| Citation: | XU C,DAI K B,XUE Z W,et al.,2025. Probabilistic study of rainfall-induced landslides at a monthly scale in China[J]. Journal of Geomechanics,31(5):960−971 doi: 10.12090/j.issn.1006-6616.2025134 |
| [1] |
ALEOTTI P, 2004. A warning system for rainfall-induced shallow failures[J]. Engineering Geology, 73(3-4): 247-265. doi: 10.1016/j.enggeo.2004.01.007
|
| [2] |
BENZ S A, BLUM P, 2019. Global detection of rainfall-triggered landslide clusters[J]. Natural Hazards and Earth System Sciences, 19(7): 1433-1444. doi: 10.5194/nhess-19-1433-2019
|
| [3] |
BRUNETTI M T, PERUCCACCI S, ROSSI M, et al., 2010. Rainfall thresholds for the possible occurrence of landslides in Italy[J]. Natural Hazards and Earth System Sciences, 10(3): 447-458. doi: 10.5194/nhess-10-447-2010
|
| [4] |
CAINE N, 1980. The rainfall intensity-duration control of shallow landslides and debris flows[J]. Geografiska Annaler: Series A, Physical Geography, 62(1-2): 23-27. doi: 10.1080/04353676.1980.11879996
|
| [5] |
CHANG J M, CHEN H, JOU B J D, et al., 2017. Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan[J]. Engineering Geology, 231: 81-87. doi: 10.1016/j.enggeo.2017.10.006
|
| [6] |
CHEN C W, OGUCHI T, HAYAKAWA Y S, et al., 2017. Relationship between landslide size and rainfall conditions in Taiwan[J]. Landslides, 14(3): 1235-1240. doi: 10.1007/s10346-016-0790-7
|
| [7] |
CICCARESE G, MULAS M, CORSINI A, 2021. Combining spatial modelling and regionalization of rainfall thresholds for debris flows hazard mapping in the Emilia-Romagna Apennines (Italy)[J]. Landslides, 18(11): 3513-3529.
|
| [8] |
CONG J W, 2020. Rainfall threshold research of rainfall-induced landslides in Tianshui area[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract)
|
| [9] |
FICK S E, HIJMANS R J, 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 37(12): 4302-4315. doi: 10.1002/joc.5086
|
| [10] |
GAO H R, XU C, WU S E, et al., 2025. Has the unpredictability of geological disasters been increased by global warming?[J]. npj Natural Hazards, 2(1): 55. doi: 10.1038/s44304-025-00108-0
|
| [11] |
GARIANO S L, GUZZETTI F, 2016. Landslides in a changing climate[J]. Earth-Science Reviews, 162: 227-252. doi: 10.1016/j.earscirev.2016.08.011
|
| [12] |
GIANNECCHINI R, GALANTI Y, D'AMATO AVANZI G, 2012. Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy)[J]. Natural Hazards and Earth System Sciences, 12(3): 829-842. doi: 10.5194/nhess-12-829-2012
|
| [13] |
GOLDFARB D, REN Y, BAHAMOU A, 2020. Practical quasi-newton methods for training deep neural networks[C]//Proceedings of the 34th international conference on neural information processing systems. Vancouver: ACM: 201.
|
| [14] |
GUO X J, CUI P, LI Y, et al., 2016. Spatial features of debris flows and their rainfall thresholds in the Wenchuan earthquake-affected area[J]. Landslides, 13(5): 1215-1229. doi: 10.1007/s10346-015-0608-z
|
| [15] |
GUZZETTI F, PERUCCACCI S, ROSSI M, et al., 2008. The rainfall intensity–duration control of shallow landslides and debris flows: an update[J]. Landslides, 5(1): 3-17. doi: 10.1007/s10346-007-0112-1
|
| [16] |
HAO J S, HUANG F R, LIU Y, et al., 2018. Avalanche activity and characteristics of its triggering factors in the western Tianshan Mountains, China[J]. Journal of Mountain Science, 15(7): 1397-1411. doi: 10.1007/s11629-018-4941-2
|
| [17] |
HSU Y C, LIU K F, 2019. Combining TRIGRS and DEBRIS-2D models for the simulation of a rainfall infiltration induced shallow landslide and subsequent debris flow[J]. Water, 11(5): 890. doi: 10.3390/w11050890
|
| [18] |
HUANG Y D, XU C, LIU Y, et al., 2025. Inventory and distribution feature of shallow landslides triggered by heavy rain event in Shaoguan, Guangdong Province in April 2024[J]. The Chinese Journal of Geological Hazard and Control, 36(2): 28-42. (in Chinese with English abstract)
|
| [19] |
IVERSON R M, 2000. Landslide triggering by rain infiltration[J]. Water Resources Research, 36(7): 1897-1910. doi: 10.1029/2000WR900090
|
| [20] |
JARVIS A, REUTER H, NELSON A, et al. , 2008. Hole-filled seamless SRTM data V4[R]. Cali: International Centre for Tropical Agriculture (CIAT).
|
| [21] |
KAMAL A S M M, AHMED B, TASNIM S, et al., 2022. Assessing rainfall-induced landslide risk in a humanitarian context: the Kutupalong Rohingya Camp in Cox's Bazar, Bangladesh[J]. Natural Hazards Research, 2(3): 230-248. doi: 10.1016/j.nhres.2022.08.006
|
| [22] |
LARSEN M C, SIMON A, 1993. A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico[J]. Geografiska Annaler: Series A, Physical Geography, 75(1-2): 13-23. doi: 10.1080/04353676.1993.11880379
|
| [23] |
LEE W Y, PARK S K, SUNG H H, 2021. The optimal rainfall thresholds and probabilistic rainfall conditions for a landslide early warning system for Chuncheon, Republic of Korea[J]. Landslides, 18(5): 1721-1739. doi: 10.1007/s10346-020-01603-3
|
| [24] |
LI Q, RU Y F, TAO Z Y, et al., 2025. Uncertainty quantification of ensemble inverse analysis for rainfall-induced slope failure using mixture probabilistic programming[J]. Engineering Geology, 357: 108341. doi: 10.1016/j.enggeo.2025.108341
|
| [25] |
LI T, XIE C C, XU C, et al., 2024. Automated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province, China[J]. China Geology, 7(2): 315-329. doi: 10.31035/cg2024064
|
| [26] |
LI W Y, LIU C, SCAIONI M, et al., 2017. Spatio-temporal analysis and simulation on shallow rainfall-induced landslides in China using landslide susceptibility dynamics and rainfall I-D thresholds[J]. Science China Earth Sciences, 60(4): 720-732. doi: 10.1007/s11430-016-9008-4
|
| [27] |
LIN Q G, STEGER S, PITTORE M, et al., 2022. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change[J]. Science of the Total Environment, 850: 158049. doi: 10.1016/j.scitotenv.2022.158049
|
| [28] |
LIU D C, NOCEDAL J, 1989. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 45(1): 503-528.
|
| [29] |
LU Q Y, DENG Z D, QIU J A, et al. , 2025. Emergency response mechanisms for sudden-onset geohazards: a landslide-focused investigation[J]. City and Disaster Reduction(4): 52-59. (in Chinese with English abstract)
|
| [30] |
MA C, WANG Y J, HU K H, et al., 2017. Rainfall intensity–duration threshold and erosion competence of debris flows in four areas affected by the 2008 Wenchuan earthquake[J]. Geomorphology, 282: 85-95. doi: 10.1016/j.geomorph.2017.01.012
|
| [31] |
MA S Y, XU C, XU X W, et al., 2020. Characteristics and causes of the landslide on July 23, 2019 in Shuicheng, Guizhou Province, China[J]. Landslides, 17(6): 1441-1452. doi: 10.1007/s10346-020-01374-x
|
| [32] |
MA S Y, SHAO X Y, XU C, et al., 2021. MAT. TRIGRS (V1.0): A new open-source tool for predicting spatiotemporal distribution of rainfall-induced landslides[J]. Natural Hazards Research, 1(4): 161-170. doi: 10.1016/j.nhres.2021.11.001
|
| [33] |
MA S Y, 2022. The distribution characteristics and hazard assessment of landslide under various earthquake and rainfall scenarios[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
|
| [34] |
MA S Y, SHAO X Y, XU C, 2022. Characterizing the distribution pattern and a physically based susceptibility assessment of shallow landslides triggered by the 2019 heavy rainfall event in Longchuan County, Guangdong Province, China[J]. Remote Sensing, 14(17): 4257. doi: 10.3390/rs14174257
|
| [35] |
MA S Y, SHAO X Y, XU C, 2023a. Landslides triggered by the 2016 heavy rainfall event in Sanming, Fujian Province: distribution pattern analysis and spatio-temporal susceptibility assessment[J]. Remote Sensing, 15(11): 2738. doi: 10.3390/rs15112738
|
| [36] |
MA S Y, SHAO X Y, XU C, et al., 2023b. Insight from a physical-based model for the triggering mechanism of loess landslides induced by the 2013 Tianshui heavy rainfall event[J]. Water, 15(3): 443. doi: 10.3390/w15030443
|
| [37] |
MA S Y, SHAO X Y, XU C, 2025a. Insight into data-driven model for the formation mechanism and causative factors of landslides induced by the 2013 Tianshui extreme rainfall event[J]. Geomatics, Natural Hazards and Risk, 16(1): 2487826. doi: 10.1080/19475705.2025.2487826
|
| [38] |
MA S Y, SHAO X Y, XU C, et al., 2025b. Topographic location and connectivity to channel of earthquake- and rainfall-induced landslides in Loess Plateau area[J]. Scientific Reports, 15(1): 628. doi: 10.1038/s41598-024-84885-0
|
| [39] |
MA T H, LI C J, LU Z M, et al., 2015. Rainfall intensity-duration thresholds for the initiation of landslides in Zhejiang Province, China[J]. Geomorphology, 245: 193-206. doi: 10.1016/j.geomorph.2015.05.016
|
| [40] |
NG C W W, YANG B, LIU Z Q, et al., 2021. Spatiotemporal modelling of rainfall-induced landslides using machine learning[J]. Landslides, 18(7): 2499-2514. doi: 10.1007/s10346-021-01662-0
|
| [41] |
NISSEN K M, WILDE M, KREUZER T M, et al., 2025. The effect of climate change on landslide probability in Germany[J]. Landslides, 22(9): 2979-2994. doi: 10.1007/s10346-025-02555-2
|
| [42] |
PENG S Z, DING Y X, LIU W Z, et al., 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 11(4): 1931-1946. doi: 10.5194/essd-11-1931-2019
|
| [43] |
PENG S Z, 2010. 1-km monthly precipitation dataset for China (1901-2024)[EB/OL]. [2025-07-02]. https://www.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2. DOI: 10.5281/zenodo.3114194 (in Chinese).
|
| [44] |
QI W W, XU C, HOU J S, et al., 2025. Characteristics and risk assessment of geological hazards triggered by rainfall in the flooding season: a case study of the main flooding season in 2023[J]. Safety & Security, 46(3): 10-18. (in Chinese with English abstract)
|
| [45] |
ROSATTI G, ZUGLIANI D, PIRULLI M, et al., 2019. A new method for evaluating stony debris flow rainfall thresholds: the backward dynamical approach[J]. Heliyon, 5(6): e01994. doi: 10.1016/j.heliyon.2019.e01994
|
| [46] |
SAITO H, NAKAYAMA D, MATSUYAMA H, 2010. Relationship between the initiation of a shallow landslide and rainfall intensity—duration thresholds in Japan[J]. Geomorphology, 118(1-2): 167-175. doi: 10.1016/j.geomorph.2009.12.016
|
| [47] |
SHAO X Y, MA S Y, XU C, et al., 2023. Insight into the characteristics and triggers of loess landslides during the 2013 heavy rainfall event in the Tianshui Area, China[J]. Remote Sensing, 15(17): 4304. doi: 10.3390/rs15174304
|
| [48] |
SHEN L L, LIU L Y, YANG W T, et al., 2015. Rainfall threshold analysis for the initiation of geological disasters in Sichuan province based on TRMM data[J]. Journal of Catastrophology, 30(1): 220-227. (in Chinese with English abstract)
|
| [49] |
TEJA T S, DIKSHIT A, SATYAM N, 2019. Determination of rainfall thresholds for landslide prediction using an algorithm-based approach: case study in the darjeeling himalayas, India[J]. Geosciences, 9(7): 302. doi: 10.3390/geosciences9070302
|
| [50] |
VADIVEL S, SENNIMALAI C S, 2019. Failure mechanism of long-runout landslide triggered by heavy rainfall in achanakkal, nilgiris, India[J]. Journal of Geotechnical and Geoenvironmental Engineering, 145(9): 04019047. doi: 10.1061/(ASCE)GT.1943-5606.0002099
|
| [51] |
WANG H L, JIANG Z H, XU W Y, et al., 2022. Physical model test on deformation and failure mechanism of deposit landslide under gradient rainfall[J]. Bulletin of Engineering Geology and the Environment, 81(1): 66. doi: 10.1007/s10064-021-02566-y
|
| [52] |
WANG Z H, YANG S N, YAO K Z, et al., 2024. Precipitation threshold for rainfall-type landslides in the Qinba Mountains area, Sichuan province, China[J]. Mountain Research, 42(2): 238-248. (in Chinese with English abstract)
|
| [53] |
WU S E, XU C, MA J X, et al., 2025. Escalating risks and impacts of rainfall-induced geohazards[J]. Natural Hazards Research, 5(3): 447-454. doi: 10.1016/j.nhres.2025.03.003
|
| [54] |
XIE C C, HUANG Y D, LI L, et al., 2023. Detailed inventory and spatial distribution analysis of rainfall-induced landslides in Jiexi County, Guangdong Province, China in August 2018[J]. Sustainability, 15(18): 13930. doi: 10.3390/su151813930
|
| [55] |
XIE C C, XU C, HUANG Y D, et al., 2025a. Detailed inventory and initial analysis of landslides triggered by extreme rainfall in the northern Huaiji County, Guangdong Province, China, from June 6 to 9, 2020[J]. Geoenvironmental Disasters, 12(1): 7. doi: 10.1186/s40677-025-00311-1
|
| [56] |
XIE C C, XU C, HUANG Y D, et al., 2025b. Advances in the study of natural disasters induced by the "23.7" extreme rainfall event in North China[J]. Natural Hazards Research, 5(1): 1-13. doi: 10.1016/j.nhres.2025.01.003
|
| [57] |
XUE Z W, 2025. Study on spatial distribution characteristics of landslides triggered by earthquakes and rainfall and landslide hazard assessment under superposition conditions[D]. Beijing: University of Chinese Academy of Sciences. (in Chinese with English abstract)
|
| [58] |
YANG H J, YANG T Q, ZHANG S J, et al., 2020. Rainfall-induced landslides and debris flows in Mengdong Town, Yunnan Province, China[J]. Landslides, 17(4): 931-941. doi: 10.1007/s10346-019-01336-y
|
| [59] |
YANG L, CUI Y L, XU C, et al., 2024. Application of coupling physics–based model TRIGRS with random forest in rainfall-induced landslide-susceptibility assessment[J]. Landslides, 21(9): 2179-2193. doi: 10.1007/s10346-024-02276-y
|
| [60] |
ZHANG L M, LÜ Q, DENG Z H, et al., 2025a. Probabilistic approach to determine rainfall thresholds for rainstorm-induced shallow landslides using long-term local precipitation records[J]. Engineering Geology, 353: 108139. doi: 10.1016/j.enggeo.2025.108139
|
| [61] |
ZHANG S, PECORARO G, JIANG Q G, et al., 2025b. A probabilistic procedure to define multidimensional rainfall thresholds for territorial landslide warning models[J]. Landslides, 22(6): 1773-1787. doi: 10.1007/s10346-025-02461-7
|
| [62] |
ZHOU S, HUANG Y, GUO Z, et al., 2024. Quantitative risk assessment of road exposed to landslide: A novel framework combining numerical modeling and complex network theory[J]. Engineering Geology, 343: 107794. doi: 10.1016/j.enggeo.2024.107794
|
| [63] |
丛佳伟, 2020. 天水地区降雨型滑坡的降雨阈值研究[D]. 兰州: 兰州大学.
|
| [64] |
黄远东, 许冲, 刘毅, 等, 2025. 2024年4月广东韶关暴雨诱发的浅层滑坡编目与滑坡分布特征分析[J]. 中国地质灾害与防治学报, 36(2): 28-42.
|
| [65] |
李巍岳, 刘春, SCAIONI M, 等, 2017. 基于滑坡敏感性与降雨强度-历时的中国浅层降雨滑坡时空分析与模拟[J]. 中国科学: 地球科学, 47(4): 473-484.
|
| [66] |
卢琪愿, 邓志德, 邱锦安, 等, 2025. 突发地质灾害应急响应机制研究: 以滑坡灾害为例[J]. 城市与减灾(4): 52-59.
|
| [67] |
马思远, 2022. 地震降雨多场景下触发滑坡分布规律和危险性概率评估研究[D]. 北京: 中国地震局地质研究所.
|
| [68] |
彭守璋, 2010. 中国1km分辨率逐月降水量数据集(1901-2024)[EB/OL]. 国家青藏高原科学数据中心, [2025-07-02]. https://www.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2. DOI: 10.5281/zenodo.3114194.
|
| [69] |
齐文文, 许冲, 侯建盛, 等, 2025. 汛期降雨地质灾害特征与评估预警技术应用: 以2023年主汛期为例[J]. 安全, 46(3): 10-18.
|
| [70] |
沈玲玲, 刘连友, 杨文涛, 等, 2015. 基于TRMM降雨数据的四川省地质灾害降雨阈值分析[J]. 灾害学, 30(2): 220-227.
|
| [71] |
王智昊, 杨赛霓, 姚可桢, 等, 2024. 四川秦巴山区降雨型滑坡灾害降雨阈值[J]. 山地学报, 42(2): 238-248.
|
| [72] |
薛智文, 2025. 地震和降雨滑坡空间分布特征与叠加条件下滑坡危险性评价研究 [D]. 中国科学院大学
|