Volume 31 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
HAN R S,ZHANG Y,LUO J,et al.,2025. Plunge law and mechanical mechanisms of fault-controlled ore bodies (clusters) in hydrothermal deposits[J]. Journal of Geomechanics,31(5):886−897 doi: 10.12090/j.issn.1006-6616.2025121
Citation: HAN R S,ZHANG Y,LUO J,et al.,2025. Plunge law and mechanical mechanisms of fault-controlled ore bodies (clusters) in hydrothermal deposits[J]. Journal of Geomechanics,31(5):886−897 doi: 10.12090/j.issn.1006-6616.2025121

Plunge law and mechanical mechanisms of fault-controlled ore bodies (clusters) in hydrothermal deposits

doi: 10.12090/j.issn.1006-6616.2025121
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 42172086 and 42472127), the Project of the Yunnan Provincial Engineering Research Center for Mineral Resources Prediction and Assessment (2011), and the Project of the Yunnan Kunming University of Science and Technology Innovation Team (2012).
More Information
  • Author Bio:

    韩润生,昆明理工大学二级教授、博士生导师,享受国务院特殊津贴,入选“新世纪百千万人才工程”国家级人选、教育部新世纪优秀人才、云岭学者等。现任云南省矿产资源预测评价工程研究中心主任、云南省地质过程与矿产资源创新团队首席教授。长期从事成矿动力学与隐伏矿预测、矿床学方向的教学与研究工作。主持国家重点研发计划课题、国家自然科学基金(重点)项目、科技支撑计划课题、国家危机矿山专项及教育部、财政部、省级和校企科技合作项目50余项;以第一或第二作者出版专著5部;在Scientific ReportOre Geology Reviews、《地学前缘》《地质学报》等中外刊物发表学术论文200余篇;获发明专利授权22件;获省部级特等奖1项(R1)、一等奖6项(4R1、2R2)、二等奖5项(2R1、1R2、2R6),并获得中国产学研合作创新奖及第三届“黄汲清青年地质科学技术奖”等。兼任国际大地构造与成矿委员会委员、中国地球物理学会构造物理化学委员会副主任、中国岩石矿物地球化学学会理事、应用地球化学委员会副主任、矿床地球化学委员会委员、中国有色地质学术委员会副主任等

  • Corresponding author: 张艳,昆明理工大学教授、博士生导师,兼任中国有色金属学会地质专业委员会副秘书长,入选“云南省兴滇英才支持计划”产业创新、青年人才项目,现任云南省矿产资源预测评价工程研究中心副主任。主要从事隐伏矿预测与矿床学的教学与科研工作。主持深地国家重大专项子课题、国家自然科学基金(面上、青年)项目、博士后面上一等资助项目共4项,以及省重大专项课题、产学研合作重点项目等10余项。科研成果获云南省科技进步特等奖1项(R6),其它省部级科技奖励4项、地厅级奖励2项,获国家发明专利授权10项。以第一作者或通信作者发表高水平论文50余篇,作为第二作者出版78万字学术专著1部。曾获全国大学青年教师地质课程教学比赛一等奖、昆明理工大学首届课程思政教学比赛特等奖。
  • Received: 2025-09-02
  • Revised: 2025-10-22
  • Accepted: 2025-10-22
  • Available Online: 2025-10-22
  • Published: 2025-10-28
  •   Objective  Hydrothermal mineral deposits provide a representative example of tectonic–fluid coupled metallogenic systems, and the lateral plunge law of ore bodies or ore body clusters constitutes their three-dimensional expression in geological space, yet the determination of pitching direction and pitching angle has long been one of the most difficult problems in prospecting prediction.  Methods  This study aims to address the major challenges in understanding plunge law and mechanical mechanisms, namely the difficulty of identifying ore body pitching under multiphase tectonic superposition, the lack of clarity in the control mechanisms of ore body cluster pitching, and the insufficiency of empirical studies on deep ore body pitching models. Based on Theory and Methods of Orefield Geomechanics, breakthroughs were achieved in multiphase structural recognition and the identification of control mechanisms, allowing systematic summarization of plunge law associated with compressional–shear, extensional–shear or transtensional, ductile shear zone or brittle shear belt, and composite structural controls, together with detailed analysis of their mechanical mechanisms and the proposal of practical methods for determining pitching.  Results  The results indicate that in hydrothermal deposits, ore body pitching is strictly controlled by the mechanical properties, kinematic behavior, and spatial configuration of the dominant ore-controlling structures during mineralization: the pitching direction of ore bodies or clusters is consistent with the movement of the hanging wall of the controlling fault, while the pitching angle is governed by the fault dip, the proportion of shear components, the undulatory amplitude of fault planes, and the orientation of the regional principal stresses. Ore bodies controlled by transpressional or transtensional faults exhibit more pronounced pitching than those associated with simple compressional–shear or extensional–shear structures; for single ore bodies or vein clusters, pitching direction may coincide with that of the cluster in transpressional or compressional–shear systems, or conversely oppose it in transtensional or extensional–shear systems; where ductile shear zones control mineralization, pitching is parallel to stretching lineations, while brittle shear belts produce pitching that follows extension–compression directions; in composite structural systems, the determination of pitching requires careful analysis of inherited, superimposed, or transformed tectonic elements to establish the effective mode of control. Mechanically, the pitching direction corresponds to the orientation of maximum permeability of metallogenic fluids within the ore-controlling stress field: in compressional–shear or transpressional faults, pitching is constrained by the sense of shear displacement; in transtensional faults, it is determined by the orientation of dominant fluid channels; and in ductile shear zones, it follows the X-axis of the strain ellipsoid.  Conclusion  These findings confirm that the mechanics and kinematics of ore-controlling structures are the primary factors dictating the occurrence of pitching in ore bodies and clusters, but they also highlight that the regularities differ between structural hierarchies, with the behavior of ore body clusters not entirely identical to that of single ore bodies, and that the observed patterns reflect the combined action of the metallogenic stress field, fluid dynamics, and the physical properties of host rocks. On this basis, several methods are recognized as effective for inferring the pitching of concealed ore bodies, including structural analysis of mineralizing faults, tracing zoning trends of mineralization and alteration, projection of ore column centroids, and three-dimensional spatial analysis of exploration engineering data, while the integration of structural geochemical and geophysical anomaly analyses can significantly enhance the reliability of pitching prediction in deep concealed settings, thereby opening new avenues for deep ore prospecting and achieving high efficiency in exploration. [Significance] The significance of this study lies not only in its practical applications—guiding deep and peripheral prospecting, improving mineral resource evaluation in exploration areas, optimizing the deployment of exploration projects, and enabling more accurate estimation of reserves—but also in its theoretical contributions, particularly in advancing the understanding of the metallogenic dynamics of hydrothermal deposits by linking structural mechanics, stress fields, fluid migration, and rock physical properties in a unified framework for explaining ore body pitching.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    CHEN G D, 1978. Research method of ore-forming structures[M]. Beijing: Geological Publishing House. (in Chinese)
    [2]
    CLINE J S, HOFSTRA A H, MUNTEAN J L, et al. , 2005. Carlin-type gold deposits in Nevada: critical geologic characteristics and viable models[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. Littleton, CO: Society of Economic Geologists: 451-484.
    [3]
    COX S F, KNACKSTEDT M A, BRAUN J, 2001. Principles of structural control on permeability and fluid flow in hydrothermal systems[M]//RICHARDS J P, TOSDAL R M. Structural controls on ore genesis. Society of Economic Geologists: 1-10.
    [4]
    COX S F, RUMING K, 2004. The St Ives mesothermal gold system, Western Australia—a case of golden aftershocks?[J]. Journal of Structural Geology, 26(6-7): 1109-1125. doi: 10.1016/j.jsg.2003.11.025
    [5]
    CUREWITZ D, KARSON J A, 1997. Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction[J]. Journal of Volcanology and Geothermal Research, 79(3-4): 149-168. doi: 10.1016/S0377-0273(97)00027-9
    [6]
    DAVIES A J, HAGEMANN S G, WITT W K, et al., 2025. Structural controls on Au–Co mineralisation at the Juomasuo deposit, an example of Paleoproterozoic Au–Co–Cu–REE systems in the Karelian belts of Scandinavia[J]. Australian Journal of Earth Sciences, 72(5-6): 732-762. doi: 10.1080/08120099.2025.2522879
    [7]
    DENG J, YANG L Q, GE L S, et al., 2006. Research advances on the tectonic regime of the Jiaodong mineral concentration area formation[J]. Progress in Natural Science, 16(5): 513-518. (in Chinese with English abstract)
    [8]
    GAO Q B, FAN Y X, WANG K Y, et al., 1998. The main geological means of deep metallogenetic prognosis of gold deposits[J]. Gold Geology, 4(2): 22-26. (in Chinese with English abstract)
    [9]
    GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al., 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 13(1-5): 7-27. doi: 10.1016/S0169-1368(97)00012-7
    [10]
    GROVES D, VEARNCOMBE J, 2020. Introduction: thematic issue of Mineralium deposita on orogenic gold deposits[J]. Mineralium Deposita, 55(2): 187-188. doi: 10.1007/s00126-019-00951-y
    [11]
    HAN R S, CHEN J, LI Y, et al., 2001. Ore-controlling tectonics and prognosis of concealed ores in Huize Pb-Zn deposit, Yunnan[J]. Acta Mineralogica Sinica, 21(2): 265-269. (in Chinese with English abstract)
    [12]
    HAN R S, CHEN J, WANG F, et al., 2015. Analysis of metal-element association halos within fault zones for the exploration of concealed ore-bodies: a case study of the Qilinchang Zn-Pb-(Ag-Ge) deposit in the Huize mine district, northeastern Yunnan, China[J]. Journal of Geochemical Exploration, 159: 62-78. doi: 10.1016/j.gexplo.2015.08.006
    [13]
    HAN R S, 2017-01-04. Large-scale alteration lithofacies positioning and predicating method for hydrothermal deposit: CN, 104156601B[P]. (in Chinese)
    [14]
    HAN R S, ZHANG Y, WANG F, et al. , 2019. Metallogenic mechanism and concealed ore location prediction of germanium-rich lead-zinc deposits in northeastern Yunnan ore concentration area[M]. Beijing: Science Press. (in Chinese)
    [15]
    HAN R S, WANG M Z, JIN Z G, et al., 2020. Ore-controlling mechanism of NE-trending ore-forming structural system at Zn-Pb polymetallic ore concentration area in northwestern Guizhou[J]. Acta Geologica Sinica, 94(3): 850-868. (in Chinese with English abstract)
    [16]
    HAN R S, ZHAO D, 2022. Research methods for the deep extension pattern of rock/ore-controlling structures of magmatic-hydrothermal ore deposits: a preliminary study[J]. Earth Science Frontiers, 29(5): 420-437. (in Chinese with English abstract)
    [17]
    HAN R S, WU P, ZHANG Y, et al., 2022. New research progress in metallogenic theory for rich Zn-Pb-(Ag-Ge) deposits in the Sichuan-Yunnan-Guizhou Triangle (SYGT) area, southwestern Tethys[J]. Acta Geologica Sinica, 96(2): 554-573. (in Chinese with English abstract)
    [18]
    HAN R S, ZHAO D, LIU F, et al. , 2023a-10-27. Method for determining deep extension pattern of rock and ore control structure of magma hydrothermal polymetallic ore field or ore deposit: CN, 115128698B[P]. (in Chinese)
    [19]
    HAN R S, ZHANG Y, ZHOU G M, et al. , 2023b-08-18. Determination method for ore control structure depth extension pattern of structure-controlled metatherm ore deposit: CN, 115016015B[P]. (in Chinese)
    [20]
    HAN R S, ZHAO D, WANG M Z, 2023c-07-28. Method for determining lateral volt orientation and spatial positioning of deep ore body of hydrothermal polymetallic deposit: CN, 115113297B[P]. (in Chinese)
    [21]
    HAN R S, WU J B, ZHANG Y, et al., 2024. Oblique distribution patterns and the underlying mechanical model of orebody groups controlled by structures at different scales[J]. Scientific Reports, 14(1): 4591. doi: 10.1038/s41598-024-55473-z
    [22]
    HAN R S, ZHANG Y, 2025. A preliminary discussion on the mineral exploration system theory: control-mapping exploration system architecture for hydrothermal deposits[J]. Earth Science Frontiers, 32(5): 1-27. (in Chinese with English abstract)
    [23]
    HAN R S, LIU F, ZHANG Y, 2025a. Discussion on ore-controlling roles of structural system in hydrothermal metallogenic system[J]. Earth Science Frontiers, 32(2): 371-389. (in Chinese with English abstract)
    [24]
    HAN R S, WU J B, CHEN Q, et al. , 2025b-03-18. Structure-controlled hydrothermal deposit hidden ore body space skew determination and deep prospecting target determination method: CN, 117784281B[P]. (in Chinese)
    [25]
    HAN R S, ZHANG Y, CHEN Q, et al. , 2025c-03-18. Method for rapidly determining the existence of deep concealed ore bodies in hydrothermal deposits and delineating their occurrence location: CN, 2024 1 0551556.3[P]. (in Chinese)
    [26]
    HAN R S, ZHANG Y, LI W Y, et al. , 2025d-01-21. A characteristic element combination anomaly derivative method for determining the occurrence of deep tabular blind ore bodies in hydrothermal deposits: CN, 2024 1 0551629.9[P]. (in Chinese)
    [27]
    HODGSON C J, 1989. The structure of shear-related, vein-type gold deposits: a review[J]. Ore Geology Reviews, 4(3): 231-273. doi: 10.1016/0169-1368(89)90019-X
    [28]
    HUA R M, CHEN P R, ZHANG W L, et al., 2005. Three major metallogenic events in Mesozoic in South China[J]. Mineral Deposits, 24(2): 99-107. (in Chinese with English abstract)
    [29]
    KNOX-ROBINSON C M, 2000. Vectorial fuzzy logic: a novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia[J]. Australian Journal of Earth Sciences, 47(5): 929-941. doi: 10.1046/j.1440-0952.2000.00816.x
    [30]
    LUTZ B M, 2023. Orogenic gold in the Blue Mountains, eastern Oregon, USA[J]. Ore Geology Reviews, 154: 105310. doi: 10.1016/j.oregeorev.2023.105310
    [31]
    MAUGHAN D T, KEITH J D, CHRISTIANSEN E H, et al., 2002. Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA[J]. Mineralium Deposita, 37(1): 14-37. doi: 10.1007/s00126-001-0228-5
    [32]
    PASSCHIER C W, TROUW R A J, 2005. Microtectonics[M]. 2nd ed. Berlin, Heidelberg: Springer.
    [33]
    SIBSON R H, 1987. Earthquake rupturing as a mineralizing agent in hydrothermal systems[J]. Geology, 15(8): 701-704. doi: 10.1130/0091-7613(1987)15<701:ERAAMA>2.0.CO;2
    [34]
    SIBSON R H, 1996. Structural permeability of fluid-driven fault-fracture meshes[J]. Journal of Structural Geology, 18(8): 1031-1042. doi: 10.1016/0191-8141(96)00032-6
    [35]
    SUN J C, HAN R S, 2016. Theory and method of Orefield geomechanics[M]. Beijing: Science Press. (in Chinese)
    [36]
    VEARNCOMBE J R, 2023. Function and status of structural geology in the Resource industry[J]. Australian Journal of Earth Sciences, 70(7): 908-931. doi: 10.1080/08120099.2023.2214928
    [37]
    WANG J C, WANG R R, ZHOU Y, et al., 2006. Regularity and geological significance for lateral trending of orebodies[J]. Journal of Guilin University of Technology, 26(3): 305-309. (in Chinese with English abstract)
    [38]
    WOODALL R, 1994. Empiricism and concept in successful mineral exploration[J]. Australian Journal of Earth Sciences, 41(1): 1-10. doi: 10.1080/08120099408728107
    [39]
    WU J B, HAN R S, ZHANG Y, et al., 2024. Porosity-permeability characteristics and mineralization-alteration zones of the Maoping germanium-rich lead-zinc deposit in SW China[J]. Frontiers in Earth Science, 12: 1347243. doi: 10.3389/feart.2024.1347243
    [40]
    XUAN D N, TRONG T P, HAI S T, et al., 2024. 3D models for hydrothermal copper ore bodies at Sin Quyen deposit, North Vietnam: a case report for ore reserves and prediction of hidden mineral resource potential[J]. Heliyon, 10(12): e33017. doi: 10.1016/j.heliyon.2024.e33017
    [41]
    ZHANG L, YE Z W, HUANG M Q, et al., 2019. Characteristics of bituminous coal permeability response to the pore pressure and effective shear stress in the Huaibei coalfield in China[J]. Geofluids, 2019: 5489051.
    [42]
    陈国达, 1978. 成矿构造研究法[M]. 北京: 地质出版社.
    [43]
    邓军, 杨立强, 葛良胜, 等, 2006. 胶东矿集区形成的构造体制研究进展[J]. 自然科学进展, 16(5): 513-518.
    [44]
    高秋斌, 范永香, 王可勇, 等, 1998. 金矿床深部成矿预测的主要途径[J]. 黄金地质, 4(2): 22-26.
    [45]
    韩润生, 陈进, 李元, 等, 2001. 云南会泽铅锌矿床构造控矿规律及其隐伏矿预测[J]. 矿物学报, 21(2): 265-269.
    [46]
    韩润生, 2017-01-04. 一种热液矿床的大比例尺蚀变岩相定位预测方法: 中国, 104156601B[P].
    [47]
    韩润生, 张艳, 王峰, 等, 2019. 滇东北矿集区富锗铅锌矿床成矿机制与隐伏矿定位预测[M]. 北京: 科学出版社.
    [48]
    韩润生, 王明志, 金中国, 等, 2020. 黔西北铅锌多金属矿集区成矿构造体系及其控矿机制[J]. 地质学报, 94(3): 850-868.
    [49]
    韩润生, 赵冻, 2022. 初论岩浆热液成矿系统控岩控矿构造深延格局研究方法[J]. 地学前缘, 29(5): 420-437.
    [50]
    韩润生, 吴鹏, 张艳, 等, 2022. 西南特提斯川滇黔成矿区富锗铅锌矿床成矿理论研究新进展[J]. 地质学报, 96(2): 554-573.
    [51]
    韩润生, 赵冻, 刘飞, 等, 2023a-10-27. 确定岩浆热液型多金属矿田或矿床控岩控矿构造深延格局的方法: 中国, 115128698B[P].
    [52]
    韩润生, 张艳, 周高明, 等, 2023b-08-18. 受构造控制的后生热液矿床控矿构造深延格局的确定方法: 中国, 115016015B[P].
    [53]
    韩润生, 赵冻, 王明志, 2023c-07-28. 确定热液型多金属矿床深部矿体侧伏向和空间定位的方法: 中国, 115113297B[P].
    [54]
    韩润生, 张艳, 2025. 初论矿产勘查系统理论: 热液矿床控制: 映射勘查系统架构[J]. 地学前缘, 32(5): 1-27.
    [55]
    韩润生, 刘飞, 张艳, 2025a. 论热液成矿系统中构造体系控矿作用[J]. 地学前缘, 32(2): 371-389.
    [56]
    韩润生, 吴建标, 陈青, 等, 2025b-03-18. 受构造控制的热液矿床隐伏矿体空间斜列判定和深部找矿定靶的方法: 中国, 117784281B[P].
    [57]
    韩润生, 张艳, 陈青, 等, 2025c-03-18. 快速判定热液矿床深部隐伏矿体存在性和圈定其赋存部位的方法: 中国, 202410551556.3[P].
    [58]
    韩润生, 张艳, 李文尧, 等, 2025d-01-21. 一种确定热液矿床深部板状盲矿体产状的特征元素组合异常导数法: 中国, 202410551629.9[P].
    [59]
    华仁民, 陈培荣, 张文兰, 等, 2005. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质, 24(2): 99-107.
    [60]
    孙家骢, 韩润生, 2016. 矿田地质力学理论与方法[M]. 北京: 科学出版社.
    [61]
    汪劲草, 王蓉嵘, 周瑶, 等, 2006. 矿体的侧伏规律及其地质意义[J]. 桂林工学院学报, 26(3): 305-309.
  • 加载中

Catalog

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (111) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return