| Citation: | HAN R S,ZHANG Y,LUO J,et al.,2025. Plunge law and mechanical mechanisms of fault-controlled ore bodies (clusters) in hydrothermal deposits[J]. Journal of Geomechanics,31(5):886−897 doi: 10.12090/j.issn.1006-6616.2025121 |
| [1] |
CHEN G D, 1978. Research method of ore-forming structures[M]. Beijing: Geological Publishing House. (in Chinese)
|
| [2] |
CLINE J S, HOFSTRA A H, MUNTEAN J L, et al. , 2005. Carlin-type gold deposits in Nevada: critical geologic characteristics and viable models[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. Littleton, CO: Society of Economic Geologists: 451-484.
|
| [3] |
COX S F, KNACKSTEDT M A, BRAUN J, 2001. Principles of structural control on permeability and fluid flow in hydrothermal systems[M]//RICHARDS J P, TOSDAL R M. Structural controls on ore genesis. Society of Economic Geologists: 1-10.
|
| [4] |
COX S F, RUMING K, 2004. The St Ives mesothermal gold system, Western Australia—a case of golden aftershocks?[J]. Journal of Structural Geology, 26(6-7): 1109-1125. doi: 10.1016/j.jsg.2003.11.025
|
| [5] |
CUREWITZ D, KARSON J A, 1997. Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction[J]. Journal of Volcanology and Geothermal Research, 79(3-4): 149-168. doi: 10.1016/S0377-0273(97)00027-9
|
| [6] |
DAVIES A J, HAGEMANN S G, WITT W K, et al., 2025. Structural controls on Au–Co mineralisation at the Juomasuo deposit, an example of Paleoproterozoic Au–Co–Cu–REE systems in the Karelian belts of Scandinavia[J]. Australian Journal of Earth Sciences, 72(5-6): 732-762. doi: 10.1080/08120099.2025.2522879
|
| [7] |
DENG J, YANG L Q, GE L S, et al., 2006. Research advances on the tectonic regime of the Jiaodong mineral concentration area formation[J]. Progress in Natural Science, 16(5): 513-518. (in Chinese with English abstract)
|
| [8] |
GAO Q B, FAN Y X, WANG K Y, et al., 1998. The main geological means of deep metallogenetic prognosis of gold deposits[J]. Gold Geology, 4(2): 22-26. (in Chinese with English abstract)
|
| [9] |
GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al., 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 13(1-5): 7-27. doi: 10.1016/S0169-1368(97)00012-7
|
| [10] |
GROVES D, VEARNCOMBE J, 2020. Introduction: thematic issue of Mineralium deposita on orogenic gold deposits[J]. Mineralium Deposita, 55(2): 187-188. doi: 10.1007/s00126-019-00951-y
|
| [11] |
HAN R S, CHEN J, LI Y, et al., 2001. Ore-controlling tectonics and prognosis of concealed ores in Huize Pb-Zn deposit, Yunnan[J]. Acta Mineralogica Sinica, 21(2): 265-269. (in Chinese with English abstract)
|
| [12] |
HAN R S, CHEN J, WANG F, et al., 2015. Analysis of metal-element association halos within fault zones for the exploration of concealed ore-bodies: a case study of the Qilinchang Zn-Pb-(Ag-Ge) deposit in the Huize mine district, northeastern Yunnan, China[J]. Journal of Geochemical Exploration, 159: 62-78. doi: 10.1016/j.gexplo.2015.08.006
|
| [13] |
HAN R S, 2017-01-04. Large-scale alteration lithofacies positioning and predicating method for hydrothermal deposit: CN, 104156601B[P]. (in Chinese)
|
| [14] |
HAN R S, ZHANG Y, WANG F, et al. , 2019. Metallogenic mechanism and concealed ore location prediction of germanium-rich lead-zinc deposits in northeastern Yunnan ore concentration area[M]. Beijing: Science Press. (in Chinese)
|
| [15] |
HAN R S, WANG M Z, JIN Z G, et al., 2020. Ore-controlling mechanism of NE-trending ore-forming structural system at Zn-Pb polymetallic ore concentration area in northwestern Guizhou[J]. Acta Geologica Sinica, 94(3): 850-868. (in Chinese with English abstract)
|
| [16] |
HAN R S, ZHAO D, 2022. Research methods for the deep extension pattern of rock/ore-controlling structures of magmatic-hydrothermal ore deposits: a preliminary study[J]. Earth Science Frontiers, 29(5): 420-437. (in Chinese with English abstract)
|
| [17] |
HAN R S, WU P, ZHANG Y, et al., 2022. New research progress in metallogenic theory for rich Zn-Pb-(Ag-Ge) deposits in the Sichuan-Yunnan-Guizhou Triangle (SYGT) area, southwestern Tethys[J]. Acta Geologica Sinica, 96(2): 554-573. (in Chinese with English abstract)
|
| [18] |
HAN R S, ZHAO D, LIU F, et al. , 2023a-10-27. Method for determining deep extension pattern of rock and ore control structure of magma hydrothermal polymetallic ore field or ore deposit: CN, 115128698B[P]. (in Chinese)
|
| [19] |
HAN R S, ZHANG Y, ZHOU G M, et al. , 2023b-08-18. Determination method for ore control structure depth extension pattern of structure-controlled metatherm ore deposit: CN, 115016015B[P]. (in Chinese)
|
| [20] |
HAN R S, ZHAO D, WANG M Z, 2023c-07-28. Method for determining lateral volt orientation and spatial positioning of deep ore body of hydrothermal polymetallic deposit: CN, 115113297B[P]. (in Chinese)
|
| [21] |
HAN R S, WU J B, ZHANG Y, et al., 2024. Oblique distribution patterns and the underlying mechanical model of orebody groups controlled by structures at different scales[J]. Scientific Reports, 14(1): 4591. doi: 10.1038/s41598-024-55473-z
|
| [22] |
HAN R S, ZHANG Y, 2025. A preliminary discussion on the mineral exploration system theory: control-mapping exploration system architecture for hydrothermal deposits[J]. Earth Science Frontiers, 32(5): 1-27. (in Chinese with English abstract)
|
| [23] |
HAN R S, LIU F, ZHANG Y, 2025a. Discussion on ore-controlling roles of structural system in hydrothermal metallogenic system[J]. Earth Science Frontiers, 32(2): 371-389. (in Chinese with English abstract)
|
| [24] |
HAN R S, WU J B, CHEN Q, et al. , 2025b-03-18. Structure-controlled hydrothermal deposit hidden ore body space skew determination and deep prospecting target determination method: CN, 117784281B[P]. (in Chinese)
|
| [25] |
HAN R S, ZHANG Y, CHEN Q, et al. , 2025c-03-18. Method for rapidly determining the existence of deep concealed ore bodies in hydrothermal deposits and delineating their occurrence location: CN, 2024 1 0551556.3[P]. (in Chinese)
|
| [26] |
HAN R S, ZHANG Y, LI W Y, et al. , 2025d-01-21. A characteristic element combination anomaly derivative method for determining the occurrence of deep tabular blind ore bodies in hydrothermal deposits: CN, 2024 1 0551629.9[P]. (in Chinese)
|
| [27] |
HODGSON C J, 1989. The structure of shear-related, vein-type gold deposits: a review[J]. Ore Geology Reviews, 4(3): 231-273. doi: 10.1016/0169-1368(89)90019-X
|
| [28] |
HUA R M, CHEN P R, ZHANG W L, et al., 2005. Three major metallogenic events in Mesozoic in South China[J]. Mineral Deposits, 24(2): 99-107. (in Chinese with English abstract)
|
| [29] |
KNOX-ROBINSON C M, 2000. Vectorial fuzzy logic: a novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia[J]. Australian Journal of Earth Sciences, 47(5): 929-941. doi: 10.1046/j.1440-0952.2000.00816.x
|
| [30] |
LUTZ B M, 2023. Orogenic gold in the Blue Mountains, eastern Oregon, USA[J]. Ore Geology Reviews, 154: 105310. doi: 10.1016/j.oregeorev.2023.105310
|
| [31] |
MAUGHAN D T, KEITH J D, CHRISTIANSEN E H, et al., 2002. Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA[J]. Mineralium Deposita, 37(1): 14-37. doi: 10.1007/s00126-001-0228-5
|
| [32] |
PASSCHIER C W, TROUW R A J, 2005. Microtectonics[M]. 2nd ed. Berlin, Heidelberg: Springer.
|
| [33] |
SIBSON R H, 1987. Earthquake rupturing as a mineralizing agent in hydrothermal systems[J]. Geology, 15(8): 701-704. doi: 10.1130/0091-7613(1987)15<701:ERAAMA>2.0.CO;2
|
| [34] |
SIBSON R H, 1996. Structural permeability of fluid-driven fault-fracture meshes[J]. Journal of Structural Geology, 18(8): 1031-1042. doi: 10.1016/0191-8141(96)00032-6
|
| [35] |
SUN J C, HAN R S, 2016. Theory and method of Orefield geomechanics[M]. Beijing: Science Press. (in Chinese)
|
| [36] |
VEARNCOMBE J R, 2023. Function and status of structural geology in the Resource industry[J]. Australian Journal of Earth Sciences, 70(7): 908-931. doi: 10.1080/08120099.2023.2214928
|
| [37] |
WANG J C, WANG R R, ZHOU Y, et al., 2006. Regularity and geological significance for lateral trending of orebodies[J]. Journal of Guilin University of Technology, 26(3): 305-309. (in Chinese with English abstract)
|
| [38] |
WOODALL R, 1994. Empiricism and concept in successful mineral exploration[J]. Australian Journal of Earth Sciences, 41(1): 1-10. doi: 10.1080/08120099408728107
|
| [39] |
WU J B, HAN R S, ZHANG Y, et al., 2024. Porosity-permeability characteristics and mineralization-alteration zones of the Maoping germanium-rich lead-zinc deposit in SW China[J]. Frontiers in Earth Science, 12: 1347243. doi: 10.3389/feart.2024.1347243
|
| [40] |
XUAN D N, TRONG T P, HAI S T, et al., 2024. 3D models for hydrothermal copper ore bodies at Sin Quyen deposit, North Vietnam: a case report for ore reserves and prediction of hidden mineral resource potential[J]. Heliyon, 10(12): e33017. doi: 10.1016/j.heliyon.2024.e33017
|
| [41] |
ZHANG L, YE Z W, HUANG M Q, et al., 2019. Characteristics of bituminous coal permeability response to the pore pressure and effective shear stress in the Huaibei coalfield in China[J]. Geofluids, 2019: 5489051.
|
| [42] |
陈国达, 1978. 成矿构造研究法[M]. 北京: 地质出版社.
|
| [43] |
邓军, 杨立强, 葛良胜, 等, 2006. 胶东矿集区形成的构造体制研究进展[J]. 自然科学进展, 16(5): 513-518.
|
| [44] |
高秋斌, 范永香, 王可勇, 等, 1998. 金矿床深部成矿预测的主要途径[J]. 黄金地质, 4(2): 22-26.
|
| [45] |
韩润生, 陈进, 李元, 等, 2001. 云南会泽铅锌矿床构造控矿规律及其隐伏矿预测[J]. 矿物学报, 21(2): 265-269.
|
| [46] |
韩润生, 2017-01-04. 一种热液矿床的大比例尺蚀变岩相定位预测方法: 中国, 104156601B[P].
|
| [47] |
韩润生, 张艳, 王峰, 等, 2019. 滇东北矿集区富锗铅锌矿床成矿机制与隐伏矿定位预测[M]. 北京: 科学出版社.
|
| [48] |
韩润生, 王明志, 金中国, 等, 2020. 黔西北铅锌多金属矿集区成矿构造体系及其控矿机制[J]. 地质学报, 94(3): 850-868.
|
| [49] |
韩润生, 赵冻, 2022. 初论岩浆热液成矿系统控岩控矿构造深延格局研究方法[J]. 地学前缘, 29(5): 420-437.
|
| [50] |
韩润生, 吴鹏, 张艳, 等, 2022. 西南特提斯川滇黔成矿区富锗铅锌矿床成矿理论研究新进展[J]. 地质学报, 96(2): 554-573.
|
| [51] |
韩润生, 赵冻, 刘飞, 等, 2023a-10-27. 确定岩浆热液型多金属矿田或矿床控岩控矿构造深延格局的方法: 中国, 115128698B[P].
|
| [52] |
韩润生, 张艳, 周高明, 等, 2023b-08-18. 受构造控制的后生热液矿床控矿构造深延格局的确定方法: 中国, 115016015B[P].
|
| [53] |
韩润生, 赵冻, 王明志, 2023c-07-28. 确定热液型多金属矿床深部矿体侧伏向和空间定位的方法: 中国, 115113297B[P].
|
| [54] |
韩润生, 张艳, 2025. 初论矿产勘查系统理论: 热液矿床控制: 映射勘查系统架构[J]. 地学前缘, 32(5): 1-27.
|
| [55] |
韩润生, 刘飞, 张艳, 2025a. 论热液成矿系统中构造体系控矿作用[J]. 地学前缘, 32(2): 371-389.
|
| [56] |
韩润生, 吴建标, 陈青, 等, 2025b-03-18. 受构造控制的热液矿床隐伏矿体空间斜列判定和深部找矿定靶的方法: 中国, 117784281B[P].
|
| [57] |
韩润生, 张艳, 陈青, 等, 2025c-03-18. 快速判定热液矿床深部隐伏矿体存在性和圈定其赋存部位的方法: 中国, 202410551556.3[P].
|
| [58] |
韩润生, 张艳, 李文尧, 等, 2025d-01-21. 一种确定热液矿床深部板状盲矿体产状的特征元素组合异常导数法: 中国, 202410551629.9[P].
|
| [59] |
华仁民, 陈培荣, 张文兰, 等, 2005. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质, 24(2): 99-107.
|
| [60] |
孙家骢, 韩润生, 2016. 矿田地质力学理论与方法[M]. 北京: 科学出版社.
|
| [61] |
汪劲草, 王蓉嵘, 周瑶, 等, 2006. 矿体的侧伏规律及其地质意义[J]. 桂林工学院学报, 26(3): 305-309.
|