Volume 31 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
ZHANG S H,2025. Geological records of the Great Oxidation Event (GOE) in China: Progress, challenge, and opportunity[J]. Journal of Geomechanics,31(5):1063−1082 doi: 10.12090/j.issn.1006-6616.2025135
Citation: ZHANG S H,2025. Geological records of the Great Oxidation Event (GOE) in China: Progress, challenge, and opportunity[J]. Journal of Geomechanics,31(5):1063−1082 doi: 10.12090/j.issn.1006-6616.2025135

Geological records of the Great Oxidation Event (GOE) in China: Progress, challenge, and opportunity

doi: 10.12090/j.issn.1006-6616.2025135
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grant Nos. U2244213, 41920104004 and 41725011), and the Fundamental Research Fund of Chinese Academy of Geological Sciences (Grant No. JKYZD202320).
More Information
  • Author Bio:

    张拴宏,中国地质科学院地质力学研究所研究员,博士生导师,主要从事大地构造学及前寒武纪地质学研究。曾获中国地质学会青年地质科技奖(金锤奖)和黄汲清青年地质科学技术奖。2017年获国家自然科学基金青年科学基金项目(A类)(原国家杰出青年科学基金项目)资助。曾入选自然资源部高层次创新型科技人才培养工程(土地资源、地质矿产、地质环境领域)领军人才、科技部中青年科技创新领军人才和人社部百千万人才工程国家级人选。近5年主持国家自然科学基金国际合作重点项目,地质联合基金重点项目、科技部重点研发计划课题及深地重大专项课题各1项。在GeologyEarth Planet. Sci. Lett.Geophys. Res. Lett.、Earth-Sci. Rev.Geol. Soc. Am. Bull.Precambrian Res.、LithosFundamental Res.、《科学通报》《中国科学》等发表论文100余篇,其中第一兼通讯作者SCI论文60余篇,SCI引用>5800次。2020年至2024年连续5年入选爱思唯尔中国高被引学者。目前担任国际SCI刊物Precambrian Research副主编、国内刊物《地质力学学报》执行主编

  • Received: 2025-09-15
  • Revised: 2025-09-26
  • Accepted: 2025-10-23
  • Available Online: 2025-10-28
  • Published: 2025-10-28
  •   Objective  The Great Oxidation Event (GOE) during the early Paleoproterozoic represents one of the most significant geological events in Earth’s history and has profound impacts on Earth’s surface environment, biological evolution, and the formation of mineral resources and energy reserves. Chinese scholars innovatively proposed the hypothesis of a dramatic shift in Earth's surface environment at around 2.3 Ga in the late 1980’s, mainly based on sedimentary records from the North China Craton and global correlations. However, due to the pervasive deformation, the high-grade metamorphism, and the poor continuity of the Paleoproterozoic sedimentary sequences in China, most critical achievements in the GOE research obtained over the past two decades have predominantly relied on the well-preserved overseas geological records from South Africa, Western Australia, North America, and Northern Europe.   Methods  Geological and geochemical research over the last decade in China has identified some relatively complete sedimentary records of the GOE from the North China and Yangtze cratons, such as the "North Liaohe Group" in the Anshan area of northeastern Liaoning Province, the lower Fanhe Group (Sanchazi Group) in the Fanhe Basin of Tieling, the Hutuo Group in the central part of the North China Craton, and the Yimen Group in central Yunnan Province on the southwestern margin of the Yangtze Craton. Evidence related to the GOE has also been documented from the late Paleoproterozoic crustal-derived carbonatites on the southeastern margin of the Tarim Craton. These discoveries provide crucial opportunities for studying the GOE and the Lomagundi-Jatuli Event (LJE) in China.   Results  Compared with the Paleoproterozoic sections used for GOE studies overseas, most of the Paleoproterozoic sequences in China were deposited after 2.2 Ga, and generally lack geological records from the early stage of the GOE (2.43~2.2 Ga). Notably, the Paleoproterozoic successions in northeastern North China Craton and the southwestern Yangtze Craton are characterized by great thickness and low metamorphic grade, offering invaluable opportunities for investigating the middle- to late-stage evolutionary processes of the GOE (2.2~2.06 Ga) in China.   Conclusion  Future research on the GOE and LJE records in China should focus on: (1) the depositional environment and genesis of Paleoproterozoic black shales and their relationship with the positive carbon isotopic excursions in marine carbonates; (2) the mechanisms for termination of the Lomagundi-Jatuli marine carbonate positive carbon isotopic excursion; (3) integrated chemostratigraphy based on marine carbonate carbon-oxygen isotopes and geochronological studies for regional stratigraphic correlation; (4) the effects of metamorphism on the carbon-oxygen isotope composition of marine carbonates; (5) the behavior of carbon and oxygen isotopes during the anatexis of marine carbonates to form crust-derived carbonatites; and (6) the use of multidisciplinary integrated methods and new geological-geochemical proxies for studying the GOE and LJE. [Significance] Such studies based on geological records in China will provide a more comprehensive understanding of the mechanism, timing, and resource-environmental effects of the GOE and LJE during the early Paleoproterozoic.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    ALCOTT L J, MILLS B J W, BEKKER A, et al., 2022. Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling[J]. Nature Geoscience, 15(3): 210-215. doi: 10.1038/s41561-022-00906-5
    [2]
    BAKER A J, FALLICK A E, 1988. Evidence for CO2 infiltration in granulite facies marbles from Lofoten-Vesteralen, Norway[J]. Earth and Planetary Science Letters, 91(1-2): 132-140. doi: 10.1016/0012-821X(88)90156-2
    [3]
    BAKER A J, FALLICK A E, 1989a. Evidence from Lewisian limestones for isotopically heavy carbon in two-thousand-million-year-old sea water[J]. Nature, 337(6205): 352-354. doi: 10.1038/337352a0
    [4]
    BAKER A J, FALLICK A E, 1989b. Heavy carbon in two-billion-year-old marbles from Lofoten-Vesterȧlen, Norway: implications for the Precambrian carbon cycle[J]. Geochimica et Cosmochimica Acta, 53(5): 1111-1115. doi: 10.1016/0016-7037(89)90216-0
    [5]
    BEKKER A, HOLLAND H D, WANG P L, et al., 2004. Dating the rise of atmospheric oxygen[J]. Nature, 427(6970): 117-120. doi: 10.1038/nature02260
    [6]
    BI J H, XING D H, GE W C, et al., 2018. Age and tectonic setting of meta-acid volcanic rocks from the North Liaohe Group in the Liaodong area: paleoproterozoic intracontinental rift or active continental margin?[J]. Earth Science Frontiers, 25(3): 295-308. (in Chinese with English abstract)
    [7]
    BRASIER A T, MARTIN A P, MELEZHIK V A, et al., 2013. Earth’s earliest global glaciation? Carbonate geochemistry and geochronology of the Polisarka Sedimentary Formation, Kola Peninsula, Russia[J]. Precambrian Research, 235: 278-294. doi: 10.1016/j.precamres.2013.06.007
    [8]
    Bureau of Geology and Mineral Exploration and Development of Liaoning Province, 1997. Stratigraphy (lithostratic) of Liaoning Province[M]. Wuhan: China University of Geosciences Press: 1-247. (in Chinese)
    [9]
    Bureau of Geology and Mineral Exploration of Henan Province, 1989. Regional geology of Henan Province[M]. Beijing: Geological Publishing House, : 1-772. (in Chinese with English Summary)
    [10]
    Bureau of Geology and Mineral Exploration of Jilin Province, 1988. Regional geology of Jilin Province[M]. Beijing: Geological Publishing House, : 1-698. (in Chinese with English summary)
    [11]
    Bureau of Geology and Mineral Exploration of Jilin Province, 1997. Stratigraphy (lithostratic) of Jilin Province[M]. Wuhan: China University of Geosciences Press: 1-324. (in Chinese)
    [12]
    Bureau of Geology and Mineral Exploration of Liaoning, 1989. Regional geology of Liaoning province[M]. Beijing: Geological Publishing House, : 1-865. (in Chinesewith English summary)
    [13]
    Bureau of Geology and Mineral Exploration of Shanxi Province, 1989. Regional geology of Shanxi province[M]. Beijing: Geological Publishing House, : 1-780. (in Chinese with English summary)
    [14]
    CAI Y H, ZHANG S H, ZHAO Y, et al., 2022. Ages of the Proterozoic strata in Fanhe Basin revisited: implications for geological records of the Great Oxidation Event in the North China Craton[J]. Precambrian Research, 368: 106466. doi: 10.1016/j.precamres.2021.106466
    [15]
    CAMPBELL I H, ALLEN C M, 2008. Formation of supercontinents linked to increases in atmospheric oxygen[J]. Nature Geoscience, 1(8): 554-558. doi: 10.1038/ngeo259
    [16]
    CHEN C X, JIANG S Y, CAI K Q, et al., 2003. Metallogenic conditions of magnesite and talc deposits in Early Proterozoic Mg-rich carbonate formations, eastern Liaoning province[J]. Mineral Deposits, 22(2): 166-176. (in Chinese with English abstract)
    [17]
    CHEN S W, XING D H, DING Q H, et al. , 2006. 1: 250, 000 geological map and explanatory note of Tieling, K51C002003[R]. Beijing: National Geological Archives of China. DOI: 10.35080/n01.c.123080. (in Chinese)
    [18]
    CHEN W Y, CHEN Y J, 2018. Records of the great oxidation event in the Hutuo Group, Shanxi, China: a reassessment of the δ13Ccarb data[J]. Acta Petrologica Sinica, 34(12): 3709-3720. (in Chinese with English abstract)
    [19]
    CHEN W Y, CHEN Y J, LI Q G, et al., 2018. Detrital zircon U-Pb ages of the Sijizhuang glacial diamictites of the Hutuo Group in Wutai Shan, Shanxi Province and implication for the great oxidation event[J]. Earth Science Frontiers, 25(5): 1-18. (in Chinese with English abstract)
    [20]
    CHEN Y J, 1987. Discussion on the geological environment changes at 2.3 Ga[J]. Young Geologist of Nanjing University, 1: 119-125. (in Chinese)
    [21]
    CHEN Y J, 1990. Evidences for the catastrophe in geologic environment at about 2300 Ma and the discussions on several problems[J]. Journal of Stratigraphy, 14(3): 178-186. (in Chinese with English abstract)
    [22]
    CHEN Y J, JI H Z, FU S G, et al., 1991. The challenge of traditional geological theories from 2.3 Ga catastrophe: new opinions to some major geological problems[J]. Advances in Earth Science, 6(2): 63-68. (in Chinese)
    [23]
    CHEN Y J, LIU C Q, CHEN H Y, et al., 2000. Carbon isotope geochemistry of graphite deposits and ore-bearing khondalite series in North China: implications for several geoscientific problems[J]. Acta Petrologica Sinica, 16(2): 233-244. (in Chinese with English abstract)
    [24]
    CHEN Y J, TANG H S, 2016. The Great Oxidation Event and its records in North China Craton[M]//ZHAI M G, ZHAO Y, ZHAO T P. Main tectonic events and metallogeny of the North China Craton. Singapore: Springer: 281-303.
    [25]
    CHEN Y J, CHEN W Y, LI Q G, et al., 2019. Discovery of the Huronian Glaciation Event in China: evidence from glacigenic diamictites in the Hutuo Group in Wutai Shan[J]. Precambrian Research, 320: 1-12. doi: 10.1016/j.precamres.2018.10.009
    [26]
    CHEN Y L, LI H, GU S Y, et al., 2023. Marble trace element and C-O isotope geochemistry of the Paleoproterozoic Jingshan Group, North China: insights into BIF formation during the Lomagundi-Jatuli Event[J]. Precambrian Research, 395: 107152. doi: 10.1016/j.precamres.2023.107152
    [27]
    CHEN Y L, LI H, GU S Y, et al., 2024. Timing and origin of the Lomagundi-Jatuli Event: insights from U–Pb geochronology, C-O-Fe isotopes and REE compositions from the Jingshan Group, North China Craton[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 656: 112574. doi: 10.1016/j.palaeo.2024.112574
    [28]
    CIBOROWSKI T J R, KERR A C, 2016. Did mantle plume magmatism help trigger the Great Oxidation Event?[J]. Lithos, 246-247: 128-133.
    [29]
    CLOUD P E, 1968. Atmospheric and hydrospheric evolution on the primitive earth[J]. Science, 160(3829): 729-736. doi: 10.1126/science.160.3829.729
    [30]
    DONG C Y, LIU D Y, LI J J, et al., 2007. Palaeoproterozoic Khondalite Belt in the western North China Craton: new evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area[J]. Chinese Science Bulletin, 52(21): 2984-2994. doi: 10.1007/s11434-007-0404-9
    [31]
    DONG C Y, MA M Z, WILDE S A, et al., 2022. The first identification of early Paleoproterozoic (2.46-2.38Ga) supracrustal rocks in the Daqingshan area, northwestern North China Craton: geology, geochemistry and SHRIMP U-Pb dating[J]. Precambrian Research, 377: 106727 doi: 10.1016/j.precamres.2022.106727
    [32]
    DU L L, YANG C H, GUO J H, et al., 2010. The age of the base of the Paleoproterozoic Hutuo Group in the Wutai Mountains area, North China Craton: SHRIMP zircon U-Pb dating of basaltic andesite[J]. Chinese Science Bulletin, 55(14): 1782-1789.
    [33]
    DU L L, YANG C H, WANG W, et al., 2011. The re-examination of the age and stratigraphic subdivision of the Hutuo Group in the Wutai Mountains area, North China Craton: evidences from geology and zircon U-Pb geochronology[J]. Acta Petrologica Sinica, 27(4): 1037-1055. (in Chinese with English abstract)
    [34]
    EGUCHI J, SEALES J, DASGUPTA R, 2020. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon[J]. Nature Geoscience, 13(1): 71-76. doi: 10.1038/s41561-019-0492-6
    [35]
    GAILLARD F, SCAILLET B, ARNDT N T, 2011. Atmospheric oxygenation caused by a change in volcanic degassing pressure[J]. Nature, 478(7368): 229-232. doi: 10.1038/nature10460
    [36]
    GAO S, ZHANG S H, WANG H Y, et al., 2024. Carbon-oxygen isotopes of marbles from the Qingchengzi ore concentration area, eastern Liaoning Province: implications for ore-hosted stratigraphic correlation and deep metallogenic prediction[J]. Geological Review, 70(6): 2127-2141. (in Chinese with English abstract)
    [37]
    GUMSLEY A P, CHAMBERLAIN K R, BLEEKER W, et al., 2017. Timing and tempo of the Great Oxidation Event[J]. Proceedings of the National Academy of Sciences of the United States of America, 114(8): 1811-1816.
    [38]
    GUO Q J, STRAUSS H, KAUFMAN A J, et al., 2009. Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition[J]. Geology, 37(5): 399-402. doi: 10.1130/G25423A.1
    [39]
    HE G P, YE H W, 1998. Two types of Early Proterozoic metamorphism and its tectonic significance in eastern Liaoning and southern Jilin areas[J]. Acta Petrologica Sinica, 14(2): 152-162. (in Chinese with English abstract)
    [40]
    HEIMDAL T H, SVENSEN H H, RAMEZANI J, et al., 2018. Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis[J]. Scientific Reports, 8(1): 141, doi: 10.1038/s41598-017-18629-8
    [41]
    HOLLAND H D, 1962. Model for the evolution of the Earth’s atmosphere[M]//ENGEL A E J, JAMES H L, LEONARD B F. Petrologic studies. New York: Geological Society of America: 447-477.
    [42]
    HOLLAND H D, 1999. When did the Earth’s atmosphere become oxic? A reply[J]. The Geochemical News, 100: 20-22.
    [43]
    HOLLAND H D, 2006. The oxygenation of the atmosphere and oceans[J]. Philosophical Transactions of the Royal Society B, 361: 903-915. doi: 10.1098/rstb.2006.1838
    [44]
    HU G Y, LI Y H, FAN C F, et al. , 2015. Paleoproterozoic magnesite and borate deposits from eastern Liaoning Province: with a discussion about synchrono-heteropic facies of sedimentary mineralization[J]. Mineral Deposits, 34(3): 547-564. (in English with Chinese abstract)
    [45]
    Huang J P, Liu X Y, He Y S, et al., 2021. The oxygen cycle and a habitable Earth[J]. Science China Earth Sciences, 64(4): 511-528. doi: 10.1007/s11430-020-9747-1
    [46]
    IZON G, LUO G M, UVEGES B T, et al., 2022. Bulk and grain-scale minor sulfur isotope data reveal complexities in the dynamics of Earth’s oxygenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 119(13): e2025606119.
    [47]
    JIANG S Y, CHEN C X, CHEN Y Q, et al. , 2004. Geochemistry and genetic model for the giant magnesite deposits in the eastern Liaoning province, China[J]. Acta Petrologica Sinica, 20(4): 765-772. (in English with Chinese abstract)
    [48]
    KADOYA S, CATLING D C, NICKLAS R W, et al., 2020. Mantle data imply a decline of oxidizable volcanic gases could have triggered the Great Oxidation[J]. Nature Communications, 11(1): 2774. doi: 10.1038/s41467-020-16493-1
    [49]
    KASTING J F, 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere[J]. Precambrian Research, 34(3-4): 205-229. doi: 10.1016/0301-9268(87)90001-5
    [50]
    KASTING J F, 1993. Earth's early atmosphere[J]. Science, 259: 920-926. doi: 10.1126/science.11536547
    [51]
    KASTING J F, 2013. What caused the rise of atmospheric O2?[J]. Chemical Geology, 362: 13-25. doi: 10.1016/j.chemgeo.2013.05.039
    [52]
    KONG F F, YUAN X L, ZHOU C M, 2011. Paleoproterozoic glaciation: evidence from carbon isotope record of the Hutuo Group, Wutai Mountain area of Shanxi Province, China[J]. Chinese Science Bulletin, 56(27): 2922-2930. doi: 10.1007/s11434-011-4639-0
    [53]
    KONHAUSER K O, PECOITS E, LALONDE S V, et al., 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event[J]. Nature, 458(7239): 750-753. doi: 10.1038/nature07858
    [54]
    KUMP L R, BARLEY M E, 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago[J]. Nature, 448(7157): 1033-1036. doi: 10.1038/nature06058
    [55]
    KUMP L R, 2008. The rise of atmospheric oxygen[J]. Nature, 451: 277-278. doi: 10.1038/nature06587
    [56]
    LAI Y, CHEN C, TANG H S, 2012. Paleoproterozoic positive δ13C excursion in Henan, China[J]. Geomicrobiology Journal, 29(3): 287-298. doi: 10.1080/01490451.2011.630713
    [57]
    LEE C T A, YEUNG L Y, MCKENZIE N R, et al., 2016. Two-step rise of atmospheric oxygen linked to the growth of continents[J]. Nature Geoscience, 9(6): 417-424. doi: 10.1038/ngeo2707
    [58]
    LI J, LIU G C, LIU J P, et al., 2018a. New progress in the study of early Pre-Cambrian geology of central Yunnan Province[J]. Geological Bulletin of China, 37(11): 1957-1969. (in Chinese with English abstract)
    [59]
    LI J, LIU J P, SUN B D, et al., 2018b. Chronological constraints on multi-cellular organism fossil from Liangshan Formation of Paleoproterozoic Yimen Group in Central Yunnan Province[J]. Geological Bulletin of China, 37(11): 2087-2098. (in Chinese with English abstract)
    [60]
    LI K Y, TANG H S, CHEN Y J, et al., 2020. Carbon and oxygen isotope geochemistry of marbles in the Jingshan Group, Jiaobei Terrane and its indication to the Lomagundi-Jatuli Event[J]. Acta Petrologica Sinica, 36(4): 1059-1075. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.04.06
    [61]
    LI Y H, SATISH-KUMAR M, KIRAN S, et al., 2022. 2.0 Ga orogenic graphite deposits and associated 13C-enriched meta-carbonate rocks from South China Craton: implications for global Lomagundi event[J]. Geoscience Frontiers, 13(4): 101409. doi: 10.1016/j.gsf.2022.101409
    [62]
    LIU C H, ZHAO G C, SUN M, et al. , 2012. Detrital zircon U-Pb dating, Hf isotopes and whole-rock geochemistry from the Songshan Group in the Dengfeng Complex: constraints on the tectonic evolution of the Trans-North China Orogen[J]. Precambrian Research, 192-195: 1-15.
    [63]
    LIU F L, LIU P H, WANG F, et al., 2015. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton[J]. Acta Petrologica Sinica, 31(10): 2816-2846. (in Chinese with English abstract)
    [64]
    LIU J P, ZENG W T, XU Y F, et al., 2018. The definition and geological significance of tuffs about 1.85 Ga in Yimen area, central Yunnan Province[J]. Geological Bulletin of China, 37(11): 2055-2062. (in Chinese with English abstract)
    [65]
    LIU J P, LI J, WANG W, et al. , 2019. The discovery and significance of the fossils from the Early Precambrian strata in the Yimen region, central Yunnan[J]. Sedimentary Geology and Tethyan Geology, 39(4): 57-64, 70. (in Chinese with English abstract)
    [66]
    LIU J P, WAN S, LI J, et al., 2021. Zircon U-Pb age and tectonic thermal event of the volcanic rocks from the Paleoproterozoic Yimen Group Luowadie Formation in Yimen area, Central Yunnan[J]. Geological Bulletin of China, 40(7): 1024-1032. (in Chinese with English abstract)
    [67]
    LIU J P, YIN W, YANG S P, et al., 2023. Response to the Lomagundi-Jatuli Event in the southwestern margin of the Yangtze Plate: evidence from the carbon and oxygen isotopes of the Paleoproterozoic Yongjingshao Formation[J]. China Geology, 6(1): 50-60.
    [68]
    LIU P H, LIU F L, WANG F, et al., 2011. U-Pb dating of zircons from Al-rich paragneisses of Jingshan Group in Shandong Peninsula and its geological significance[J]. Acta Petrologica et Mineralogica, 30(5): 829-843. (in Chinese with English abstract)
    [69]
    LIU P H, CAI J, ZOU L, 2017. Metamorphic P-T-t path and its geological implication of the Sanjiazi garnet amphibolites from the northern Liaodong Peninsula, Jiao-Liao-Ji belt: constraints on phase equilibria and Zircon U-Pb dating[J]. Acta Petrologica Sinica, 33(9): 2649-2674. (in Chinese with English abstract)
    [70]
    LIU P H, LIU F L, TIAN Z H, et al., 2019. Petrological and geochronological evidence for Paleoproterozoic granulite-facies metamorphism of the South Liaohe Group in the Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research, 327: 121-143. doi: 10.1016/j.precamres.2019.03.002
    [71]
    LIU X, FAN H R, QIU Z J, et al., 2015. Formation ages of the Jiangxian and Zhongtiao groups in the Zhongtiao Mountain region, North China Craton: insights from SIMS U-Pb dating on zircons of intercalated plagioclase amphibolites[J]. Acta Petrologica Sinica, 31(6): 1564-1572. (in Chinese with English abstract)
    [72]
    LUO G M, ONO S, BEUKES N J, et al., 2016. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago[J]. Science Advances, 2(5): e1600134. doi: 10.1126/sciadv.1600134
    [73]
    LUO G M, JUNIUM C K, IZON G, et al., 2018. Nitrogen fixation sustained productivity in the wake of the Palaeoproterozoic Great Oxygenation Event[J]. Nature Communications, 9(1): 978. doi: 10.1038/s41467-018-03361-2
    [74]
    LUO G M, ZHU X K, WANG S J, et al., 2022. Mechanisms and climatic-ecological effects of the Great Oxidation Event in the early Proterozoic[J]. Science China Earth Sciences, 65(9): 1646-1672. doi: 10.1007/s11430-021-9934-y
    [75]
    LUO Y, SUN M, ZHAO G C, et al., 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt[J]. Precambrian Research, 134(3-4): 349-371. doi: 10.1016/j.precamres.2004.07.002
    [76]
    LYONS T W, REINHARD C T, PLANAVSKY N J, 2014. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 506(7488): 307-315. doi: 10.1038/nature13068
    [77]
    MARTIN A P, CONDON D J, PRAVE A R, et al., 2013a. Dating the termination of the Palaeoproterozoic Lomagundi-Jatuli carbon isotopic event in the North Transfennoscandian Greenstone Belt[J]. Precambrian Research, 224: 160-168. doi: 10.1016/j.precamres.2012.09.010
    [78]
    MARTIN A P, CONDON D J, PRAVE A R, et al., 2013b. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli Event)[J]. Earth-Science Reviews, 127: 242-261. doi: 10.1016/j.earscirev.2013.10.006
    [79]
    MELEZHIK V A, FALLICK A E, MEDVEDEV P V, et al., 1999. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-‘red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment[J]. Earth-Science Reviews, 48(1-2): 71-120. doi: 10.1016/S0012-8252(99)00044-6
    [80]
    MELEZHIK V A, HUHMA H, CONDON D J, et al., 2007. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event[J]. Geology, 35(7): 655-658. doi: 10.1130/G23764A.1
    [81]
    MELEZHIK V A, KUMP L R, HANSKI E J, et al. , 2013. 1.1 tectonic evolution and major global Earth-surface palaeoenvironmental events in the Palaeoproterozoic[M]//MELEZHIK V A, PRAVE A R, FALLICK A E, et al. Reading the archive of earth’s oxygenation. Volume 1: the Palaeoproterozoic of Fennoscandia as context for the Fennoscandian arctic Russia - drilling early earth project. Heidelberg: Springer: 3-21.
    [82]
    MUNGALL J E, KAMO S L, MCQUADE S, 2016. U-Pb geochronology documents out-of-sequence emplacement of ultramafic layers in the Bushveld Igneous Complex of South Africa[J]. Nature Communications, 7(1): 13385. doi: 10.1038/ncomms13385
    [83]
    OSTRANDER C M, HEARD A W, SHU Y C, et al., 2024. Onset of coupled atmosphere–ocean oxygenation 2.3 billion years ago[J]. Nature, 631(8020): 335-339. doi: 10.1038/s41586-024-07551-5
    [84]
    OUYANG G, SHE Z B, PAPINEAU D, et al., 2020. Dynamic carbon and sulfur cycling in the aftermath of the Lomagundi-Jatuli Event: evidence from the Paleoproterozoic Hutuo Supergroup, North China Craton[J]. Precambrian Research, 337: 105549. doi: 10.1016/j.precamres.2019.105549
    [85]
    PAN Z, CAI K D, SUN M, et al., 2025. Recycling of subducted carbonates generated the Tarim carbonatites in Paleoproterozoic orogenic processes[J]. Journal of Petrology, 66(6): egaf045. doi: 10.1093/petrology/egaf045
    [86]
    PENG P, GUO J H, WINDLEY B F, et al., 2011. Halaqin volcano-sedimentary succession in the central-northern margin of the North China Craton: products of Late Paleoproterozoic ridge subduction[J]. Precambrian Research, 187(1-2): 165-180. doi: 10.1016/j.precamres.2011.03.006
    [87]
    PENG P, FENG L J, SUN F B, et al., 2017. Dating the Gaofan and Hutuo Groups-targets to investigate the Paleoproterozoic Great Oxidation Event in North China[J]. Journal of Asian Earth Sciences, 138: 535-547. doi: 10.1016/j.jseaes.2017.03.001
    [88]
    PENG P, LIU X, FENG L J, et al., 2023. Rhyacian intermittent large igneous provinces sustained Great Oxidation Event: evidence from North China craton[J]. Earth-Science Reviews, 238: 104352. doi: 10.1016/j.earscirev.2023.104352
    [89]
    POULTON S W, BEKKER A, CUMMING V M, et al., 2021. A 200-million-year delay in permanent atmospheric oxygenation[J]. Nature, 592(7853): 232-236. doi: 10.1038/s41586-021-03393-7
    [90]
    QIU X F, CHEN W X, XU D L, et al., 2022. Crustal evolution in Archean for the Kongling complex in the Yangtze Craton nucleus[J]. South China Geology, 38(1): 56-66. (in Chinese with English abstract)
    [91]
    RASMUSSEN B, BEKKER A, FLETCHER I R, 2013. Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups[J]. Earth and Planetary Science Letters, 382: 173-180. doi: 10.1016/j.jpgl.2013.08.037
    [92]
    REN L D, GENG Y S, DU L L, et al., 2013. SHRIMP data on zircons from the Wanzi series: constraints on the rock formation time and implications of migmatization at 2.1-2.0 Ga in the Fuping Complex, North China Craton[J]. Journal of Asian Earth Sciences, 72: 203-215. doi: 10.1016/j.jseaes.2012.12.041
    [93]
    ROSCOE S M, 1973. The Huronian Supergroup, a Paleoaphebian succession showing evidence of atmospheric evolution[M]//YOUNG G M. Huronian stratigraphy and sedimentation. St. John’s: Geological Association of Canada: 31-47.
    [94]
    SCHIDLOWSKI M, EICHMANN R, JUNGE C E, 1975. Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget[J]. Precambrian Research, 2(1): 1-69. doi: 10.1016/0301-9268(75)90018-2
    [95]
    SCOATES J S, WALL C J, 2015. Geochronology of layered intrusions[M]//CHARLIER B, NAMUR O, LATYPOV R, et al. Layered intrusions. Dordrecht: Springer: 3-74.
    [96]
    SHE Z B, YANG F Y, LIU W, et al., 2016. The termination and aftermath of the Lomagundi-Jatuli carbon isotope excursions in the Paleoproterozoic Hutuo Group, North China[J]. Journal of Earth Science, 27(2): 297-316. doi: 10.1007/s12583-015-0654-4
    [97]
    SHEN Q H, ZHANG Y F, 1990. The characteristics of the Early Precambrian metamorphic protolith formation, their metamorphism and evolution in central southern Inner Mongolia, China[J]. Bulletin of the Chinese Academy of Geological Sciences, 20: 41-43. (in Chinese)
    [98]
    SMIT M A, MEZGER K, 2017. Earth’s early O2 cycle suppressed by primitive continents[J]. Nature Geoscience, 10(10): 788-792. doi: 10.1038/ngeo3030
    [99]
    SONG H X, YANG C H, DU L L, et al., 2011. Carbon and oxygen isotopic characteristics of several Paleoproterozoic carbonate strata in North China Craton[J]. Acta Petrologica et Mineralogica, 30(5): 865-872. (in Chinese with English abstract)
    [100]
    SVENSEN H, PLANKE S, CHEVALLIER L, et al., 2007. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming[J]. Earth and Planetary Science Letters, 256(3-4): 554-566. doi: 10.1016/j.jpgl.2007.02.013
    [101]
    SVENSEN H H, FROLOV S, AKHMANOV G G, et al., 2018. Sills and gas generation in the Siberian Traps[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2130): 20170080. doi: 10.1098/rsta.2017.0080
    [102]
    TANG H S, CHEN Y J, WU G, et al., 2008. The C-O isotope composition of the Liaohe Group, northern Liaoning Province and its geologic implications[J]. Acta Petrologica Sinica, 24(1): 129-138. (in Chinese with English abstract)
    [103]
    TANG H S, WU G, LAI Y, 2009a. The C-O isotope geochemistry and genesis of the Dashiqiao magnesite deposit, Liaoning Province, NE China[J]. Acta Petrologica Sinica, 25(2): 455-467. (in Chinese with English abstract)
    [104]
    TANG H S, CHEN Y J, WU G, et al., 2009b. Rare earth element geochemistry of carbonates of Dashiqiao Formation, Liaohe Group, eastern Liaoning Province: implications for Lomagundi Event[J]. Acta Petrologica Sinica, 25(11): 3075-3093. (in Chinese with English abstract)
    [105]
    TANG H S, CHEN Y J, WU G, et al., 2011. Paleoproterozoic positive δ13Ccarb excursion in the northeastern Sino-Korean craton: evidence of the Lomagundi Event[J]. Gondwana Research, 19(2): 471-481. doi: 10.1016/j.gr.2010.07.002
    [106]
    TAO P, XIE S W, WANG F, et al., 2023. Detrital zircon U-Pb geochronology and Hf isotopes of the Fenzishan Group, Jiaobei Terrane: implications for the Paleoproterozoic tectonic evolution of the Jiao-Liao-Ji belt[J]. Acta Petrologica Sinica, 39(9): 2619-2635. (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.09.06
    [107]
    TIAN Z H, LIU F L, YAN Z, et al., 2021. Palaeoproterozoic turbidite deposition in the Liaodong Peninsula, northeastern North China craton -Constraints from the Gaojiayu formation of the Liaohe Group[J]. Precambrian Research, 352: 106008. doi: 10.1016/j.precamres.2020.106008
    [108]
    VAN KRANENDONK M J, ALTERMANN W, BEARD B L, et al. , 2012. A chronostratigraphic division of the Precambrian: possibilities and challenges[M]// GRADSTEIN F M, OGG J G, SCHMITZ M, et al. The geologic time scale 2012. Amsterdam: Elsevier: 313-406.
    [109]
    WALKER R N, MUIR M D, DIVER W L, et al., 1977. Evidence of major sulphate evaporite deposits in the Proterozoic McArthur Group, Northern Territory, Australia[J]. Nature, 265(5594): 526-529. doi: 10.1038/265526a0
    [110]
    WAN C H, ZHANG Y, WANG S S, et al., 2020. Geochemical constraints on the source of ore-forming materials of graphite deposits in the northern part of Huangling basement dome[J]. Acta Petrologica et Mineralogica, 39(5): 569-582. (in Chinese with English abstract)
    [111]
    WAN Y S, PENG P, LIU S J, et al., 2018. Late Paleoproterozoic tectono-thermal event in the northwestern North China Craton: evidence from U-Pb dating and O-Hf isotopic compositions of zircons from metasedimentary rocks north of Hohhot City, Inner Mongolia, northern China[J]. Journal of Asian Earth Sciences, 167: 152-164. doi: 10.1016/j.jseaes.2017.09.012
    [112]
    WANG H C, REN Y W, LU S N, et al., 2015. Stratigraphic units and tectonic setting of the Paleoproterozoic Liao-Ji Orogen[J]. Acta Geoscientica Sinica, 36(5): 583-598. (in Chinese with English abstract)
    [113]
    WANG H Y, ZHANG S H, WANG S, et al., 2024. Identification of carbonates with high positive carbon isotope excursion from the Liaohe Group in the northeastern North China Craton and implications for the Lomagundi-Jatuli Event[J]. Science China Earth Sciences, 67(9): 2824-2844. doi: 10.1007/s11430-023-1318-3
    [114]
    WANG J Y, LONG X P, LAN C Y, et al., 2022. Geochronology and geochemistry of 2.3 Ga mafic intrusions in the Dengfeng area: evidence for early Paleoproterozoic subduction in the southern North China Craton[J]. Precambrian Research, 375: 106668. doi: 10.1016/j.precamres.2022.106668
    [115]
    WANG P C, 1995. Relationships between the Jingshan Group and the Fenzishan Group in the Jiaobei area[J]. Regional Geology of China(1): 15-20. (in Chinese with English abstract)
    [116]
    WANG X, LI X P, HAN Z Z, 2018. Zircon ages and geochemistry of amphibolitic rocks from the Paleoproterozoic Erdaowa Group in the Khondalite Belt, North China Craton and their tectonic implications[J]. Precambrian Research, 317: 253-267. doi: 10.1016/j.precamres.2018.09.005
    [117]
    WANG X P, PENG P, WANG C, et al., 2016. Petrogenesis of the 2115 Ma Haicheng mafic sills from the Eastern North China Craton: implications for an intra-continental rifting[J]. Gondwana Research, 39: 347-364. doi: 10.1016/j.gr.2016.01.009
    [118]
    WEI J Q, WANG J X, WANG X D, et al., 2025. The formation and evolution of the Huangling basement in the Yangtze Craton, South China[J]. South China Geology, 41(1): 1-14. (in Chinese with English abstract)
    [119]
    WU C H, LI H M, ZHONG C T, et al., 2000. TIMS U-Pb single zircon ages for the orthogneiss and the paragneiss of Fuping complex: implications for existence of the Palaeoproterozoic supracrustal rocks in the central basement of North China Craton[J]. Progress in Precambrian Research, 23(3): 129-139. (in Chinese with English abstract)
    [120]
    WU H L, ZHU W B, GE R F, 2022. Evidence for carbonatite derived from the earth’s crust: the late Paleoproterozoic carbonate-rich magmatic rocks in the southeast Tarim Craton, northwest China[J]. Precambrian Research, 369: 106425. doi: 10.1016/j.precamres.2021.106425
    [121]
    XIN H T, LUO Z H, LIU Y S, et al., 2012. Geological features and significance of Palaeoproterozoic carbonatite of crustal origin in Aqtashtagh Area of Southeast Tarim Basin, China[J]. Earth Science Frontiers, 19(6): 167-178. (in Chinese with English abstract)
    [122]
    XU W, LIU F L, SANTOSH M, et al., 2018. Constraints of mafic rocks on a Paleoproterozoic back-arc in the Jiao-Liao-Ji Belt, North China Craton[J]. Journal of Asian Earth Sciences, 166: 195-209. doi: 10.1016/j.jseaes.2018.06.016
    [123]
    XU W, 2019. Geochemical and geochronological insights into the tectonic evolution of the Paleoproterozoic Jiao-Liao-Ji Belt, Sino-Korean Craton[D]. Beijing: Chinese Academy of Geological Sciences: 1-247. (in Chinese with English abstract)
    [124]
    XU W, LIU F L, WANG F, et al., 2020. Palaeoproterozoic tectonic evolution of the Jiao-Liao-Ji Belt, North China Craton: geochemical and isotopic evidence from ca. 2.17 Ga felsic tuff[J]. Geological Journal, 55(1): 409-424. doi: 10.1002/gj.3380
    [125]
    YANG C H, DU L L, SONG H X, et al., 2018. Stratigraphic division and correlation of the Pleoproterozoic strata in the North China Craton: a review[J]. Acta Petrologica Sinica, 34(4): 1019-1057. (in Chinese with English abstract)
    [126]
    YANG J Q, WAN Y S, LIU Y S, et al., 2012. Discovery of Paleoproterozoic crustally derived carbonatite in the Northern Altyn Tagh[J]. Earth Science-Journal of China University of Geosciences, 37(5): 929-936. (in Chinese with English abstract)
    [127]
    YIN C Q, ZHAO G C, SUN M, et al., 2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Precambrian Research, 174(1-2): 78-94. doi: 10.1016/j.precamres.2009.06.008
    [128]
    ZEH A, OVTCHAROVA M, WILSON A H, et al., 2015. The Bushveld Complex was emplaced and cooled in less than one million years – results of zirconology, and geotectonic implications[J]. Earth and Planetary Science Letters, 418: 103-114. doi: 10.1016/j.jpgl.2015.02.035
    [129]
    ZHAI M G, 2022. Khondalite revisited-record of special geological processes on Earth[J]. Acta Geologica Sinica, 96(9): 2967-2997. (in Chinese with English abstract)
    [130]
    ZHANG C L, LI H K, WANG H Y, 2012. A review on Precambrian tectonic evolution of Tarim Block: possibility of interaction between Neoproterozoic plate subduction and mantle plume[J]. Geological Review, 58(5): 923-936. (in Chinese with English abstract)
    [131]
    ZHANG C L, MA H D, LI H K, et al., 2022. Paleoproterozoic in Quruqtagh terrane in Northern Tarim[J]. East China Geology, 43(2): 133-140. (in Chinese with English abstract)
    [132]
    ZHANG S C, WANG H J, WANG X M, et al., 2021. The Mesoproterozoic oxygenation event[J]. Science China Earth Sciences, 64(12): 2043-2068. doi: 10.1007/s11430-020-9825-x
    [133]
    ZHANG S H, ERNST R E, PEI J L, et al. , 2022. Termination of the Great Oxidation and Lomagundi-Jatuli events by degassing during emplacement of layered intrusions and sills[C]//Goldschmidt 2022 abstract. Honolulu, doi: 10.46427/gold2022.9865.
    [134]
    ZHANG S H, ZHAO Y, PEI J L, 2022. Earth’s surface processes at the Neoarchean to early Paleoproterozoic and discussions on their relations to subduction initiation and deep processes[C]//Pre-plate tectonics and origin of continents, abstract volume of the 321th Shuangqing forum. Beijing: The National Natural Science Foundation of China, : 29. (in Chinese)
    [135]
    ZHANG S H, WANG H Y, TANG H S, et al., 2024a. High positive carbonate carbon isotope excursion identified in the North China Craton: implications for the Lomagundi-Jatuli Event[J]. Terra Nova, 36(1): 25-36. doi: 10.1111/ter.12687
    [136]
    ZHANG S H, ZHAO Y, PEI J L, 2024b. GDT 15: Banded iron formation drives subduction initiation and onset of global plate tectonics at ca. 2.45 Ga[C]//International Association for Gondwana Research 2024 Convention and 21st International Conference on Gondwana to Asia. Waterfront Hotel: 46-47.
    [137]
    ZHAO G C, WILDE S A, CAWOOD P A, et al., 2002. SHRIMP U-Pb zircon ages of the Fuping Complex: implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton[J]. American Journal of Science, 302(3): 191-226. doi: 10.2475/ajs.302.3.191
    [138]
    ZHAO G C, SUN M, WILDE S A, et al., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002
    [139]
    ZHAO G C, WILDE S A, GUO J H, et al., 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton[J]. Precambrian Research, 177(3-4): 266-276. doi: 10.1016/j.precamres.2009.12.007
    [140]
    ZHAO G C, CAWOOD P A, LI S Z, et al. , 2012. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrian Research, 222-223: 55-76.
    [141]
    ZHONG H, MA Y S, HUO W G, et al., 1993. Carbon isotope evolution of the Early Proterozoic dolomites in the Wutaishan mountain area, North China[J]. Science in China (Series B), 23(10): 1009-1014. (in Chinese)
    [142]
    ZHONG H, MA Y S, 1995. Carbon isotope and Early Proterozoic strata correlation[J]. Journal of Stratigraphy, 19(1): 30-35. (in Chinese with English abstract)
    [143]
    ZHOU L G, LIU J P, LI J, et al., 2025. Great Oxidation Event was caused by Neoarchean global cratonization: opportunity and challenge from rock and sedimentary records in China[J]. Science Bulletin, 70(11): 1736-1739. doi: 10.1016/j.scib.2025.03.020
    [144]
    ZHOU X W, WEI C J, GENG Y S, 2007. Phase equilibria and p-T path of high- and low-pressure politic granulites from the Jiaobei massif[J]. Earth Science Frontiers, 14(1): 135-143. (in Chinese with English abstract)
    [145]
    ZHOU X W, GENG Y S, 2009. Metamorphic age of the khondalite series in the Helanshan region: constraints on the evolution of the western block in the North China Craton[J]. Acta Petrologica Sinica, 25(8): 1843-1852. (in Chinese with English abstract)
    [146]
    毕君辉, 邢德和, 葛文春, 等, 2018. 辽东地区北辽河群变酸性火山岩形成的时代及构造背景: 古元古代陆内裂谷, 还是活动大陆边缘?[J]. 地学前缘, 25(3): 295-308.
    [147]
    陈从喜, 蒋少涌, 蔡克勤, 等, 2003. 辽东早元古代富镁质碳酸盐岩建造菱镁矿和滑石矿床成矿条件[J]. 矿床地质, 22(2): 166-176.
    [148]
    陈树旺, 邢德和, 丁秋红, 等, 2006. 铁岭市幅(K51C002003)1/25万地质图及区域地质调查报告[R]. 沈阳地质矿产研究所, 全国地质资料馆. DOI: 10.35080/n01.c.123080
    [149]
    陈威宇, 陈衍景, 2018. 大氧化事件在山西滹沱群中的记录: 碳酸盐岩碳同位素资料分析[J]. 岩石学报, 34(12): 3709-3720.
    [150]
    陈威宇, 陈衍景, 李秋根, 等, 2018. 山西五台山滹沱群四集庄冰碛岩碎屑锆石年龄及其对大氧化事件研究意义[J]. 地学前缘, 25(5): 1-18.
    [151]
    陈衍景, 1987. 论23亿年前地质环境的突变[J]. 南大青年地质学家, 1: 119-125.
    [152]
    陈衍景, 1990. 23亿年地质环境突变的证据及若干问题的讨论[J]. 地层学杂志, 14(3): 178-186.
    [153]
    陈衍景, 季海章, 富士谷, 等, 1991. 23亿年灾变事件的揭示对传统地质理论的挑战: 关于某些重大地质问题的新认识[J]. 地球科学进展, 6(2): 63-68.
    [154]
    陈衍景, 刘丛强, 陈华勇, 等, 2000. 中国北方石墨矿床及赋矿孔达岩系碳同位素特征及有关问题讨论[J]. 岩石学报, 16(2): 233-244.
    [155]
    杜利林, 杨崇辉, 郭敬辉, 等, 2010. 五台地区滹沱群底界时代: 玄武安山岩SHRIMP锆石U-Pb定年[J]. 科学通报, 55(3): 246-254.
    [156]
    杜利林, 杨崇辉, 王伟, 等, 2011. 五台地区滹沱群时代与地层划分新认识: 地质学与锆石年代学证据[J]. 岩石学报, 27(4): 1037-1055.
    [157]
    高森, 张拴宏, 王宏宇, 等, 2024. 辽东青城子矿集区大理岩碳−同位素组成及其对含矿层位对比及深部找矿的指示[J]. 地质论评, 70(6): 2127-2141.
    [158]
    河南省地质矿产局, 1989. 河南省区域地质志[M]. 北京: 地质出版社: 1-772.
    [159]
    贺高品, 叶慧文, 1998. 辽东−吉南地区早元古代两种类型变质作用及其构造意义[J]. 岩石学报, 14(2): 152-162.
    [160]
    胡古月, 李延河, 范昌福, 等, 2015. 辽东古元古代菱镁矿矿床与硼酸盐矿床: 同期异相沉积成矿探讨[J]. 矿床地质, 34(3): 547-564.
    [161]
    黄建平, 刘晓岳, 何永胜, 等, 2021. 氧循环与宜居地球[J]. 中国科学: 地球科学, 51(4): 487-506.
    [162]
    吉林省地质矿产局, 1988. 吉林省区域地质志[M]. 北京: 地质出版社: 1-698.
    [163]
    吉林省地质矿产局, 1997. 吉林省岩石地层[M]. 武汉: 中国地质大学出版社: 1-324.
    [164]
    蒋少涌, 陈从喜, 陈永权, 等, 2004. 中国辽东地区超大型菱镁矿矿床的地球化学特征和成因模式[J]. 岩石学报, 20(4): 765-772.
    [165]
    孔凡凡, 袁训来, 周传明, 2011. 古元古代冰期事件: 山西五台地区滹沱群的碳同位素证据[J]. 科学通报, 56(32): 2699-2707.
    [166]
    李静, 刘桂春, 刘军平, 等, 2018a. 滇中地区早前寒武纪地质研究新进展[J]. 地质通报, 37(11): 1957-1969.
    [167]
    李静, 刘军平, 孙柏东, 等, 2018b. 滇中易门地区古元古界易门群亮山组多细胞生物的年代学约束[J]. 地质通报, 37(11): 2087-2098.
    [168]
    李凯月, 汤好书, 陈衍景, 等, 2020. 胶北地体荆山群大理岩碳氧同位素地球化学特征及其对Lomagundi-Jatuli事件的指示[J]. 岩石学报, 36(4): 1059-1075.
    [169]
    辽宁省地质矿产局, 1989. 辽宁省区域地质志[M]. 北京: 地质出版社: 1-865.
    [170]
    辽宁省地质矿产勘查开发局, 1997. 辽宁省岩石地层[M]. 武汉: 中国地质大学出版社: 1-247.
    [171]
    刘福来, 刘平华, 王舫, 等, 2015. 胶−辽−吉古元古代造山/活动带巨量变沉积岩系的研究进展[J]. 岩石学报, 31(10): 2816-2846.
    [172]
    刘军平, 曾文涛, 徐云飞, 等, 2018. 滇中易门地区约1.85Ga凝灰岩的厘定及其地质意义[J]. 地质通报, 37(11): 2055-2062.
    [173]
    刘军平, 李静, 王伟, 等, 2019. 滇中易门地区早前寒武纪地层化石的发现及其意义[J]. 沉积与特提斯地质, 39(4): 57-64, 70.
    [174]
    刘军平, 宛胜, 李静, 等, 2021. 滇中易门地区古元古界易门群罗洼垤组火山岩锆石U-Pb年龄及其构造热事件[J]. 地质通报, 40(7): 1024-1032.
    [175]
    刘平华, 刘福来, 王舫, 等, 2011. 山东半岛荆山群富铝片麻岩锆石U-Pb定年及其地质意义[J]. 岩石矿物学杂志, 30(5): 829-843.
    [176]
    刘平华, 蔡佳, 邹雷, 2017. 辽东半岛北部三家子石榴斜长角闪岩变质演化P-T-t轨迹及其地质意义: 来自相平衡模拟与锆石U-Pb定年的约束[J]. 岩石学报, 33(9): 2649-2674.
    [177]
    刘玄, 范宏瑞, 邱正杰, 等, 2015. 中条山地区绛县群和中条群沉积时限: 夹层斜长角闪岩SIMS锆石U−Pb年代学证据[J]. 岩石学报, 31(6): 1564-1572.
    [178]
    罗根明, 朱祥坤, 王水炯, 等, 2022. 元古宙早期大氧化事件的成因机制与气候生态效应[J]. 中国科学: 地球科学, 52(9): 1665-1693.
    [179]
    邱啸飞, 陈伟雄, 徐大良, 等, 2022. 扬子陆核崆岭杂岩太古宙地壳演化[J]. 华南地质, 38(1): 56-66.
    [180]
    山西省地质矿产局, 1989. 山西省区域地质志[M]. 北京: 地质出版社: 1-780.
    [181]
    沈其韩, 张荫芳, 1990. 内蒙古中南部早前寒武系变质岩原岩建造和变质作用特征[J]. 中国地质科学院院报, 20: 41-43.
    [182]
    宋会侠, 杨崇辉, 杜利林, 等, 2011. 华北克拉通几个地区古元古代碳酸盐岩地层C-O同位素特征[J]. 岩石矿物学杂志, 30(5): 865-872.
    [183]
    汤好书, 陈衍景, 武广, 等, 2008. 辽北辽河群碳酸盐岩碳−氧同位素特征及其地质意义[J]. 岩石学报, 24(1): 129-138.
    [184]
    汤好书, 武广, 赖勇, 2009a. 辽宁大石桥菱镁矿床的碳氧同位素组成和成因[J]. 岩石学报, 25(2): 455-467.
    [185]
    汤好书, 陈衍景, 武广, 等, 2009b. 辽东辽河群大石桥组碳酸盐岩稀土元素地球化学及其对Lomagundi事件的指示[J]. 岩石学报, 25(11): 3075-3093.
    [186]
    陶鹏, 谢士稳, 王舫, 等, 2023. 胶北地区粉子山群碎屑锆石U-Pb年龄、Hf同位素及其对胶−辽−吉带构造演化的制约[J]. 岩石学报, 39(9): 2619-2635.
    [187]
    万传辉, 张瑜, 王莎莎, 等, 2020. 黄陵基底穹隆北部石墨矿床成矿物质来源的地球化学约束[J]. 岩石矿物学杂志, 39(5): 569-582.
    [188]
    王宏宇, 张拴宏, 王森, 等, 2024. 辽河群高碳同位素正异常碳酸盐岩的发现及其对洛马贡迪−贾图利事件的指示意义[J]. 中国科学: 地球科学, 54(9): 2878-2897.
    [189]
    王惠初, 任云伟, 陆松年, 等, 2015. 辽吉古元古代造山带的地层单元划分与构造属性[J]. 地球学报, 36(5): 583-598.
    [190]
    王沛成, 1995. 论胶北地区荆山群与粉子山群之关系[J]. 中国区域地质(1): 15-20.
    [191]
    魏君奇, 王建雄, 王晓地, 等, 2025. 扬子克拉通黄陵基底的形成及演化[J]. 华南地质, 41(1): 1-14.
    [192]
    吴昌华, 李惠民, 钟长汀, 等, 2000. 阜平片麻岩和湾子片麻岩的单颗粒锆石U-Pb年龄: 阜平杂岩并非一统太古宙基底的年代学证据[J]. 前寒武纪研究进展, 23(3): 129-139.
    [193]
    辛后田, 罗照华, 刘永顺, 等, 2012. 塔里木东南缘阿克塔什塔格地区古元古代壳源碳酸岩的特征及其地质意义[J]. 地学前缘, 19(6): 167-178.
    [194]
    许王, 2019. 中朝克拉通古元古代胶−辽−吉带的构造演化: 来自岩浆岩地球化学和年代学的约束[D]. 北京: 中国地质科学院: 1-247.
    [195]
    杨崇辉, 杜利林, 宋会侠, 等, 2018. 华北克拉通古元古代地层划分与对比[J]. 岩石学报, 34(4): 1019-1057.
    [196]
    杨俊泉, 万渝生, 刘永顺, 等, 2012. 阿尔金北缘古元古代壳源火成碳酸岩的发现[J]. 地球科学——中国地质大学学报, 37(5): 929-936.
    [197]
    翟明国, 2022. 论孔兹岩: 地球上特殊地质过程的记录[J]. 地质学报, 96(9): 2967-2997.
    [198]
    张传林, 李怀坤, 王洪燕, 2012. 塔里木地块前寒武纪地质研究进展评述[J]. 地质论评, 58(5): 923-936.
    [199]
    张传林, 马华东, 李怀坤, 等, 2022. 塔里木北缘库鲁克塔格地区古元古界: 祝贺芮行健先生90华诞[J]. 华东地质, 43(2): 133-140.
    [200]
    张拴宏, 赵越, 裴军令, 2022. 新太古代−古元古代早期表生过程与板块俯冲起始及深部过程耦合关系的探讨[C]//前板块构造与大陆起源, 第321期“双清论坛”报告摘要集. 北京: 国家自然科学基金委员会地球科学部、交叉科学部、计划与政策局: 29.
    [201]
    张水昌, 王华建, 王晓梅, 等, 2022. 中元古代增氧事件[J]. 中国科学: 地球科学, 52(1): 26-52.
    [202]
    钟华, 马永生, 霍卫国, 等, 1993. 山西五台山地区早元古代白云岩碳同位素演化及意义[J]. 中国科学(B辑), 23(10): 1009-1014.
    [203]
    钟华, 马永生, 1995. 碳同位素与早元古代地层对比[J]. 地层学杂志, 19(1): 30-35.
    [204]
    周喜文, 魏春景, 耿元生, 2007. 胶北地块高压与低压泥质麻粒岩的相平衡关系与p-T演化轨迹[J]. 地学前缘, 14(1): 135-143.
    [205]
    周喜文, 耿元生, 2009. 贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约[J]. 岩石学报, 25(8): 1843-1852.
  • 加载中

Catalog

    Figures(6)

    Article Metrics

    Article views (130) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return