Volume 31 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
ZHANG Y S,REN S S,GUO C B,et al.,2025. Application of geomechanics in risk prevention and control for the geosafety of major projects on the Tibetan Plateau[J]. Journal of Geomechanics,31(5):926−939 doi: 10.12090/j.issn.1006-6616.2025130
Citation: ZHANG Y S,REN S S,GUO C B,et al.,2025. Application of geomechanics in risk prevention and control for the geosafety of major projects on the Tibetan Plateau[J]. Journal of Geomechanics,31(5):926−939 doi: 10.12090/j.issn.1006-6616.2025130

Application of geomechanics in risk prevention and control for the geosafety of major projects on the Tibetan Plateau

doi: 10.12090/j.issn.1006-6616.2025130
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 42472350 and 42307229).
More Information
  • Author Bio:

    张永双,教授,博士生导师,现任中国地质大学(北京)地质安全研究院执行院长,国家减灾委专家委员会委员,中国地质学会工程地质专委会副主任委员,国际工程地质与环境协会新构造与地质灾害专委会(IAEG-C24)秘书长,《地质力学学报》副主编。研究方向为工程地质与地质灾害,先后主持国家重点研发计划项目、基金委重点项目等重要科技项目30余项,在国内外刊物发表论文200余篇,主编技术标准5部,曾获省部级科学技术奖一等奖4项、二等奖4项,获“全国抗震救灾模范”及自然资源部首批科技创新领军人才称号

  • Received: 2025-09-10
  • Revised: 2025-09-20
  • Accepted: 2025-09-21
  • Available Online: 2025-10-11
  • Published: 2025-10-28
  •   Objective  The Tibetan Plateau is one of the most tectonically active regions in the world. The coupled effects of endogenic and exogenic processes result in frequent geological hazards and complex engineering geological problems, posing a significant threat to the geological safety of major engineering projects.   Method  This paper summarizes the application of geomechanics theories in the prevention and control of geological safety risks for major engineering projects, based on over two decades of research conducted on the Tibetan Plateau by our team.   Results  Specific contributions include: (1) The theory of regional crustal stability evaluation was advanced, and a methodology was proposed for investigating and assessing regional crustal stability, engineering geological stability, and site stability; this has been effectively applied to the route selection and site planning of major projects; (2) An engineering geological research framework was established for active tectonic zones, the geohazard effects of active faults were clarified, geomechanical models for high-position landslides were developed, and the combined control mechanism of rock mass structure and special lithology on landslide formation was revealed; (3) Research on rockburst mechanisms in deeply buried tunnels was conducted based on in-situ stress measurements, the characteristics of rockbursts under different tectonic settings were compared and analyzed, and strategies for rockburst prevention and control in high-stress environments were proposed. Building upon the aforementioned research findings, future directions for the innovation of geomechanical theories and their engineering applications are proposed.   Conclusion  The research on the application of engineering geology can further promote the advance of geomechanics and provide new theoretical and technical support for the planning and construction of major national projects, as well as disaster prevention and mitigation.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    CHEN Q X, 1986. Some problems deserving of special attention in the analysis of rock deformation and tectonic stress field[J]. Bulletin of the Institute of Geomechanics Cags(8): 1-8. (in Chinese with English abstract)
    [2]
    DU D J, 1994. Establishment and development of regional stability engineering geology in Chinese[J]. Journal of Engineering Geology, 2(3): 21-26. (in Chinese with English abstract)
    [3]
    FAN X M, SCARINGI G, KORUP O, et al., 2019. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts[J]. Reviews of Geophysics, 57(2): 421-503. doi: 10.1029/2018RG000626
    [4]
    FENG X T, XIAO Y X, FENG G L, et al., 2019. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 649-673. (in Chinese with English abstract)
    [5]
    GONG F Q, DAI J H, WANG M Y, et al., 2022. "Strength & stress" coupling criterion and its grading standard for high geostress[J]. Journal of Engineering Geology, 30(6): 1893-1913. (in Chinese with English abstract)
    [6]
    GU D Z, 1979. Fundamentals of rock mass engineering geomechanics[M]. Beijing: Science Press. (in Chinese)
    [7]
    GUO C B, 2011. Research on the major engineering geological problems of the Dali-Ruili Railway through Gaoligong Mt. [D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    [8]
    HE M C, REN S L, TAO Z G, 2022. Disaster prevention and control methods for deep buried tunnels[J]. Journal of Engineering Geology, 30(6): 1777-1797. (in Chinese with English abstract)
    [9]
    HEAP M J, BAUMANN T S, ROSAS-CARBAJAL M, et al., 2021. Alteration-induced volcano instability at La Soufrière de Guadeloupe (Eastern Caribbean)[J]. Journal of Geophysical Research: Solid Earth, 126(8): e2021JB022514. doi: 10.1029/2021JB022514
    [10]
    HU H T, YIN Y P, 1996. Theory and evaluation methods of regional crust stability "Safety Island"[J]. Earth Science Frontiers, 3(1-2): 57-68. (in Chinese with English abstract)
    [11]
    HUANG R Q, 2008. Geodynamical process and stability control of high rock slope development[J]. Chinese Journal of Rock Mechanics and Engineering, 27(8): 1525-1544. (in Chinese with English abstract)
    [12]
    LI B, YIN Y P, TAN C X, et al., 2022. Geo-safety challenges against the site selection of engineering projects in the eastern Himalayan syntaxis area[J]. Journal of Geomechanics, 28(6): 907-918. (in Chinese with English abstract)
    [13]
    LI S G, 1945. Fundamentals and methods of geomechanics[M]. Chongqing: Chongqing University Press. (in Chinese)
    [14]
    LIU G C, 1979. Regional stability and earthquakes[J]. Hydrogeology & Engineering Geology, 6(2): 1-7. (in Chinese)
    [15]
    MAEDA H, SASAKI T, FURUTA K, et al., 2012. Relationship between landslides, geologic structures, and hydrothermal alteration zones in the Ohekisawa-Shikerebembetsugawa Landslide Area, Hokkaido, Japan[J]. Journal of Earth Science and Engineering, 2(6): 317-327.
    [16]
    PENG J B, MAO Y L, FAN W, 2001. Study on regional stability dynamics[M]. Beijing: Science Press. (in Chinese)
    [17]
    PENG J B, CUI P, ZHUANG J Q, 2020. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389. (in Chinese with English abstract)
    [18]
    REN S S, ZHANG Y S, LI J Q, et al., 2023. A new type of sliding zone soil and its severe effect on the formation of giant landslides in the Jinsha River tectonic suture zone, China[J]. Natural Hazards, 117(2): 1847-1868. doi: 10.1007/s11069-023-05931-0
    [19]
    SHUGAR D H, JACQUEMART M, SHEAN D, et al., 2021. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya[J]. Science, 373(6552): eabh4455.
    [20]
    SUN G Z, 1988. Rock mass structure mechanics[M]. Beijing: Science Press. (in Chinese)
    [21]
    SUN G Z, SUN Y, 2004. Rock mass structure mechanics[M]. Beijing: Geological Publishing House. (in Chinese)
    [22]
    SUN Y, TAN C X, WANG R J, et al., 1996. An assessment and zonation of regional crustal stability in and around the dam region of the Three Gorges Project on the Yangtze River[J]. Acta Geoscientia Sinica, 17(3): 258-268. (in Chinese with English abstract)
    [23]
    SUN Y K, 1997. Rockmass structural mechanism - a new advance in rock engineering - geological mechanicas[J]. Journal of Engineering Geology, 5(4): 292-294. (in Chinese with English abstract)
    [24]
    TAN C X, SUN W F, SUN Y, et al., 2006. A consideration on in-situ crustal stress measuring and its underground engineering application[J]. Acta Geologica Sinica, 80(10): 1627-1632. (in Chinese with English abstract)
    [25]
    WANG S J, 2002. Coupling of earth's endogenic and exogenic geological processes and origins on serious geological disasters[J]. Journal of Engineering Geology, 10(2): 115-117. (in Chinese with English abstract)
    [26]
    WU F Q, WANG S J, PAN B T, 2022. Statistical mechanics of rock masses(SMRM): inheriting and developing of engineering geomechanics of rock masses[J]. Journal of Engineering Geology, 30(1): 1-20. (in Chinese with English abstract)
    [27]
    WU S R, WANG R J, 1996. Some development trends in the study of geological hazards and regional crustal stability[J]. Journal of Geomechanics, 2(3): 78-80. (in Chinese)
    [28]
    WU Z H, YE P S, WU Z H, et al., 2003. Hazard effects of active faulting along the Golmud-Lhasa railway across the Tibetan Plateau[J]. Geoscience, 17(1): 1-7. (in Chinese with English abstract)
    [29]
    WU Z H, ZHAO G M, LONG C X, et al., 2014. The seismic hazard assessment around south-east area of Qinghai-Xizang Plateau: a preliminary results from active tectonics system analysis[J]. Acta Geologica Sinica, 88(8): 1401-1416. (in Chinese with English abstract)
    [30]
    XU Q, LI W L, 2010. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 18(6): 818-826. (in Chinese with English abstract)
    [31]
    YI M C, HU H T, YIN Y P, et al., 2006. Developing Li Siguang's "safety island" thought and making serious evaluation and research on regional crustal stability in areas of engineering works[J]. Journal of Geomechanics, 12(2): 105-118. (in Chinese with English abstract)
    [32]
    YIN Y P, 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4): 433-444. (in Chinese with English abstract)
    [33]
    YIN Y P, LI B, GAO Y, et al., 2023. Geostructures, dynamics and risk mitigation of high-altitude and long-runout rockslides[J]. Journal of Rock Mechanics and Geotechnical Engineering, 15(1): 66-101. doi: 10.1016/j.jrmge.2022.11.001
    [34]
    ZHANG Y S, QU Y X, LIU J R, et al., 2007. Engineering geological research on altered rocks in the area of NW Yunnan along Yunnan-Tibet railway line[J]. Chinese Journal of Geotechnical Engineering, 29(4): 531-536. (in Chinese with English abstract)
    [35]
    ZHANG Y S, LEI Z W, SHI J S, et al., 2008. General characteristics of 5.12 earthquake-induced geohazards in Sichuan[J]. Journal of Geomechanics, 14(2): 109-116. (in Chinese with English abstract)
    [36]
    ZHANG Y S, XIONG T Y, DU Y B, et al., 2009. Geostress characteristic and simulation experiment of rockburst of a deep-buried tunnel in Gaoligong mountain[J]. Chinese Journal of Rock Mechanics and Engineering, 28(11): 2286-2294. (in Chinese with English abstract)
    [37]
    ZHANG Y S, SHI J S, SUN P, et al., 2013. Surface ruptures induced by the Wenchuan earthquake: their influence widths and safety distances for construction sites[J]. Engineering Geology, 166: 245-254. doi: 10.1016/j.enggeo.2013.09.010
    [38]
    ZHANG Y S, CHENG Y L, YIN Y P, et al., 2014. High-position debris flow: a long-term active geohazard after the Wenchuan earthquake[J]. Engineering Geology, 180: 45-54. doi: 10.1016/j.enggeo.2014.05.014
    [39]
    ZHANG Y S, GUO C B, YAO X, et al. , 2014. Seismic engineering geology of the east marginal region of Tibetan Plateau[M]. Beijing: Geological Publishing House. (in Chinese)
    [40]
    ZHANG Y S, GUO C B, YAO X, et al., 2016. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientia Sinica, 37(3): 277-286. (in Chinese with English abstract)
    [41]
    ZHANG Y S, REN S S, GUO C B, et al., 2019. Research on engineering geology related with active fault zone[J]. Acta Geologica Sinica, 93(4): 763-775. (in Chinese with English abstract)
    [42]
    ZHANG Y S, DU G L, GUO C B, et al., 2021. Research on typical geomechanical model of high-position landslides on the Sichuan-Tibet traffic corridor[J]. Acta Geologica Sinica, 95(3): 605-617. (in Chinese with English abstract)
    [43]
    ZHANG Y S, LI J Q, REN S S, et al., 2022a. Development characteristics of clayey altered rocks in the Sichuan-Tibet traffic corridor and their promotion to large-scale landslides[J]. Earth Science, 47(6): 1945-1956. (in Chinese with English abstract)
    [44]
    ZHANG Y S, WU R A, GUO C B, et al., 2022b. Geological safety evaluation of railway engineering construction in plateau mountainous region: ideas and methods[J]. Acta Geologica Sinica, 96(5): 1736-1751. (in Chinese with English abstract)
    [45]
    陈庆宣, 1986. 岩石形变与构造应力场分析中值得引起注意的几个问题[J]. 中国地质科学院地质力学研究所所刊(8): 1-8.
    [46]
    杜东菊, 1994. 中国区域稳定工程地质学产生与发展[J]. 工程地质学报, 2(3): 21-26.
    [47]
    冯夏庭, 肖亚勋, 丰光亮, 等, 2019. 岩爆孕育过程研究[J]. 岩石力学与工程学报, 38(4): 649-673.
    [48]
    宫凤强, 代金豪, 王明洋, 等, 2022. 高地应力“强度&应力”耦合判据及其分级标准[J]. 工程地质学报, 30(6): 1893-1913.
    [49]
    谷德振, 1979. 岩体工程地质力学基础[M]. 北京: 科学出版社.
    [50]
    郭长宝, 2011. 大瑞铁路高黎贡山越岭段重大工程地质问题研究[D]. 北京: 中国地质科学院.
    [51]
    何满潮, 任树林, 陶志刚, 2022. 深埋隧道灾变防控方法[J]. 工程地质学报, 30(6): 1777-1797.
    [52]
    胡海涛, 殷跃平, 1996. 区域地壳稳定性评价“安全岛”理论及方法[J]. 地学前缘, 3(1-2): 57-68.
    [53]
    黄润秋, 2008. 岩石高边坡发育的动力过程及其稳定性控制[J]. 岩石力学与工程学报, 27(8): 1525-1544.
    [54]
    李滨, 殷跃平, 谭成轩, 等, 2022. 喜马拉雅东构造结工程选址面临的地质安全挑战[J]. 地质力学学报, 28(6): 907-918.
    [55]
    李四光, 1945. 地质力学之基础与方法[M]. 重庆: 重庆大学出版社.
    [56]
    刘国昌, 1979. 区域稳定性与地震[J]. 水文地质工程地质, 6(2): 1-7.
    [57]
    彭建兵, 毛彦龙, 范文, 2001. 区域稳定动力学研究: 黄河黑山峡大型水电工程例析[M]. 北京: 科学出版社.
    [58]
    彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 39(12): 2377-2389.
    [59]
    孙广忠, 1988. 岩体结构力学[M]. 北京: 科学出版社.
    [60]
    孙广忠, 孙毅, 2004. 地质工程学原理[M]. 北京: 地质出版社.
    [61]
    孙叶, 谭成轩, 王瑞江, 等, 1996. 长江三峡工程坝区及外围地壳稳定性评价与分区研究[J]. 地球学报, 17(3): 258-268.
    [62]
    孙玉科, 1997. 岩体结构力学: 岩体工程地质力学的新发展[J]. 工程地质学报, 5(4): 292-294.
    [63]
    谭成轩, 孙炜锋, 孙叶, 等, 2006. 地应力测量及其地下工程应用的思考[J]. 地质学报, 80(10): 1627-1632.
    [64]
    王思敬, 2002. 地球内外动力耦合作用与重大地质灾害的成因初探[J]. 工程地质学报, 10(2): 115-117.
    [65]
    伍法权, 王思敬, 潘别桐, 2022. 统计岩体力学(SMRM): 岩体工程地质力学的传承与发展[J]. 工程地质学报, 30(1): 1-20.
    [66]
    吴树仁, 王瑞江, 1996. 地质灾害与区域地壳稳定性研究的某些发展趋势[J]. 地质力学学报, 2(3): 78-80.
    [67]
    吴珍汉, 叶培盛, 吴中海, 等, 2003. 青藏铁路沿线断裂活动的灾害效应[J]. 现代地质, 17(1): 1-7.
    [68]
    吴中海, 赵根模, 龙长兴, 等, 2014. 青藏高原东南缘现今大震活动特征及其趋势: 活动构造体系角度的初步分析结果[J]. 地质学报, 88(8): 1401-1416.
    [69]
    许强, 李为乐, 2010. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报, 18(6): 818-826.
    [70]
    易明初, 胡海涛, 殷跃平, 等, 2006. 发扬李四光“安全岛”思想, 认真做好工程建设地区的区域地壳稳定性评价研究工作[J]. 地质力学学报, 12(2): 105-118.
    [71]
    殷跃平, 2008. 汶川八级地震地质灾害研究[J]. 工程地质学报, 16(4): 433-444.
    [72]
    张永双, 曲永新, 刘景儒, 等, 2007. 滇藏铁路滇西北段蒙脱石化蚀变岩的工程地质研究[J]. 岩土工程学报, 29(4): 531-536.
    [73]
    张永双, 雷伟志, 石菊松, 等, 2008. 四川5.12地震次生地质灾害的基本特征初析[J]. 地质力学学报, 14(2): 109-116.
    [74]
    张永双, 熊探宇, 杜宇本, 等, 2009. 高黎贡山深埋隧道地应力特征及岩爆模拟试验[J]. 岩石力学与工程学报, 28(11): 2286-2294.
    [75]
    张永双, 郭长宝, 姚鑫, 等, 2014. 青藏高原东缘地震工程地质[M]. 北京: 地质出版社.
    [76]
    张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 37(3): 277-286.
    [77]
    张永双, 任三绍, 郭长宝, 等, 2019. 活动断裂带工程地质研究[J]. 地质学报, 93(4): 763-775.
    [78]
    张永双, 杜国梁, 郭长宝, 等, 2021. 川藏交通廊道典型高位滑坡地质力学模式[J]. 地质学报, 95(3): 605-617.
    [79]
    张永双, 李金秋, 任三绍, 等, 2022a. 川藏交通廊道黏土化蚀变岩发育特征及其对大型滑坡的促滑作用[J]. 地球科学, 47(6): 1945-1956.
    [80]
    张永双, 吴瑞安, 郭长宝, 等, 2022b. 高原山区铁路工程建设地质安全评价: 思路与方法[J]. 地质学报, 96(5): 1736-1751.
  • 加载中

Catalog

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (185) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return