and Mineral Survey of Hebei Province, 2017. Regional geology of China-Hebei Province[M]. Beijing: Geological Publishing House. (in Chinese)
|
| [22] |
KOCHEL R C, BAKER V R, 1982. Paleoflood hydrology[J]. Science, 215(4531): 353-361. doi: 10.1126/science.215.4531.353
|
| [23] |
LI H Y, ZHAO N, YANG Y P, et al., 2022. Sedimentary characterization and provenance analysis of the 2018 flooding along the Dan River, Shandong, and the hydrodynamic process reconstruction[J]. Journal of Geomechanics, 28(2): 226-236. (in Chinese with English abstract)
|
| [24] |
LI X C, ZHANG Y X, LI W, et al., 2023. Extreme characteristics of "23·7" heavy rain in Beijing-Tianjin-Hebei and its implications for urban flood control in China[J]. China Flood & Drought Management, 33(11): 13-18. (in Chinese with English abstract)
|
| [25] |
LIN H M, MIN J Z, ZHU L J, et al., 2023. The role of Taihang Mountain topography in“7·19”persistent low vortex rainstorm in North China[J]. Journal of the Meteorological Sciences, 43(1): 46-58. (in Chinese with English abstract)
|
| [26] |
LIU J, WANG H, CHEN L L, et al., 2025. Abrupt sea-level rise prior to the 8.2 ka climatic event revealed from the post-glacial sedimentary succession off the northern coast of Shandong Peninsula, North Yellow Sea[J]. Quaternary Science Reviews, 363: 109428. doi: 10.1016/j.quascirev.2025.109428
|
| [27] |
LIU J L, LI Y, SHI X, et al., 2017. Grain size characteristics and distribution regularities of typical river sediments in Haihe River Basin[J]. Water Resources Protection, 33(6): 9-19. (in Chinese with English abstract)
|
| [28] |
LIU Z R, XUE H Y, WANG C S, 2021. Late Quaternary depositional characteristics and environment significance of the Xibozhang section in Baoding, central Hebei Plain, China[J]. Journal of Geomechanics, 27(6): 1011-1023. (in Chinese with English abstract)
|
| [29] |
MA Q, TU Z H, LI Z M, et al. , 2025. Future flood defense condition with the rain belt northward moving in Daqing River basin[J/OL]. South-to-North Water Transfers and Water Science & Technology. [2025-09-10]. https://link.cnki.net/urlid/13.1430.tv.20250703.1805.006. (in Chinese with English abstract)
|
| [30] |
MAIZELS J, 1997. Jökulhlaup deposits in proglacial areas[J]. Quaternary Science Reviews, 16(7): 793-819. doi: 10.1016/S0277-3791(97)00023-1
|
| [31] |
MILLY P C D, WETHERALD R T, DUNNE K A, et al., 2002. Increasing risk of great floods in a changing climate[J]. Nature, 415(6871): 514-517. doi: 10.1038/415514a
|
| [32] |
NI H T, TIAN F, HUAN X J, et al., 2025. Authenticity of the Great Flood during the late Longshan era[J]. Journal of Geographical Sciences, 35(8): 1714-1732. doi: 10.1007/s11442-025-2391-7
|
| [33] |
OLDFIELD F, 1991. Environmental magnetism — a personal perspective[J]. Quaternary Science Reviews, 10(1): 73-85. doi: 10.1016/0277-3791(91)90031-O
|
| [34] |
OSTROWSKI P, FALKOWSKI T, KOCHANEK K, 2023. Reconstructing parameters of the Holocene paleofloods in alluvial lowland river valleys – an example from the Bug valley (East Poland)[J]. Journal of Hydrology, 624: 129930. doi: 10.1016/j.jhydrol.2023.129930
|
| [35] |
PASSEGA R, 1957. Texture as characteristic of clastic deposition[J]. AAPG Bulletin, 41(9): 1952-1984.
|
| [36] |
QU X X, HUANG C, RAO Z G, et al., 2024. Holocene provenance variations and palaeofloods response to ENSO-driven monsoon precipitation in the subalpine peatland in southern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 635: 111948. doi: 10.1016/j.palaeo.2023.111948
|
| [37] |
REIMER P J, AUSTIN W E N, BARD E, et al., 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP)[J]. Radiocarbon, 62(4): 725-757. doi: 10.1017/RDC.2020.41
|
| [38] |
SHANG L J, ZHA X C, HUANG C C, et al., 2024. Late Holocene extraordinary palaeoflood events and their climatological context in the Shahe River, Huaihe River Basin, China[J]. Journal of Asian Earth Sciences, 276: 106346. doi: 10.1016/j.jseaes.2024.106346
|
| [39] |
SHENG G Y, LIAO Y M, HU H B, 2020. Risk evaluation for flood waterlogging disasters in the Xiongan New Area under climate change[J]. China Population, Resources and Environment, 30(6): 40-52. (in Chinese with English abstract)
|
| [40] |
SHI C Y, 2012. A study on migration of the Southern branches of the Daqinghe river in historical periods: and on its relationship with the evolution of the Baiyangdian lake[J]. Journal of Chinese historical Geography, 27(2): 50-59. (in Chinese with English abstract)
|
| [41] |
STØREN E N, DAHL S O, NESJE A, et al., 2010. Identifying the sedimentary imprint of high-frequency Holocene river floods in lake sediments: development and application of a new method[J]. Quaternary Science Reviews, 29(23-24): 3021-3033. doi: 10.1016/j.quascirev.2010.06.038
|
| [42] |
SUN T, CHENG W Q, BO Q Y, et al., 2021. Analysis on historical flood and countermeasures in prevention and control of flood in Daqing River Basin[J]. Environmental Research, 196: 110895. doi: 10.1016/j.envres.2021.110895
|
| [43] |
WANG H Y, JIA Y N, ZHANG Y Z, et al., 2021. Research progress of paleoflood events in the Yellow River Basin since the Last Deglaciation[J]. Progress in Geography, 40(7): 1220-1234. (in Chinese with English abstract) doi: 10.18306/dlkxjz.2021.07.012
|
| [44] |
WANG Y J, CHENG H, EDWARDS R L, et al., 2005. The Holocene Asian monsoon: links to solar changes and north Atlantic climate[J]. Science, 308(5723): 854-857. doi: 10.1126/science.1106296
|
| [45] |
WANG Y J, 2022. Paleoflood events recorded by Holocene fluvial sediments in Baiyangdian[D]. Beijing: Chinese Academy of Geological Sciences.
|
| [46] |
WEISS H, COURTY M A, WETTERSTROM W, et al., 1993. The genesis and collapse of third millennium north Mesopotamian civilization[J]. Science, 261(5124): 995-1004. doi: 10.1126/science.261.5124.995
|
| [47] |
WEN Y W, LI Y Q, HUANG C C, et al., 2025. Sedimentary characteristics and hydroclimatic background of palaeoflood events since the Late Pleistocene in the Lihe River, a tributary of the Huaihe River[J]. Progress in Geography, 44(3): 642-656. (in Chinese with English abstract) doi: 10.18306/dlkxjz.2025.03.015
|
| [48] |
WENTWORTH C K, 1922. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 30(5): 377-392. doi: 10.1086/622910
|
| [49] |
WILHELM B, ARNAUD F, ENTERS D, et al., 2012. Does global warming favour the occurrence of extreme floods in European Alps? First evidences from a NW Alps proglacial lake sediment record[J]. Climatic Change, 113(3-4): 563-581. doi: 10.1007/s10584-011-0376-2
|
| [50] |
WILHELM B, BALLESTEROS CÁNOVAS J A, MACDONALD N, et al., 2019. Interpreting historical, botanical, and geological evidence to aid preparations for future floods[J]. WIREs Water, 6(1): e1318. doi: 10.1002/wat2.1318
|
| [51] |
XU R Z, YU S Y, ZHOU L, et al., 2025. Holocene extreme flood events in the Yangtze River Basin: research progress and implications[J]. Marine Geology & Quaternary Geology, 45(2): 158-176. (in Chinese with English abstract)
|
| [52] |
YANG J S, WANG Y, YIN J H, et al., 2022. Progress and prospects in reconstruction of flood events in Chinese alluvial plains[J]. Earth Science, 47(11): 3944-3959. (in Chinese with English abstract)
|
| [53] |
YANG J S, LIU Z, LIU S H, et al., 2025. Holocene paleoflood stratigraphy in the lower Yellow River floodplain, China[J]. Geomorphology, 478: 109720. doi: 10.1016/j.geomorph.2025.109720
|
| [54] |
YANG X L, JIN X Q, SUN Y, et al., 2023. Evolution characteristics and formation of the July 2023 severe torrential rain on the eastern foothills of Taihang Mountains in Hebei Province[J]. Meteorological Monthly, 49(12): 1451-1467. (in Chinese with English abstract)
|
| [55] |
YIN C M, QIU W L, LI R Q, 2001. Holocene paleofloods in the North China Plain[J]. Journal of Beijing Normal University (Natural Science), 37(2): 280-284. (in Chinese with English abstract)
|
| [56] |
YU S Y, HOU Z F, CHEN X X, et al., 2020. Extreme flooding of the lower Yellow River near the Northgrippian-Meghalayan boundary: evidence from the Shilipu archaeological site in southwestern Shandong Province, China[J]. Geomorphology, 350: 106878. doi: 10.1016/j.geomorph.2019.106878
|
| [57] |
YU S Y, LI W J, ZHOU L, et al., 2023. Human disturbances dominated the unprecedentedly high frequency of Yellow River flood over the last millennium[J]. Science Advances, 9(8): eadf8576. doi: 10.1126/sciadv.adf8576
|
| [58] |
ZAVALA C, PAN S X, 2018. Hyperpycnal flows and hyperpycnites: origin and distinctive characteristics[J]. Lithologic Reservoirs, 30(1): 1-18.
|
| [59] |
ZHA X C, HUANG C C, PANG J L, et al. , 2015. Reconstructing the palaeoflood events from slackwater deposits in the upper reaches of Hanjiang River, China[J]. Quaternary International, 380-381: 358-367.
|
| [60] |
ZHANG P, YANG J S, ZHAO H, et al., 2020. Research progress of the Holocene paleoflood in the Yellow River basin and a future prospect[J]. Marine Geology & Quaternary Geology, 40(6): 178-188. (in Chinese with English abstract)
|
| [61] |
ZHANG W S, LI B, FAN B S, et al., 2024. Reconstruction of Holocene precipitation patterns and vegetation evolution in the North China Plain: deciphering the relative influence of climate and anthropogenic forcing[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 638: 112020. doi: 10.1016/j.palaeo.2024.112020
|
| [62] |
ZHANG X M, ZHANG H W, ZHANG R, et al., 2025. Spatiotemporal pattern of the East Asian monsoon hydroclimate during the 8.2 ka event inferred from a new speleothem multi-proxy record from SE China[J]. Quaternary Science Reviews, 349: 109141. doi: 10.1016/j.quascirev.2024.109141
|
| [63] |
ZHANG Y C, MA Z J, GAO Q H, et al., 2006. Huge disaster risk and prevention in China[J]. Journal of Geomechanics, 12(2): 119-126. (in Chinese with English abstract)
|
| [64] |
ZHANG Y Z, HUANG C C, PANG J L, et al., 2013. Holocene paleofloods related to climatic events in the upper reaches of the Hanjiang River valley, middle Yangtze River basin, China[J]. Geomorphology, 195: 1-12. doi: 10.1016/j.geomorph.2013.03.032
|
| [65] |
陈聪, 郑艳伟, 郑卓, 等, 2023. 全新世千年尺度大洪水沉积记录与ENSO驱动的极端气候变化[J]. 中国科学: 地球科学, 53(11): 2575-2590.
|
| [66] |
樊倍希, 杨保, 王丰, 等, 2025. 基于东亚季风区石笋δ18O记录的8.2和4.2ka BP气候事件的时空特征研究[J]. 中国科学: 地球科学, 55(9): 2962-2976.
|
| [67] |
郭永强, 葛永刚, 陈晓清, 等, 2021. 高山峡谷区古洪水事件重建研究进展[J]. 地学前缘, 28(2): 168-180.
|
| [68] |
郝志新, 熊丹阳, 葛全胜, 2018. 过去300年雄安新区涝灾年表重建及特征分析[J]. 科学通报, 63(22): 2302-2310.
|
| [69] |
河北省区域地质矿产调查研究所, 2017. 中国区域地质志-河北志[M]. 北京: 地质出版社.
|
| [70] |
河北省水利厅水利志编辑办公室, 1996. 河北省水利志[M]. 石家庄: 河北人民出版社.
|
| [71] |
黄春长, 查小春, 李瑜琴, 等, 2025. 淮河中上游流域全新世古洪水水文学研究进展与展望[J]. 地理科学, 45(1): 36-46.
|
| [72] |
李华勇, 赵楠, 杨艺萍, 等, 2022. 山东丹河2018年洪水沉积特征、物源分析及水文过程重建[J]. 地质力学学报, 28(2): 226-236.
|
| [73] |
李修仓, 张颖娴, 李威, 等, 2023. “23·7”京津冀暴雨极端性特征及对我国城市防汛的启示[J]. 中国防汛抗旱, 33(11): 13-18.
|
| [74] |
林慧敏, 闵锦忠, 朱利剑, 等, 2023. 太行山地形在“7·19”华北持续性低涡暴雨中的作用[J]. 气象科学, 43(1): 46-58.
|
| [75] |
刘静玲, 李毅, 史璇, 等, 2017. 海河流域典型河流沉积物粒度特征及分布规律[J]. 水资源保护, 33(6): 9-19.
|
| [76] |
刘智荣, 薛怀宇, 王昌盛, 2021. 河北平原中部保定西伯章剖面晚第四纪沉积特征及其环境意义[J]. 地质力学学报, 27(6): 1011-1023.
|
| [77] |
马强, 涂泽辉, 李郑淼, 等, 2025. 雨带北移影响下大清河北支防洪情势[J/OL]. 南水北调与水利科技. [2025-09-10]. https: //link.cnki.net/urlid/13.1430.tv.20250703.1805.006.
|
| [78] |
盛广耀, 廖要明, 扈海波, 2020. 气候变化下雄安新区洪涝灾害的风险评估及适应措施[J]. 中国人口·资源与环境, 30(6): 40-52.
|
| [79] |
石超艺, 2012. 历史时期大清河南系的变迁研究: 兼谈与白洋淀湖群的演变关系[J]. 中国历史地理论丛, 27(2): 50-59.
|
| [80] |
王浩宇, 贾雅娜, 张玉柱, 等, 2021. 黄河流域末次冰消期以来古洪水事件研究进展[J]. 地理科学进展, 40(7): 1220-1234.
|
| [81] |
王燕校, 2022. 白洋淀全新世河流相沉积记录的古洪水事件[D]. 北京: 中国地质科学院.
|
| [82] |
温煜未, 李瑜琴, 黄春长, 等, 2025. 淮河支流澧河晚更新世以来古洪水事件沉积特征及其水文气候背景[J]. 地理科学进展, 44(3): 642-656.
|
| [83] |
徐润喆, 于世永, 周亮, 等, 2025. 长江流域全新世极端洪水事件研究进展与启示[J]. 海洋地质与第四纪地质, 45(2): 158-176.
|
| [84] |
杨劲松, 王永, 尹金辉, 等, 2022. 我国冲积平原区洪水事件重建研究进展及展望[J]. 地球科学, 47(11): 3944-3959.
|
| [85] |
杨晓亮, 金晓青, 孙云, 等, 2023. “23·7”河北太行山东麓罕见特大暴雨特征及成因[J]. 气象, 49(12): 1451-1467.
|
| [86] |
殷春敏, 邱维理, 李容全, 2001. 全新世华北平原古洪水[J]. 北京师范大学学报(自然科学版), 37(2): 280-284.
|
| [87] |
张鹏, 杨劲松, 赵华, 等, 2020. 黄河流域全新世古洪水研究进展及展望[J]. 海洋地质与第四纪地质, 40(6): 178-188.
|
| [88] |
张业成, 马宗晋, 高庆华, 等, 2006. 中国的巨灾风险与巨灾防范[J]. 地质力学学报, 12(2): 119-126.
|