Volume 31 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
JI S C,2025. Geomechanical implications of joints and veins[J]. Journal of Geomechanics,31(5):769−792 doi: 10.12090/j.issn.1006-6616.2025120
Citation: JI S C,2025. Geomechanical implications of joints and veins[J]. Journal of Geomechanics,31(5):769−792 doi: 10.12090/j.issn.1006-6616.2025120

Geomechanical implications of joints and veins

doi: 10.12090/j.issn.1006-6616.2025120
Funds:  This research is financially supported by the Discovery Grant of the Natural Sciences and Engineering Research Council of Canada (Grant No. 06408).
More Information
  • Author Bio:

    嵇少丞,现为加拿大蒙特利尔理工学院土木、地质与矿业工程系的地球科学教授。从事科研与教学工作三十余年,研究领域涵盖构造地质学、岩石物理学和地球物理学,特别专注于多相岩石的流变学与地震波性质及其各向异性。著有4本专著和4本科普书,发表学术论文160余篇,入选全球前2%顶尖科学家行列

  • Received: 2025-09-02
  • Revised: 2025-09-17
  • Accepted: 2025-09-19
  • Available Online: 2025-09-23
  • Published: 2025-10-28
  •   Objective  Traditional structural geology textbooks often provide outdated treatments of joints and veins, failing to reflect the significant advances made in the past three decades. This review seeks to address part of this gap by highlighting the significance of barren joints and veins in reconstructing both the directions and magnitudes of geological paleostresses.   Conclusion  Conjugate shear joints not only indicate the orientation of the three effective principal stresses but also imply differential stresses at least four times greater than the tensile strength of the brittle host rock. Exfoliation joints form under stress states of σ1σ2>0>σ3, whereas polygonal columnar joints in sedimentary rocks reflect σ1*>$ 0 $>σ2*=σ3*, allowing the tensile strength of rocks to be estimated. Tensile joints in brittle strong beds interlayered with ductile soft layers are primarily driven by tensile stresses transferred from interfacial shear stresses between the hard and soft layers, with joint saturation mainly controlled by tectonic strain. Under natural strain-rate conditions, the Weibull modulus and tensile strength of the strong layers, as well as the shear-flow strength of the ductile layers, can be inferred from the nonlinear relationship between joint spacing and bed thickness. Ladder-like orthogonal joints, which form under a stress state of σ1*>$ 0 $>σ2*>σ3*, divide strata into blocky units and, after weathering and erosion, give rise to characteristic castle- and tower-like landforms. Veins, as mineral-filled joints, provide spacing and thickness data that allow estimates of layer strain. Moreover, the nonlinear relationship between vein spacing and bed thickness permits quantification of the extent to which mineral precipitation restores the tensile strength of rock beds. The absence of ladder-like orthogonal veins is attributed to this strength recovery. [ Significance ]Collectively, these observations demonstrate the critical role of joints and veins in constraining both the magnitudes and orientations of geological paleostress fields.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • ABEN F M, DOAN M L, GRATIER J P, et al., 2017. Experimental postseismic recovery of fractured rocks assisted by calcite sealing[J]. Geophysical Research Letters, 44(14): 7228-7238. doi: 10.1002/2017GL073965
    ANGELIER J, SOUFFACHE B, BARRIER E, et al., 1989. Distribution de joints de tension dans un banc rocheux: loi théorique et espacements[J]. Comptes Rendus de l’Académie des Sciences, Series II, 309: 2119-2125.
    AYDAN Ö, KAWAMOTO T, 1990. Discontinuities and their effect on rock mass[C]//Proceedings of the international symposium on rock joints. Rotterdam: A. A. Balkema: 149-156.
    BAI T X, POLLARD D D, 2000. Fracture spacing in layered rocks: a new explanation based on the stress transition[J]. Journal of Structural Geology, 22(1): 43-57. doi: 10.1016/S0191-8141(99)00137-6
    BAI T X, MAERTEN L, GROSS M R, et al., 2002. Orthogonal cross joints: do they imply a regional stress rotation?[J]. Journal of Structural Geology, 24(1): 77-88. doi: 10.1016/S0191-8141(01)00050-5
    BAO H, ZHAI Y, LAN H X, et al., 2019. Distribution characteristics and controlling factors of vertical joint spacing in sand-mud interbedded strata[J]. Journal of Structural Geology, 128: 103886. doi: 10.1016/j.jsg.2019.103886
    BARDSLEY W E, MAJOR T J, SELBY M J, 1990. Note on a Weibull property for joint spacing analysis[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27(2): 133-134.
    BAŽANT Z P, 2000. Size effect[J]. International Journal of Solids and Structures, 37(1-2): 69-80. doi: 10.1016/S0020-7683(99)00077-3
    BILLI A, PORRECA M, FACCENNA C, et al., 2006. Magnetic and structural constraints for the noncylindrical evolution of a continental forebulge (Hyblea, Italy)[J]. Tectonics, 25(3): TC3011.
    BOERSMA Q, HARDEBOL N, BARNHOORN A, et al., 2018. Mechanical factors controlling the development of orthogonal and nested fracture network geometries[J]. Rock Mechanics and Rock Engineering, 51(11): 3455-3469. doi: 10.1007/s00603-018-1552-8
    BOUCHEZ J L, NICOLAS A, 2021. Principles of rock deformation and tectonics[M]. New York: Oxford University Press.
    BRANAGAN D F, 1983. Tesselated pavements[M]//YOUNG R W, NANSON G C. Aspects of Australian sandstone landscapes. Wales, Australia: University of Wollongong: 11-20.
    BRIDGES M C, 1975. Presentation of fracture data for rock mechanics[C]//Proceedings of the 2nd Australia–New Zealand conference on geomechanics. Brisbane, Australia: International Society for Soil Mechanics and Geotechnical Engineering: 144-148.
    BROOKS CLARK M, BRANTLEY S L, FISHER D M, 1995. Power-law vein-thickness distributions and positive feedback in vein growth[J]. Geology, 23(11): 975-978. doi: 10.1130/0091-7613(1995)023<0975:PLVTDA>2.3.CO;2
    BYERLEE J, 1978. Friction of rocks[J]. Pure and Applied Geophysics, 116(4-5): 615-626. doi: 10.1007/BF00876528
    CAPUTO R, 1995. Evolution of orthogonal sets of coeval extension joints[J]. Terra Nova, 7(5): 479-490. doi: 10.1111/j.1365-3121.1995.tb00549.x
    CAPUTO R, 2010. Why joints are more abundant than faults: a conceptual model to estimate their ratio in layered carbonate rocks[J]. Journal of Structural Geology, 32(9): 1257-1270. doi: 10.1016/j.jsg.2009.05.011
    CHEMENDA A I, 2022. Bed thickness-dependent fracturing and inter-bed coupling define the nonlinear fracture spacing–bed thickness relationship in layered rocks: numerical modeling[J]. Journal of Structural Geology, 165: 104741. doi: 10.1016/j.jsg.2022.104741
    CHEN T T, FOULGER G R, TANG C A, et al., 2022. Numerical investigation on origin and evolution of polygonal cracks on rock surfaces[J]. Engineering Geology, 311: 106913, doi: 10.1016/j.enggeo.2022.106913
    CHI G, LAVOIE D, BERTRAND R, 2000. Regional-scale variation of characteristics of hydrocarbon fluid inclusions and thermal conditions along the Paleozoic Laurentian continental margin in eastern Quebec, Canada[J]. Bulletin of Canadian Petroleum Geology, 48(3): 193-211. doi: 10.2113/48.3.193
    CILONA A, AYDIN A, LIKERMAN J, et al., 2016. Structural and statistical characterization of joints and multi-scale faults in an alternating sandstone and shale turbidite sequence at the Santa Susana Field Laboratory: implications for their effects on groundwater flow and contaminant transport[J]. Journal of Structural Geology, 85: 95-114. doi: 10.1016/j.jsg.2016.02.003
    CLYNE T W, WITHERS P J, 1993. An introduction to metal matrix composites[M]. Cambridge, UK: Cambridge University Press.
    COOKE M L, SIMO J A, UNDERWOOD C A, et al., 2006. Mechanical stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow[J]. Sedimentary Geology, 184(3-4): 225-239. doi: 10.1016/j.sedgeo.2005.11.004
    DE MELO M S, COIMBRA A M, 1996. Ruiniform relief in sandstones: the examples of Vila Velha, Carboniferous of the Paraná Basin, southern Brazil[J]. Acta Geologica Hispanica, 31(4): 25-40.
    DOMOKOS G, JEROLMACK D J, KUN F, et al., 2020. Plato’s cube and the natural geometry of fragmentation[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(31): 18178-18185.
    DUNNE WM, NORTH C P, 1990. Orthogonal fracture systems at the limits of thrusting: an example from southwestern Wales[J]. Journal of Structural Geology, 12(2): 207-215. doi: 10.1016/0191-8141(90)90005-J
    ENGELDER T, FISCHER M P, 1996. Loading configurations and driving mechanisms for joints based on the Griffith energy-balance concept[J]. Tectonophysics, 256(1-4): 253-277. doi: 10.1016/0040-1951(95)00169-7
    ETHERIDGE M A, 1983. Differential stress magnitudes during regional deformation and metamorphism: upper bound imposed by tensile fracturing[J]. Geology, 11(4): 231-234. doi: 10.1130/0091-7613(1983)11<231:DSMDRD>2.0.CO;2
    FAGERENG Å, 2011. Fractal vein distributions within a fault-fracture mesh in an exhumed accretionary mélange, Chrystalls Beach Complex, New Zealand[J]. Journal of Structural Geology, 33(5): 918-927. doi: 10.1016/j.jsg.2011.02.009
    FERRILL D A, SMART K J, CAWOOD A J, et al., 2021. The fold-thrust belt stress cycle: superposition of normal, strike-slip, and thrust faulting deformation regimes[J]. Journal of Structural Geology, 148: 104362. doi: 10.1016/j.jsg.2021.104362
    FISCHER M P, POLANSKY A, 2006. Influence of flaws on joint spacing and saturation: results of one-dimensional mechanical modeling[J]. Journal of Geophysical Research: Solid Earth, 111(B7): B07403, doi: 10.1029/2005JB004115
    FOSSEN H, 2016. Structural geology[M]. 2nd ed. Cambridge: Cambridge University Press.
    GILLESPIE P A, JOHNSTON J D, LORIGA M A, et al. , 1999. Influence of layering on vein systematics in line samples[M]//MCCAFFREY K, LONERGAN L, WILKINSON J. Fractures, fluid flow and mineralization. London: Geological Society, Special Publications, 155(1): 35-56.
    GONG F Q, ZHAO G F, 2014. Dynamic indirect tensile strength of sandstone under different loading rates[J]. Rock Mechanics and Rock Engineering, 47(6): 2271-2278. doi: 10.1007/s00603-013-0503-7
    GROSS M R, 1993. The origin and spacing of cross joints: examples from the Monterey Formation, Santa Barbara Coastline, California[J]. Journal of Structural Geology, 15(6): 737-751. doi: 10.1016/0191-8141(93)90059-J
    GROSS M R, ENGELDER T, 1995. Strain accommodated by brittle failure in adjacent units of the Monterey Formation, U. S. A. : scale effects and evidence for uniform displacement boundary conditions[J]. Journal of Structural Geology, 17(9): 1303-1318. doi: 10.1016/0191-8141(95)00011-2
    GUDMUNDSSON A, 2022. The propagation paths of fluid-driven fractures in layered and faulted rocks[J]. Geological Magazine, 159(11-12): 1978-2001. doi: 10.1017/S0016756822000826
    HANCOCK P L, 1985. Brittle microtectonics: principles and practice[J]. Journal of Structural Geology, 7(3-4): 437-457. doi: 10.1016/0191-8141(85)90048-3
    HANCOCK P L, AL-KADHI A, BARKA A A, et al., 1987. Aspects of analyzing brittle structures[J]. Annales Tectonicae, 1: 5-19.
    HARDEBOL N J, MAIER C, NICK H, et al., 2015. Multiscale fracture network characterization and impact on flow: a case study on the Latemar carbonate platform[J]. Journal of Geophysical Research: Solid Earth, 120(12): 8197-8222. doi: 10.1002/2015JB011879
    HOBBS D W, 1967. The formation of tension joints in sedimentary rocks: an explanation[J]. Geological Magazine, 104(6): 550-556. doi: 10.1017/S0016756800050226
    HOOKER J N, KATZ R F, 2015. Vein spacing in extending, layered rock: the effect of synkinematic cementation[J]. American Journal of Science, 315(6): 557-588. doi: 10.2475/06.2015.03
    HOOKER J N, LAUBACH S E, MARRETT R, 2018. Microfracture spacing distributions and the evolution of fracture patterns in sandstones[J]. Journal of Structural Geology, 108: 66-79. doi: 10.1016/j.jsg.2017.04.001
    HUANG Q, ANGELIER J, 1989. Fracture spacing and its relation to bed thickness[J]. Geological Magazine, 126(4): 355-362. doi: 10.1017/S0016756800006555
    JAIN A, GUZINA B B, VOLLER V R, 2007. Effects of overburden on joint spacing in layered rocks[J]. Journal of Structural Geology, 29(2): 288-297. doi: 10.1016/j.jsg.2006.08.010
    JI S C, SARUWATARI K, 1998. A revised model for the relationship between joint spacing and layer thickness[J]. Journal of Structural Geology, 20(11): 1495-1508. doi: 10.1016/S0191-8141(98)00042-X
    JI S C, ZHU Z M, WANG Z C, 1998. Relationship between joint spacing and bed thickness in sedimentary rocks: effects of interbed slip[J]. Geological Magazine, 135(5): 637-655. doi: 10.1017/S0016756898001459
    JI S C, WIRTH R, RYBACKI E, et al., 2000. High temperature plastic deformation of quartz-plagioclase multilayers by layer-normal compression[J]. Journal of Geophysical Research: Solid Earth, 105(B7): 16651-16664. doi: 10.1029/2000JB900130
    JI S C, WANG Q, XIA B, 2002. Handbook of seismic properties of minerals, rocks and ores[M]. Montreal, Canada: Polytechnique International Press.
    JI S C, XIA B, 2002. Rheology of polyphase earth materials[M]. Montreal: Polytechnic International Press.
    JI S C, LI L, MOTRA HB, et al., 2018. Poisson’s ratio and auxetic properties of natural rocks[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1161-1185, doi: 10.1002/2017JB014606
    JI S C, 2019. Canyons of sculpted rocks: natural wonders created by flowing water [M}. Beijing: Geological Press.
    JI S C, LI L, MARCOTTE D, 2021. Power-law relationship between joint spacing and bed thickness in sedimentary rocks and implications for layered rock mechanics[J]. Journal of Structural Geology, 150: 104413, doi: 10.1016/j.jsg.2021.104413
    JI S C, 2023. Relationship between fracture spacing and bed thickness in sedimentary rocks: approach by means of Michaelis–Menten equation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 15(8): 1924-1930. doi: 10.1016/j.jrmge.2022.11.003
    JI S C, CHEN T T, LI L, et al., 2023a. Characterization of carbonate veins in graywacke layers from the Humber zone (Quebec, Canada) and implications for strength recovery of damaged rocks by mineral precipitation[J]. Tectonophysics, 868: 230084. doi: 10.1016/j.tecto.2023.230084
    JI S C, ROUSSEAU Y, MARCOTTE D, et al., 2023b. The formation of orthogonal joint systems and cuboidal blocks: new insights gained from flat-lying limestone beds in the region of Havre-Saint-Pierre (Quebec, Canada)[J]. Journal of Rock Mechanics and Geotechnical Engineering, 15(12): 3079-3093. doi: 10.1016/j.jrmge.2023.03.012
    JONES T A, DETWILER R L, 2016. Fracture sealing by mineral precipitation: the role of small-scale mineral heterogeneity[J]. Geophysical Research Letters, 43(14): 7564-7571. doi: 10.1002/2016GL069598
    KELEŞ Ö, GARCÍA R E, BOWMAN K J, 2013. Deviations from Weibull statistics in brittle porous materials[J]. Acta Materialia, 61(19): 7207-7215. doi: 10.1016/j.actamat.2013.08.025
    KITTL P, DIAZ G, 1988. Weibull's fracture statistics, or probabilistic strength of materials: state of the art[J]. Research in Mechanica, 24: 99-207.
    KUBOTA S, OGATA Y, WADA Y, et al., 2008. Estimation of dynamic tensile strength of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 45(3): 397-406. doi: 10.1016/j.ijrmms.2007.07.003
    LADEIRA F L, PRICE N J, 1981. Relationship between fracture spacing and bed thickness[J]. Journal of Structural Geology, 3(2): 179-183. doi: 10.1016/0191-8141(81)90013-4
    LI L, JI S C, 2020. On microboudin paleopiezometers and their applications to constrain stress variations in tectonites[J]. Journal of Structural Geology, 130: 103928. doi: 10.1016/j.jsg.2019.103928
    LI L, JI S C, 2021. A new interpretation for formation of orthogonal joints in quartz sandstone[J]. Journal of Rock Mechanics and Geotechnical Engineering, 13(2): 289-299. doi: 10.1016/j.jrmge.2020.08.003
    LI Y P, YANG C H, 2007. On fracture saturation in layered rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 44(6): 936-941. doi: 10.1016/j.ijrmms.2006.11.009
    LOBO-GUERRERO S, VALLEJO L E, 2006. Application of Weibull statistics to the tensile strength of rock aggregates[J]. Journal of Geotechnical and Geoenvironmental Engineering, 132(6): 786-790. doi: 10.1061/(ASCE)1090-0241(2006)132:6(786)
    LOCKNER D A, 1995. Rock failure[M]//AHRENS T J. Rock physics & phase relations: a handbook of physical constants. American Geophysical Union: 127-147.
    LUNDSTERN J E, 2024. Recent advances in characterizing the crustal stress field and future applications of stress data: perspectives from North America[M]//GOTETI R, FINKBEINER T, ZIEGLER M O, et al. Characterization, prediction and modelling of crustal present-day in-situ stresses. London: Geological Society, Special Publications, 546(1): 9-45.
    LÜ C, SUN Q, ZHANG W Q, et al., 2017. The effect of high temperature on tensile strength of sandstone[J]. Applied Thermal Engineering, 111: 573-579. doi: 10.1016/j.applthermaleng.2016.09.151
    MANDL G, 2005. Rock joints: the mechanical genesis[M]. Berlin, Heidelberg: Springer.
    MCQUILLAN H, 1973. Small-scale fracture density in Asmari Formation of southwest Iran and its relation to bed thickness and structural setting[J]. AAPG Bulletin, 57(12): 2367-2385.
    MICHAELIS L, MENTEN M L, 1913. Die Kinetik der Invertinwirkung[J]. Biochemische Zeitschrift, 49: 333-369.
    MIGOŃ P, DUSZYŃSKI F, GOUDIE A, 2017. Rock cities and ruiniform relief: forms–processes–terminology[J]. Earth-Science Reviews, 171: 78-104. doi: 10.1016/j.earscirev.2017.05.012
    NARR W, SUPPE J, 1991. Joint spacing in sedimentary rocks[J]. Journal of Structural Geology, 13(9): 1037-1048. doi: 10.1016/0191-8141(91)90055-N
    NOVIKOVA A C, 1947. The intensity of cleavage as related to the thickness of the bed (Russian text)[J]. Soviet Geology, 16: 407.
    OLIVIER G, BRENGUIER F, CAMPILLO M, et al., 2015. Investigation of coseismic and postseismic processes using in situ measurements of seismic velocity variations in an underground mine[J]. Geophysical Research Letters, 42(21): 9261-9269. doi: 10.1002/2015GL065975
    OLSON J, POLLARD D D, 1989. Inferring paleostresses from natural fracture patterns: a new method[J]. Geology, 17(4): 345-348. doi: 10.1130/0091-7613(1989)017<0345:IPFNFP>2.3.CO;2
    OLSON J E, LAUBACH S E, LANDER R H, 2009. Natural fracture characterization in tight gas sandstones: integrating mechanics and diagenesis[J]. AAPG Bulletin, 93(11): 1535-1549. doi: 10.1306/08110909100
    PASCAL C, ANGELIER J, CACAS M C, et al., 1997. Distribution of joints: probabilistic modelling and case study near Cardiff (Wales, U. K. )[J]. Journal of Structural Geology, 19(10): 1273-1284. doi: 10.1016/S0191-8141(97)00047-3
    PASSCHIER C W, TROUW R A J, 2005. Microtectonics[M]. Berlin, Heidelberg: Springer.
    PATERSON M S, WONG T F, 2005. Experimental rock deformation-the brittle field[M]. 2nd ed. Berlin, Germany: Springer Science & Business Media.
    PATSATZIS D G, GOUSSIS D A, 2023. Algorithmic criteria for the validity of quasi-steady state and partial equilibrium models: the Michaelis–Menten reaction mechanism[J]. Journal of Mathematical Biology, 87(2): 27. doi: 10.1007/s00285-023-01962-0
    PEACOCK D C P, 2004. Differences between veins and joints using the example of the Jurassic limestones of Somerset[M]//COSGROVE J W, ENGELDER T. The initiation, propagation, and arrest of joints and other fractures. London: Geological Society, Special Publications, 231(1): 209-221.
    PHILIPP S L, 2012. Fluid overpressure estimates from the aspect ratios of mineral veins[J]. Tectonophysics, 581: 35-47. doi: 10.1016/j.tecto.2012.01.015
    PINET N, BRAKE V I, LAVOIE D L, 2015. Geometry and regional significance of joint sets in the Ordovician-Silurian Anticosti Basin: new insights from fracture mapping[R]. Geological Survey of Canada: 24.
    POLLARD D D, SEGALL P, 1987. Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces[M]//ATKINSON A K. Fracture mechanics of rock. London: Academic Press: 277-347.
    RAWNSLEY K D, PEACOCK D C P, RIVES T, et al., 1998. Joints in the Mesozoic sediments around the Bristol Channel Basin[J]. Journal of Structural Geology, 20(12): 1641-1661. doi: 10.1016/S0191-8141(98)00070-4
    RIVES T, RAZACK M, PETIT J P, et al., 1992. Joint spacing: analogue and numerical simulations[J]. Journal of Structural Geology, 14(8-9): 925-937. doi: 10.1016/0191-8141(92)90024-Q
    RIVES T, RAWNSLEY K D, PETIT J P, 1994. Analogue simulation of natural orthogonal joint set formation in brittle varnish[J]. Journal of Structural Geology, 16(3): 419-429. doi: 10.1016/0191-8141(94)90045-0
    RUF J C, RUST K A, ENGELDER T, 1998. Investigating the effect of mechanical discontinuities on joint spacing[J]. Tectonophysics, 295(1-2): 245-257. doi: 10.1016/S0040-1951(98)00123-1
    SAEIN A F, RIAHI Z T, 2019. Controls on fracture distribution in Cretaceous sedimentary rocks from the Isfahan region, Iran[J]. Geological Magazine, 156(6): 1092-1104. doi: 10.1017/S0016756817000346
    SCHÖPFER M P J, ARSLAN A, WALSH J J, et al., 2011. Reconciliation of contrasting theories for fracture spacing in layered rocks[J]. Journal of Structural Geology, 33(4): 551-565. doi: 10.1016/j.jsg.2011.01.008
    SIMÓN J L, 2019. Forty years of paleostress analysis: has it attained maturity?[J]. Journal of Structural Geology, 125: 124-133. doi: 10.1016/j.jsg.2018.02.011
    SOUFFACHÉ B, ANGELIER J, 1989. Distribution de joints de tension dans un banc rocheux: principe d’une modélisation énergétique[J]. Comptes Rendus de l’Académie des Sciences, Série II, 308(15): 1385-1390.
    STAVROPOULOU M, 2014. Discontinuity frequency and block volume distribution in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 65: 62-74. doi: 10.1016/j.ijrmms.2013.11.003
    STOWELL J F W, WATSON A P, HUDSON N F C, 1999. Geometry and population systematics of a quartz vein set, Holy Island, Anglesey, North Wales[M]//MCCAFFREY K, LONERGAN T, WILKINSON J. Fractures, fluid flow and mineralization. London: Geological Society, Special Publications, 155(1): 17-33.
    TANG C A, ZHANG Y B, LIANG Z Z, et al., 2006. Fracture spacing in layered materials and pattern transition from parallel to polygonal fractures[J]. Physical Review E, 73(5): 056120. doi: 10.1103/PhysRevE.73.056120
    TINNI A, SONDERGELD C, CHANDRA R, 2019. Hydraulic fracture propagation velocity and implications for hydraulic fracture diagnostics[C]//Paper presented at the 53rd U. S. rock mechanics/geomechanics symposium. New York: American Rock Mechanics Association.
    VAN DER PLUIJM B A, MARSHAK S, 2004. Earth structure[M]. 2nd ed. New York: W. W. Norton & Company, Inc.
    VILLAESCUSA E, BROWN E T, 1990. Characterizing joint spatial correlation using geostatistical methods[C]//Proceedings of the international symposium. Rotterdam: A. A. Balkema: 115-122.
    WANG R, JI S C, LIN J Y, et al., 2020. On the definition of Danxia landform[J]. China Terminology, 22(3): 60-65. (in Chinese with English abstract)
    WEIBULL W, 1951. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 18(3): 293-297. doi: 10.1115/1.4010337
    WEIBULL W, 1952. A survey of ‘statistical effects’ in the field of material failure[J]. Applied Mechanics Reviews, 5(11): 449-451.
    WONG L N Y, LAI V S K, TAM T P Y, 2018. Joint spacing distribution of granites in Hong Kong[J]. Engineering Geology, 245: 120-129. doi: 10.1016/j.enggeo.2018.08.009
    WONG T F, WONG R H C, CHAU K T, et al., 2006. Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock[J]. Mechanics of Materials, 38(7): 664-681. doi: 10.1016/j.mechmat.2005.12.002
    WU H Q, POLLARD D D, 1995. An experimental study of the relationship between joint spacing and layer thickness[J]. Journal of Structural Geology, 17(6): 887-905. doi: 10.1016/0191-8141(94)00099-L
    XU K L, ZHU Z C, 1987. Structural Geology [M]. Beijing: Geological Press. (in Chinese)
    ZENG Z X, FAN G M, 2008. Structural geology[M]. Wuhan: China University of Geosciences Press. (in Chinese)
    ZHAO D S, 2010. Structural geology[M]. Harbin: Harbin Engineering University Press. (in Chinese)
    ZHAO P L, JI S C, 1997. Refinements of shear-lag model and its applications[J]. Tectonophysics, 279(1-4): 37-53. doi: 10.1016/S0040-1951(97)00129-7
    ZHU Z C, 1990. Structural geology[M]. Wuhan: China University of Geosciences Press. (in Chinese)
    ZOBACK M D, ZOBACK M L, MOUNT V S, et al., 1987. New evidence on the state of stress of the San Andreas fault system[J]. Science, 238(4830): 1105-1111. doi: 10.1126/science.238.4830.1105
  • 加载中

Catalog

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (342) PDF downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return