| Citation: | SUN P,ZHANG S,KE C Y,et al.,2025. Evaluation of landslide susceptibility and contribution analysis of key driving factors on the Loess Plateau[J]. Journal of Geomechanics,31(5):972−989 doi: 10.12090/j.issn.1006-6616.2025088 |
| [1] |
CHAI H X, CHENG W M, QIAO Y L, 2006. Classification system of 1: 1 000 000 digital loess geomorphology in China[J]. Journal of Geo-information Science, 8(2): 6-13. (in Chinese with English abstract)
|
| [2] |
CHEN D L, AN X L, SHAO H Y, et al., 2025. Quantitative assessment of landslide hazard susceptibility and key driving factors in Loess Plateau geomorphologic area[J]. Journal of Beijing Normal University (Natural Science), 61(2): 255-267. (in Chinese with English abstract)
|
| [3] |
CHEN T Q, GUESTRIN C, 2016. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. San Francisco: ACM: 785-794.
|
| [4] |
DONG J W, ZHOU Y, YOU N S, et al. , 2021. A 30-m annual maximum NDVI dataset in China from 2000 to 2022 [DS/OL]. National Ecosystem Science Data Center.
|
| [5] |
DOU J, XIANG Z L, XU Q, et al., 2023. Application and development trend of machine learning in landslide intelligent disaster prevention and mitigation[J]. Earth Science, 48(5): 1657-1674. (in Chinese with English abstract)
|
| [6] |
FU X P, WANG M, ZHANG D Q, et al., 2025. An XGBoost-SHAP framework for identifying key drivers of urban flooding and developing targeted mitigation strategies[J]. Ecological Indicators, 175: 113579. doi: 10.1016/j.ecolind.2025.113579
|
| [7] |
HONG H Y, POURGHASEMI H R, POURTAGHI Z S, 2016. Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models[J]. Geomorphology, 259: 105-118. doi: 10.1016/j.geomorph.2016.02.012
|
| [8] |
HUSSAIN M A, CHEN Z L, ZHOU Y L, et al., 2025. Landslide susceptibility mapping using artificial intelligence models: a case study in the Himalayas[J]. Landslides, 22(6): 2089-2103. doi: 10.1007/s10346-025-02466-2
|
| [9] |
KE C Y, HE S, QIN Y G, 2023. Comparison of natural breaks method and frequency ratio dividing attribute intervals for landslide susceptibility mapping[J]. Bulletin of Engineering Geology and the Environment, 82(10): 384. doi: 10.1007/s10064-023-03392-0
|
| [10] |
KE C Y, SUN P, ZHANG S, et al., 2025. Influences of non-landslide sampling strategies on landslide susceptibility mapping: a case of Tianshui city, Northwest of China[J]. Bulletin of Engineering Geology and the Environment, 84(3): 123. doi: 10.1007/s10064-025-04147-9
|
| [11] |
LI M, HE H, WU D L, et al., 2025. The spatial-temporal evolution of soil erosion in the Loess Plateau under the context of climate change[J]. Acta Ecologica Sinica, 45(16): 7793-7807. (in Chinese with English abstract)
|
| [12] |
LI T L, WANG C Y, LI P, 2013. Loess deposit and loess landslides on the Chinese loess plateau[M]//WANG F W, MIYAJIMA M, LI T L, et al. Progress of geo-disaster mitigation technology in Asia. Berlin Heidelberg: Springer: 235-261.
|
| [13] |
LIU J, LI S L, CHEN T, 2018. Landslide susceptibility assesment based on optimized random forest model[J]. Geomatics and Information Science of Wuhan University, 43(7): 1085-1091. (in Chinese with English abstract)
|
| [14] |
LIU T S, 1985. Loess and the environment[M]. Beijing: Science Press. (in Chinese)
|
| [15] |
LUNDBERG S M, LEE S I, 2017. A unified approach to interpreting model predictions[C]//Proceedings of the 31st international conference on neural information processing systems. Long Beach: Curran Associates Inc. : 4768-4777.
|
| [16] |
LV L, CHEN T, LIU G, et al., 2025. A comparative study of model interpretability considering the decision differentiation of landslide susceptibility models[J]. IEEE Transactions on Geoscience and Remote Sensing, 63: 4401218.
|
| [17] |
NAN S H, LI J J, WEI J F, et al., 2025. Driving and synergistic effects of water quality indexes on dissolved oxygen in basin based on XGBoost-SHAP model[J]. Water Resources and Power, 43(7): 52-56. (in Chinese with English abstract)
|
| [18] |
PENG J B, LIN H C, WANG Q Y, et al., 2014. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 22(4): 684-691. (in Chinese with English abstract)
|
| [19] |
PENG J B, WANG Q Y, ZHUANG J Q, et al., 2020. Dynamic formation mechanism of landslide disaster on the Loess Plateau[J]. Journal of Geomechanics, 26(5): 714-730. (in Chinese with English abstract)
|
| [20] |
PRADHAN B, DIKSHIT A, LEE S, et al., 2023. An explainable AI (XAI) model for landslide susceptibility modeling[J]. Applied Soft Computing, 142: 110324. doi: 10.1016/j.asoc.2023.110324
|
| [21] |
QIN Y G, YANG G L, LU K P, et al., 2021. Performance evaluation of five GIS-based models for landslide susceptibility prediction and mapping: a case study of Kaiyang County, China[J]. Sustainability, 13(11): 6441. doi: 10.3390/su13116441
|
| [22] |
REICHENBACH P, ROSSI M, MALAMUD B D, et al., 2018. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews, 180: 60-91. doi: 10.1016/j.earscirev.2018.03.001
|
| [23] |
TONG B, YIN Y P, LI B, et al., 2025. Review on artificial intelligence-based large language models for geological hazards[J]. The Chinese Journal of Geological Hazard and Control, 36(2): 1-12. (in Chinese with English abstract)
|
| [24] |
WANG H G, HU M T, LIU X C, 2025. Reconstruction and interpretability analysis of China's food security level based on machine learning and SHAP algorithm[J]. Journal of China Agricultural University, 30(7): 264-274. (in Chinese with English abstract)
|
| [25] |
WANG H J, SUN P, ZHANG S, et al., 2020. Rainfall-induced landslide in loess area, Northwest China: a case study of the Changhe landslide on September 14, 2019, in Gansu Province[J]. Landslides, 17(9): 2145-2160. doi: 10.1007/s10346-020-01460-0
|
| [26] |
WANG H J, SUN P, ZHANG S, et al., 2022. Evolutionary and dynamic processes of the Zhongzhai landslide reactivated on October 5, 2021, in Niangniangba, Gansu Province, China[J]. Landslides, 19(12): 2983-2996. doi: 10.1007/s10346-022-01966-9
|
| [27] |
WANG H J, SUN P, REN J, et al., 2023. Reactivation mechanism and run-out processes of the Wangqi landslide induced by water leakage on April 30, 2022, in Tianshui City, Gansu Province, China[J]. Landslides, 20(5): 999-1011. doi: 10.1007/s10346-023-02046-2
|
| [28] |
WANG K, WU L Y, YIN K L, et al., 2025. Shallow landslide susceptibility assessment based on BO-XGBoost model in Quzhou[J]. Safety and Environmental Engineering, 32(3): 197-209. (in Chinese with English abstract)
|
| [29] |
WANG L M, GUO A N, WANG P, et al., 2020. Characteristics and Revelation of Great Haiyuan Earthquake Disaster[J]. City and Disaster Reduction, (06): 43-53. (in Chinese)
|
| [30] |
WEI R Z, WANG Q, ZHUANG Q et. al., 2022. Discussion on late cenozoic stratigraphic features and earth surface processes in the middle reaches of the Yellow River and its adjacent regions[J]. Quaternary Sciences, 42(03): 823-842. (in Chinese with English abstract)
|
| [31] |
WU S R, SHI J S, WANG T, et al. , 2012. Theory and methodology of landslide risk assessment[M]. Beijing: Science Press. (in Chinese)
|
| [32] |
XU C, WU X Y, XU X W, 2018. Earthquake-triggered landslides in the Loess Plateau and its adjacent areas[J]. Journal of Engineering Geology, 26(S1): 260-273. (in Chinese with English abstract)
|
| [33] |
XU Q, DONG X J, LI W L, 2019. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 44(7): 957-966. (in Chinese with English abstract)
|
| [34] |
XU Q, PENG D L, FAN X M, et al., 2025. Preliminary study on the characteristics and initiation mechanism of Zhongchuan flowslide due to liquefaction triggered by the Ms 6.2 Jishishan earthquake in Gansu Province[J]. Geomatics and Information Science of Wuhan University, 50(2): 207-222. (in Chinese with English abstract)
|
| [35] |
XU X W, HAN Z J, YANG X P, et al. , 2016. Seismotectonic map of China and adjacent areas[M]. Beijing: Seismological Press. (in Chinese with English abstract)
|
| [36] |
YUAN B Y, TANG G A, ZHOU L P, et al. , 2007 Control action of the Cenozoic tectogenesis on the geomorphic differentiation in Loess Plateau and the formation of Yellow River[J]. Quaternary Sciences. 32(05): 829-838. (in Chinese with English abstract)
|
| [37] |
YANG J, HUANG X, 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 13(8): 3907-3925. doi: 10.5194/essd-13-3907-2021
|
| [38] |
YE T Z, HUANG C K, DENG A Q. 2017. Spatial database of 1: 2500000 digital geologic map of People’s Republic of China[J]. Geology in China, 44(S1): 19−24. (in Chinese with English abstract)
|
| [39] |
ZHANG S, SUN P, REN J, et al., 2022. Successful emergency evacuation from a catastrophic loess landslide reactivated by the torrential rain in October 2021 in Tianshui, Ganusu, NW China[J]. Geoenvironmental Disasters, 9(1): 19. doi: 10.1186/s40677-022-00222-5
|
| [40] |
ZHANG S, SUN P, LI R, et al., 2023. Preliminary investigation on a catastrophic loess landslide induced by heavy rainfall on 1 September 2022 in Qinghai, China[J]. Landslides, 20(7): 1553-1559. doi: 10.1007/s10346-023-02086-8
|
| [41] |
ZHOU C, YIN K L, CAO Y, et al., 2020. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost: a case study from the three gorges reservoir area[J]. Earth Science, 45(6): 1865-1876. (in Chinese with English abstract)
|
| [42] |
ZHOU S Q, LIU Z Y, WANG M, et al., 2022. Impacts of building configurations on urban stormwater management at a block scale using XGBoost[J]. Sustainable Cities and Society, 87: 104235. doi: 10.1016/j.scs.2022.104235
|
| [43] |
柴慧霞, 程维明, 乔玉良, 2006. 中国“数字黄土地貌”分类体系探讨[J]. 地球信息科学, 8(2): 6-13.
|
| [44] |
陈丹璐, 安雪莲, 邵怀勇, 等, 2025. 黄土塬地貌区滑坡灾害易发性量化评估及关键驱动因子[J]. 北京师范大学学报(自然科学版), 61(2): 255-267.
|
| [45] |
董金玮, 周岩, 尤南山, 等, 2021. 2000-2022年中国30米年最大NDVI数据集[DS/OL]. 国家生态科学数据中心.
|
| [46] |
窦杰, 向子林, 许强, 等, 2023. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学, 48(5): 1657-1674.
|
| [47] |
李曼, 何昊, 吴东丽, 等, 2025. 气候变化背景下黄土高原土壤侵蚀时空演变[J]. 生态学报, 45(16): 7793-7807.
|
| [48] |
刘东生, 1985. 黄土与环境[M]. 北京: 科学出版社.
|
| [49] |
刘坚, 李树林, 陈涛, 2018. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报(信息科学版), 43(7): 1085-1091.
|
| [50] |
南淑荷, 李进军, 魏佳芳, 等, 2025. 基于XGBoost-SHAP模型的流域水质指标对DO的驱动与协同影响分析[J]. 水电能源科学, 43(7): 52-56.
|
| [51] |
彭建兵, 林鸿州, 王启耀, 等, 2014. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 22(4): 684-691.
|
| [52] |
彭建兵, 王启耀, 庄建琦, 等, 2020. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 26(5): 714-730.
|
| [53] |
佟彬, 殷跃平, 李昺, 等, 2025. 地质灾害人工智能大语言模型研究展望[J]. 中国地质灾害与防治学报, 36(2): 1-12.
|
| [54] |
王兰民, 郭安宁, 王平, 等, 2020. 1920年海原大地震震害特征与启示[J]. 城市与减灾, (06): 43-53.
|
| [55] |
王火根, 胡梦婷, 刘小春, 2025. 基于机器学习和SHAP算法的我国粮食安全水平测度重构及可解释性分析[J]. 中国农业大学学报, 30(7): 264-274.
|
| [56] |
王凯, 邬礼扬, 殷坤龙, 等, 2025. 基于BO-XGBoost模型的衢州市浅层滑坡易发性评价[J]. 安全与环境工程, 32(3): 197-209.
|
| [57] |
吴树仁, 石菊松, 王涛, 等, 2012. 滑坡风险评估理论与技术[M]. 北京: 科学出版社.
|
| [58] |
魏荣珠, 王权, 庄其天, 等, 2022. 黄河中游及邻区晚新生代地层特征及地表过程讨论[J]. 第四纪研究, 42(03): 823-842.
|
| [59] |
许冲, 吴熙彦, 徐锡伟, 2018. 黄土高原及邻区的地震滑坡[J]. 工程地质学报, 26(S1): 260-273.
|
| [60] |
许强, 董秀军, 李为乐, 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 44(7): 957-966.
|
| [61] |
许强, 彭大雷, 范宣梅, 等, 2025. 甘肃积石山Ms 6.2地震触发青海中川乡液化型滑坡-泥流特征与成因机理[J]. 武汉大学学报(信息科学版), 50(2): 207-222.
|
| [62] |
徐锡伟, 韩竹军, 杨晓平, 等, 2016. 中国及邻近地区地震构造图[M]. 北京: 地震出版社.
|
| [63] |
叶天竺, 黄崇轲, 邓志奇. 2017. 1: 250万中华人民共和国数字地质图空间数据库[J]. 中国地质, 44(S1): 19-24.
|
| [64] |
袁宝印, 汤国安, 周力平, 等, 2012. 新生代构造运动对黄土高原地貌分异与黄河形成的控制作用[J]. 第四纪研究, 32(05): 829-838.
|
| [65] |
周超, 殷坤龙, 曹颖, 等, 2020. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价[J]. 地球科学, 45(6): 1865-1876.
|