Volume 31 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
ZHANG J,ZHAO H,ZHANG B H,et al.,2025. Distribution, characteristics, ages, and tectonic environments of ductile shear zones in the Beishan orogenic belt[J]. Journal of Geomechanics,31(5):841−868 doi: 10.12090/j.issn.1006-6616.2025027
Citation: ZHANG J,ZHAO H,ZHANG B H,et al.,2025. Distribution, characteristics, ages, and tectonic environments of ductile shear zones in the Beishan orogenic belt[J]. Journal of Geomechanics,31(5):841−868 doi: 10.12090/j.issn.1006-6616.2025027

Distribution, characteristics, ages, and tectonic environments of ductile shear zones in the Beishan orogenic belt

doi: 10.12090/j.issn.1006-6616.2025027
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grant Nos. U2344215 and 42472276), the Scientific Research Funds of the Chinese Academy of Geological Sciences (Grant Nos. JKYZD202309 and JKYQN202405), and the Geological Survey Project of the China Geological Survey (Grant No. DD20250102604).
More Information
  • Author Bio:

    张进,男,1973年生,研究员,博士生导师。现任中国地质科学院地质研究所构造地质研究室主任,《地质力学学报》副主编。主要从事中亚造山带的基础地质调查和研究工作。牵头中国地质调查局构造复杂区填图试点及构造专题填图指南编写;参与中国地质调查局区域地质调查技术要求(1∶50000)编写与修订。目前以第一作者或通讯作者发表文章100篇,其中SCI检索文章45篇,专著3部,填制1∶50000地质图5000 km2。2018年获得中国地质调查局特优图幅奖,2019年获得中国地质调查局填图首席科学称号,2019年获中国地质调查局第四批“优秀地质人才”称号,2021年获得自然资源部科技领军人才称号

  • Received: 2025-03-19
  • Revised: 2025-06-17
  • Accepted: 2025-06-17
  • Available Online: 2025-07-08
  • Published: 2025-10-28
  •   Objective  The Beishan occupies a pivotal position between the eastern and western segments of the Central Asian Orogenic Belt (CAOB). Although numerous ductile shear zones have been identified in this area, they have received limited attention, leading to uncertainties and debates regarding their formation mechanisms, ages, deformation regimes, tectonic settings, and role in the evolution of the orogenic belt. Consequently, studying these ductile shear zones is crucial for understanding the evolution of the CAOB.   Methods  Based on a systematic compilation of previous research data, the geological interpretation of remote sensing images, the regional aeromagnetic anomalies of the East Tianshan–Beishan–Alxa region, and our fieldwork in Beishan and adjacent regions, this study has identified 13 ductile shear zones, ranging in length from 30 km to nearly 300 km.   Results  These 13 ductile shear zones from north to south are: Hongshishan–Baiheshan–Pengboshan–Qiantiaogou ductile shear zone, Bailiang–Sangejing–Gonglujing–Weiboshan ductile shear zone, Pochengshan–Shibanjing–Xiaohuangshan ductile shear zone, Hongyanjing–Mazongshan–Jianshan ductile shear zone, Lebaquan ductile shear zone, Baiyunshan–North Yueyashan ductile shear zone, Huaniushan–Wufengshan–Erduanjing–North Dingxin ductile shear zone, Zhongqiujing–Jinmiaogou ductile shear zone, Jiujing–Chuanshanxun ductile shear zone, Xiaoxigong–Qianhongquan ductile shear zone, Qijiaojing shear zone, Gubaoquan–Zuanjinggou ductile zone, Baidunzi–Shibandun ductile shear zone, respectively. Most of these 13 shear zones exhibit an east–west strike, traverse the entire Beishan region, and coincide with ophiolitic mélange zones or major tectonic zones. Those in the southern Beishan region are particularly well-exposed, characterized by greater widths (>10 km) and a higher concentration (five to six zones), whereas those in the central and northern regions display greater continuity and length. Currently, most documented shear zones in Beishan are dominated by dextral kinematics, with only a few exhibiting sinistral motion. Mineral stretching lineations in major shear zones are generally sub-horizontal and east–west trending, while mylonitic foliations generally strike east–west with steep to vertical dips. Preliminary findings suggest that most ductile shear zones in Beishan formed during the Paleozoic and Mesozoic, particularly in the late Paleozoic to early Mesozoic, with a predominant distribution in the central and southern regions. Many of these major shear zones can be correlated with coeval structures in the East Tianshan to the west and the Alxa region to the east, collectively forming an extensive ductile shear system in the central CAOB.   Conclusion  These late Paleozoic to early Mesozoic shear zones likely reflect large-scale deformation within the CAOB and may represent a key component of the central megashear system in the Pangea supercontinent. However, the possibility that the ductile shear deformation in the Beishan region was caused by oblique subduction of the Paleo-Asian Ocean cannot be ruled out. Future research on Beishan’s ductile shear zones should prioritize precise geochronology and semi-quantitative to quantitative structural analyses. [ Significance ] The identification of the orogen-scale giant ductile shear system in Beishan and its vicinity is of great significance for understanding the deformation styles, environments, and regimes of the middle-lower crust in the CAOB, as well as the formation and evolution of the Pangea supercontinent.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    AN K X, LIN X B, HUANG J L, et al., 2025. Early Cenozoic reactivation of a pre‐existing crustal boundary along the Kuantan Shan-Hei Shan area North of the Jiuxi Basin, northeastern Tibetan Plateau[J]. Tectonics, 44(5): e2024TC008615. doi: 10.1029/2024TC008615
    [2]
    AO S J, XIAO W J, WINDLEY B F, et al., 2016. Paleozoic accretionary orogenesis in the eastern Beishan orogen: constraints from zircon U–Pb and 40Ar/39Ar geochronology[J]. Gondwana Research, 30: 224-235. doi: 10.1016/j.gr.2015.03.004
    [3]
    CAI Z H, XU Z Q, HE B Z, et al., 2012. Age and tectonic evolution of ductile shear zones in the eastern Tianshan-Beishan orogenic belt[J]. Acta Petrologica Sinica, 28(6): 1875-1895. (in Chinese with English abstract)
    [4]
    CHANG W, ZHANG G S, PENG R, et al., 2024. Geometric characteristics and tectonic significance of Late Paleozoic mafic dyke swarms in Beishan and its adjacent areas: based on remote sensing image research[J]. Geological Bulletin of China, 43(4): 536-545. (in Chinese with English abstract)
    [5]
    CHEN B L, YANG N, WU G G, et al., 2002. Analysis of ore-controlling structure in ductile shear zone type gold deposits in southern Beishan Area, Gansu Province[J]. Mineral Deposits, 21(2): 149-158. (in Chinese with English abstract)
    [6]
    CHEN B L, WU G G, YANG N, et al., 2007. Baidunzi-Xiaoxigong ductile shear zone and its ore-controlling effect in the southern Beishan area, Gansu[J]. Journal of Geomechanics, 13(2): 99-109. (in Chinese with English abstract)
    [7]
    CHEN W, ZHANG Y, QIN K Z, et al., 2007. Study on the age of the shear zone-type gold deposit of East Tianshan, Xinjiang, China[J]. Acta Petrologica Sinica, 23(8): 2007-2016. (in Chinese with English abstract)
    [8]
    CUI X, WANG G H, WANG Z Y, et al., 2019. Discovery of structural schist belt in Huobuhaer Area of Ejinaqi, Inner Mongolia: implication for its tectonic significance[J]. Mineralogy and Petrology, 39(2): 81-89. (in Chinese with English abstract)
    [9]
    DING S H, 2021. 40Ar-39Ar age of sericite and its geological significance in Qianhongquan Gold Deposit, Beishan Area, Gansu Province[J]. Gold Science and Technology, 29(2): 173-183. (in Chinese with English abstract)
    [10]
    DONG Z C, XI R G, WANG G Q, et al., 2024. Structural characteristics of the Saozishan Formation in the Hongshishan area of the Gansu Beishan and its dynamic background[J]. Geological Bulletin of China, 43(2-3): 302-316. (in Chinese with English abstract)
    [11]
    DU J X, FU B H, SHI P L, et al., 2021. Cenozoic tectono-geomorphic evolution of Yabrai Mountain and the Badain Jaran Desert (NE Tibetan Plateau margin)[J]. Geomorphology, 389: 107857. doi: 10.1016/j.geomorph.2021.107857
    [12]
    FANG W X, ZHENG X M, FANG T H, et al., 2021. Restoration of the Devonian-Carboniferous limited ocean basin and deep structure of ophiolitic melange in the Hongshishan area of Gansu Province[J]. Geological Bulletin of China, 40(5): 649-673. (in Chinese with English abstract)
    [13]
    FENG L M, LIN S F, LI L M, et al., 2020. Constraints on the tectonic evolution of the southern central Asian orogenic belt from early Permian–middle Triassic granitoids from the central Dunhuang orogenic belt, NW China[J]. Journal of Asian Earth Sciences, 194: 104283. doi: 10.1016/j.jseaes.2020.104283
    [14]
    GAO Y, DING H L, GUO R J, et al., 2016. Structural deformation of Gonglujing—Sangejing ductile shear zone in the Beishan orogenic belt, and its geological significance[J]. Geological Survey of China, 3(1): 26-34. (in Chinese with English abstract)
    [15]
    GILLESPIE J, GLORIE S, XIAO W J, et al., 2017. Mesozoic reactivation of the Beishan, southern Central Asian Orogenic Belt: insights from low-temperature thermochronology[J]. Gondwana Research, 43: 107-122. doi: 10.1016/j.gr.2015.10.004
    [16]
    HAN W, LU J C, WEI J S, et al., 2015. Apatite fission track constraints on the Mesozoic tectonic activities Shandan depression, Yin’e Basin, Inner Mongolia[J]. Acta Geologica Sinica, 89(12): 2277-2285. (in Chinese with English abstract)
    [17]
    HE Z Y, SUN L X, MAO L J, et al., 2015. Zircon U-Pb and Hf isotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth[J]. Chinese Science Bulletin, 60(4): 389-399. (in Chinese with English abstract) doi: 10.1360/N972014-00898
    [18]
    HONG T, SANTOS G S, VAN STAAL C R, et al., 2023. Mapping uncovered a multi-phase arc–back-arc system in the southern Beishan during the Permian[J]. National Science Review, 10(2): nwac204. doi: 10.1093/nsr/nwac204
    [19]
    LAMB M A, HANSON A D, GRAHAM S A, et al., 1999. Left-lateral sense offset of Upper Proterozoic to Paleozoic features across the Gobi Onon, Tost, and Zuunbayan faults in southern Mongolia and implications for other central Asian faults[J]. Earth and Planetary Science Letters, 173(3): 183-194. doi: 10.1016/S0012-821X(99)00227-7
    [20]
    LI C Y, WANG Q, 1983. Paleo plate tectonics and the formation of the Eurasian continent in the northern border and adjacent areas of China[C]//Collection of Northern China plate tectonics, volume I. Beijing: Geological Publishing House: 3-16. (in Chinese)
    [21]
    LI Z, ZHU W B, WU H L, 2019. Structural characteristics and chronological constraints on the Yemaquan-Lebaquan ductile shear zone in Mazongshan Area, Beishan[J]. Geological Journal of China Universities, 25(6): 932-942. (in Chinese with English abstract)
    [22]
    LIU K, CHEN X H, ZUZA A V, et al., 2023. The late Mesozoic intracontinental contraction–extension transition in the Beishan fold-thrust belt, central Asia: constraints from structural analysis and apatite (U-Th)/He thermochronology[J]. Tectonics, 42(7): e2022TC007532. doi: 10.1029/2022TC007532
    [23]
    LIU K, CHEN X H, WANG D R, et al., 2024. The Early Cretaceous extensional deformation in the southeastern Beishan Range, central Asia: constrains from 2D seismic reflection profile interpretation and apatite fission track thermochronology[J]. Journal of Geomechanics, 30(3): 377-393. (in Chinese with English abstract)
    [24]
    LIU H X, YAN D P, HE J G, et al., 2014. Apatite fission track evidence for the Mesozoic-Cenozoic tectonic uplift of Aqishan-Yamansu area, East Tianshan: With discussion of tectonic activity and geological disposal of radioactive waste[J]. Geological Journal of China Universities, 20(1): 81-92. (in Chinese with English abstract)
    [25]
    LIU X Y, WANG Q, 1995. Tectonics and evolution of the Beishan orogenic belt in western China[C]//Collection of the geological research institute of China (28). Beijing: The Institute of Geology, Chinese Academy of Geological Sciences: 42-53. (in Chinese)
    [26]
    MA J H, HE D F, 2019. Meso-Cenozoic tectonic events in the Helanshan Tectonic Belt and its adjacent areas: Constraints from unconformity and fission track data[J]. Acta Petrologica Sinica, 35(4): 1121-1142. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.04.10
    [27]
    MAO Q G, XIAO W J, AO S J, et al., 2023. Final amalgamation processes of the southern Altaids: insights from the Triassic Houhongquan ophiolitic mélange in the Beishan orogen (NW China)[J]. Lithosphere, 2023(1): 1988410. doi: 10.2113/2023/1988410
    [28]
    MUHTAR M N, WU C Z, XIAO W J, 2023. Movement and mineralization of the Kanggur-Huangshan shear zone in the East Tianshan: Implications for regional exploration[J]. Acta Petrologica Sinica, 39(11): 3434-3446. (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.11.13
    [29]
    MUHTAR M N, WU C Z, BRZOZOWSKI M J, et al., 2023. Timing and spatial variation of deformation along the Kanggur-Huangshan shear zone in the Chinese Tianshan: implications for regional differential uplift and mineralization[J]. GSA Bulletin, 135(5-6): 1429-1448.
    [30]
    NIE F J, YAN Z B, WANG Y N, et al., 2021. Intracontinental deformation of the western Ordos Basin in North China and sandstone-type uranium mineralization: Constraints from AFT chronology of the Helan Mountain[J]. Geological Journal, 56(11): 1-22.
    [31]
    NIU W C, XIN H T, DUAN L F, et al., 2019. The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia: new understanding based on the geological map of Qinghegou Sheet (1: 50000)[J]. Geology in China, 46(5): 977-994. (in Chinese with English abstract)
    [32]
    NIU W C, XIN H T, DUAN L F, et al., 2020. Geochemical characteristics, zircon U-Pb age of SSZ ophiolite in the Baiheshan area of the Beishan orogenic belt, Inner Mongolia, and its indication for the evolution of the Paleo-Asian Ocean[J]. Geological Bulletin of China, 39(9): 1317-1329. (in Chinese with English abstract)
    [33]
    NIU Y Z, LU J C, WEI J S, et al., 2014. Chronology of the Lütiaoshan Formation in the Beishan Area and its tectonic significances[J]. Geological Review, 60(3): 567-576. (in Chinese with English abstract)
    [34]
    PASSCHIER C W, PLATT J P, 2017. Shear zone junctions: of zippers and freeways[J]. Journal of Structural Geology, 95: 188-202. doi: 10.1016/j.jsg.2016.10.010
    [35]
    QIAN J P, FU Y J, ZHOU Y N, et al., 2018. Analysis of the metallogenic structure system and the regularities of tectonic ore control of the Laodonggou gold polymetallic mining area, Ejinaqi, Inner Mongolia[J]. Geotectonica et Metallogenia, 42(6): 1046-1063. (in Chinese with English abstract)
    [36]
    SONG D F, XIAO W J, HAN C M, et al., 2014. Polyphase deformation of a Paleozoic forearc–arc complex in the Beishan orogen, NW China[J]. Tectonophysics, 632: 224-243. doi: 10.1016/j.tecto.2014.06.030
    [37]
    SONG D F, XIAO W J, HAN C M, et al., 2018. Accretionary processes of the central segment of Beishan: constraints from structural deformation and 40Ar-39Ar geochronology[J]. Acta Petrologica Sinica, 34(7): 2087-2098. (in Chinese with English abstract)
    [38]
    SUN L X, ZHANG J H, REN B F, et al., 2017. Geochemical characteristics and U-Pb age of Baiyunshan ophiolite mélange in the Beishan orogenic belt and their geological implications[J]. Acta Petrologica et Mineralogica, 36(2): 131-147. (in Chinese with English abstract)
    [39]
    TIAN Z H, XIAO W J, ZHANG Z Y, et al., 2016. Fisson-track constrains on superposed folding in the Beishan orogenic belt, southernmost Altaids[J]. Geoscience Frontiers, 7(2): 181-196. doi: 10.1016/j.gsf.2015.11.007
    [40]
    TIAN Z H, XIAO W J, WINDLEY B F, et al., 2021. Two key switches in regional stress field during multi-stage deformation in the Carboniferous–Triassic southernmost Altaids (Beishan, NW China): response to orocline-related roll-back processes[J]. GSA Bulletin, 133(11-12): 2591-2611. doi: 10.1130/B35898.1
    [41]
    WANG D Y, LI M X, WANG Q, et al., 2024. Magmatic response to lithospheric thinning of the North China Craton: evidence from the Daqingshan granite[J]. East China Geology, 45(2): 173-186. (in Chinese with English abstract)
    [42]
    WANG F, WANG J, FAN H H, et al., 2005. Distribution of Late Quaternary active faults and its tectonic significance in the Beishan Region, Gansu Province, China[J]. Geological Review, 51(3): 250-256. (in Chinese with English abstract)
    [43]
    WANG F J, LUO M, HE Z Y, et al. , 2023. Mid-cretaceous accelerated cooling of the Beishan orogen, NW China: evidence from apatite fission track thermochronology[J]. Lithosphere, 2023(S14): lithosphere_2023_239, 1-20.
    [44]
    WANG G Q, LI X M, XU X Y, et al., 2021. Research status and progress of Paleozoic ophiolites in Beishan orogenic belt[J]. Geological Bulletin of China, 40(1): 71-81. (in Chinese with English abstract)
    [45]
    WANG T, SELTMANN R, HUANG H, et al. , 2018. Guidebook for field excursion of first workshop of Project IGCP-662“Orogenic architecture and crustal growth from accretion to collision (IGCP#662): scientific activities 2018-2019[EB/OL]. https://www.researchgate.net/publication/367635259_Field_Guide_Book_to_Project_IGCP-662_Fieldtrip_to_the_Dunhuang_Block_and_Beishan_Orogen_in_the_Dunhuang-Liuyuan_area_Gansu_Province_NW_China
    [46]
    WANG W B, LEI C C, LI G, et al., 2023. Structural characteristics of the Wanghushan ductile shear zone in northwestern Inner Mongolia and its geological significance[J]. Acta Geologica Sinica, 97(7): 2141-2156. (in Chinese with English abstract)
    [47]
    WANG Y, SUN G, LI J, 2010. U-Pb (SHRIMP) and 40Ar/39Ar geochronological constraints on the evolution of the Xingxingxia shear zone, NW China: a Triassic segment of the Altyn Tagh fault system[J]. GSA Bulletin, 122(3-4): 487-505. doi: 10.1130/B26347.1
    [48]
    WANG Z Q, LI J, WANG L J, et al., 2023. Petrogenesis of the Middle to Late Jurassic diorite and granite from Hada area in the Southern Xing’an Block and its restriction on the evolution of the Mongol-Okhotsk Ocean[J]. East China Geology, 44(4): 386-401. (in Chinese with English abstract)
    [49]
    XIAO W J, MAO Q G, WINDLEY B F, et al., 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310(10): 1553-1594. doi: 10.2475/10.2010.12
    [50]
    XIN H T, NIU W C, TIAN J, et al., 2020. Spatio-temporal structure of Beishan orogenic belt and evolution of Paleo-Asian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 39(9): 1297-1316. (in Chinese with English abstract)
    [51]
    XIONG S Q, TONG J, DING Y Y, et al., 2016. Aeromagnetic data and geological structure of continental China: a review[J]. Applied Geophysics, 13(2): 227-237. doi: 10.1007/s11770-016-0552-2
    [52]
    YAN J Y, LÜ Q T, MENG G X, et al., 2009. Regional geophysical field characters, structural zonation and deep structure of the Beishan area, Inner-Mongolia[J]. Progress in Geophysics, 24(2): 439-447. (in Chinese with English abstract)
    [53]
    YANG Z X, DING S H, ZHANG J, et al., 2023. The discovery and prospecting significance of the Qianhongquan gold deposit in the south Beishan Orogenic Belt, Gansu Province, China[J]. Northwestern Geology, 56(6): 274-284. (in Chinese with English abstract)
    [54]
    YI K X, JOLIVET M, GUO Z J, 2025. Tectonic transition and extension at the eastern and western ends of the Altyn Tagh fault: insights from triple junctions[J]. Journal of Geomechanics, 31(1): 24-38. (in Chinese with English abstract)
    [55]
    YUN L, WANG J, ZHANG J, et al., 2025. Late Quaternary tectonics of the Jiujing-Bantan fault along the southern Beishan Block and its implication for the northward growth of the Tibetan Plateau[J]. Journal of Structural Geology, 198: 105458. doi: 10.1016/j.jsg.2025.105458
    [56]
    ZHANG B H, ZHANG J, WANG Y N, et al., 2017. Late Mesozoic-Cenozoic exhumation of the Northern Hexi Corridor: Constrained by apatite fission track ages of the Longshoushan[J]. Acta Geologica Sinca (English Edition), 91(5): 1624-1643. doi: 10.1111/1755-6724.13402
    [57]
    ZHANG B H, ZHANG J, ZHAO H, et al., 2021a. Kinematics and geochronology of Late Paleozoic–Early Mesozoic ductile deformation in the Alxa Block, NW China: new constraints on the evolution of the Central Asian Orogenic Belt[J]. Lithosphere, 2021(1): 3365581. doi: 10.2113/2021/3365581
    [58]
    ZHANG G Z, ZHANG Y, XIN H T, et al., 2021. Geochronology and geochemistry of diorite porphyrite from Laodonggou gold-polymetallic deposit, Beishan, Inner Mongolia, and its metallogenic significance[J]. Mineral Deposits, 40(3): 555-573. (in Chinese with English abstract)
    [59]
    ZHANG H, WANG H, PAN Z L, et al., 2021. Geochronological constraints and deformation of the western section of Shibanjing ductile shear zone in Beishan, Inner Mongolia[J]. Geological Bulletin of China, 40(6): 930-941. (in Chinese with English abstract)
    [60]
    ZHANG J, CUNNINGHAM D, 2012. Kilometer-scale refolded folds caused by strike-slip reversal and intraplate shortening in the Beishan region, China[J]. Tectonics, 31(3): TC3009.
    [61]
    ZHANG J, WANG Y N, QU J F, et al., 2021b. Mesozoic intracontinental deformation of the Alxa Block in the middle part of Central Asian Orogenic Belt: a review[J]. International Geology Review, 63(12): 1490-1520. doi: 10.1080/00206814.2020.1783583
    [62]
    ZHANG J, QU J F, ZHANG B H, et al., 2022a. Determination of an intracontinental transform system along the southern Central Asian Orogenic Belt in the Latest Paleozoic[J]. American Journal of Science, 322(7): 851-897. doi: 10.2475/07.2022.01
    [63]
    ZHANG J, CUNNINGHAM D, QU J F, et al., 2022b. Poly-phase structural evolution of the northeastern Alxa Block, China: Constraining the Paleozoic-Recent history of the southern central Asian Orogenic belt[J]. Gondwana Research, 105: 25-50. doi: 10.1016/j.gr.2021.12.007
    [64]
    ZHANG J, QU J F, ZHAO H, et al., 2023a. Formation, mechanism and tectonic implication of a large ductile strike-slip duplex in the middle segment of Central Asian Orogenic Belt[J]. Mineral Exploration, 14(4): 519-540. (in Chinese with English abstract)
    [65]
    ZHANG J, ZHANG B H, ZHAO H, et al., 2023b. Late Cenozoic deformation characteristics and mechanism of the Beis-han-Alxa region[J]. Earth Science Frontiers, 30(5): 334-357. (in Chinese with English abstract)
    [66]
    ZHAO H, ZHANG J, ZHANG B H, et al., 2022. Structures and chronology of the Yabrai shear zone in the Alxa, NW China: constraints on the late Paleozoic shear system in central segment of the Central Asian Orogenic Belt[J]. Journal of Structural Geology, 158: 104575. doi: 10.1016/j.jsg.2022.104575
    [67]
    ZHAO H, ZHANG J, ZHANG B H, et al., 2025. Intracontinental deformation and reactivation of the southern Central Asian Orogenic Belt: styles, causes and mechanisms[J]. Tectonics, 44(4): e2022TC007740. doi: 10.1029/2022TC007740
    [68]
    ZHENG Y D, ZHANG Q, WANG Y, et al., 1996. Great Jurassic thrust sheets in Beishan (North Mountains)—Gobi areas of China and southern Mongolia[J]. Journal of Structural Geology, 18(9): 1111-1126. doi: 10.1016/0191-8141(96)00038-7
    [69]
    ZHENG R G, WU T R, ZHANG W, et al., 2012. Geochemical characteristics and tectonic setting and of the Yueyashan-Xichangjing Ophiolite in the Beishan Area[J]. Acta Geologica Sinica, 86(6): 961-971. (in Chinese with English abstract)
    [70]
    ZHENG R G, WU T R, ZHANG W, et al., 2013. Late Paleozoic subduction system in the southern Central Asian Orogenic Belt: evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt[J]. Journal of Asian Earth Sciences, 62: 463-475. doi: 10.1016/j.jseaes.2012.10.033
    [71]
    ZHENG R G, LI J Y, ZHANG J, et al., 2021. A prolonged subduction-accretion in the southern Central Asian Orogenic Belt: insights from anatomy and tectonic affinity for the Beishan complex[J]. Gondwana Research, 95: 88-112. doi: 10.1016/j.gr.2021.02.022
    [72]
    ZUO G C, HE G Q, 1990. Plate tectonics and metallogenic regularities in Beishan region[M]. Beijing: Peking University Press: 1-255. (in Chinese)
    [73]
    ZUO G C, ZHENG Y D, 1991. A major breakthrough in the field research of the Beishan lithosphere research: the discovery of eight regional ductile shear zones and extra-large Nappe structures[J]. Gansu Geological Science and Technology Information(1): 1-4. (in Chinese)
    [74]
    ZUO G C, FENG Y Z, LIU C Y, et al., 1992. A new discovery of early Yanshanian strike-slip compressional nappe zones on middle-southern segment of Beishan Mts, Gansu[J]. Scientia Geologica Sinica, 27(4): 309-316. (in Chinese with English abstract)
    [75]
    蔡志慧, 许志琴, 何碧竹, 等, 2012. 东天山-北山造山带中大型韧性剪切带属性及形成演化时限与过程[J]. 岩石学报, 28(6): 1875-1895.
    [76]
    陈柏林, 杨农, 吴淦国, 等, 2002. 甘肃北山南带韧性剪切带型金矿床构造控矿解析[J]. 矿床地质, 21(2): 149-158. doi: 10.3969/j.issn.0258-7106.2002.02.007
    [77]
    陈柏林, 吴淦国, 杨农, 等, 2007. 甘肃北山白墩子-小西弓韧性剪切带及其控矿作用[J]. 地质力学学报, 13(2): 99-109. doi: 10.3969/j.issn.1006-6616.2007.02.003
    [78]
    陈文, 张彦, 秦克章, 等, 2007. 新疆东天山剪切带型金矿床时代研究[J]. 岩石学报, 23(8): 2007-2016. doi: 10.3969/j.issn.1000-0569.2007.08.021
    [79]
    崔骁, 王根厚, 王振义, 等, 2019. 内蒙额济纳旗霍布哈尔地区构造片岩带的发现及其构造意义[J]. 矿物岩石, 39(2): 81-89.
    [80]
    丁书宏, 2021. 甘肃北山前红泉金矿床绢云母40Ar-39Ar 年龄及其地质意义[J]. 黄金科学技术, 29(2): 173-183.
    [81]
    董增产, 奚仁刚, 王国强, 等, 2024. 甘肃北山红石山地区扫子山组构造变形特征及其动力学背景[J]. 地质通报, 43(2-3): 302-316.
    [82]
    方维萱, 郑小明, 方同辉, 等, 2021. 甘肃红石山地区泥盆纪—石炭纪有限洋盆重建与蛇绿混杂岩深部结构[J]. 地质通报, 40(5): 649-673.
    [83]
    高勇, 丁华磊, 郭瑞军, 等, 2016. 北山造山带公路井—三个井韧性剪切带构造变形特征及其地质意义[J]. 中国地质调查, 3(1): 26-34.
    [84]
    韩伟, 卢进才, 魏建设, 等. 2015. 内蒙古银额盆地尚丹凹陷中生代构造活动的磷灰石裂变径迹约束[J]. 地质学报, 89(12): 2277-2285.
    [85]
    贺振宇, 孙立新, 毛玲娟, 等, 2015. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb定年和Hf同位素: 中元古代的岩浆作用与地壳生长[J]. 科学通报, 60(4): 389-399.
    [86]
    李春昱, 王荃, 1983. 我国北部边陲及邻区的古板块构造与欧亚大陆的形成[C]//中国北方板块构造文集, 第一集. 北京: 地质出版社: 3-16.
    [87]
    李治, 朱文斌, 吴海林, 2019. 北山马鬃山地区野马泉和勒巴泉韧性剪切带构造变形特征与年代学约束[J]. 高校地质学报, 25(6): 932-942.
    [88]
    刘奎, 陈宣华, 王德润, 等, 2024. 北山东南部早白垩世伸展构造变形: 二维反射地震剖面解释与磷灰石裂变径迹测年的制约[J]. 地质力学学报, 30(3): 377-393. doi: 10.12090/j.issn.1006-6616.2023151
    [89]
    刘雪亚, 王荃, 1995. 中国西部北山造山带的大地构造及其演化[C]//中国地质科学院地质研究所文集(28). 北京: 中国地质科学院地质研究所: 42-53.
    [90]
    刘红旭, 颜丹平, 何建国, 等, 2014. 阿齐山—雅满苏地区中-新生代构造隆升裂变径迹证据: 兼论构造活动对核废选址场的意义[J]. 高校地质学报, 20(1): 81-92. doi: 10.3969/j.issn.1006-7493.2014.01.008
    [91]
    马静辉, 何登发, 2019. 贺兰山构造带及邻区中新生代构造事件: 来自不整合面和裂变径迹的约束[J]. 岩石学报, 35(4): 1121-1142. doi: 10.18654/1000-0569/2019.04.10
    [92]
    穆合塔尔·麦麦提尼亚孜, 吴昌志, 肖文交, 2023. 东天山康古尔-黄山剪切带的活动与成矿: 对区域找矿勘查的指示[J]. 岩石学报, 39(11): 3434-3446. doi: 10.18654/1000-0569/2023.11.13
    [93]
    牛文超, 辛后田, 段连峰, 等, 2019. 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性: 基于1∶5万清河沟幅地质图的新认识[J]. 中国地质, 46(5): 977-994.
    [94]
    牛文超, 辛后田, 段连峰, 等, 2020. 内蒙古北山造山带百合山SSZ型蛇绿岩地球化学特征、锆石U-Pb年龄及其对古亚洲洋演化的指示[J]. 地质通报, 39(9): 1317-1329. doi: 10.12097/gbc.dztb-39-9-1317
    [95]
    牛亚卓, 卢进才, 魏建设, 等, 2014. 甘蒙北山地区下石炭统绿条山组时代修正及其构造意义[J]. 地质论评, 60(3): 567-576.
    [96]
    钱建平, 符有江, 周永宁, 等, 2018. 内蒙古额济纳旗老硐沟金多金属矿区成矿构造系统解析和构造控矿规律[J]. 大地构造与成矿学, 42(6): 1046-1063.
    [97]
    宋东方, 肖文交, 韩春明, 等, 2018. 北山中部增生造山过程: 构造变形和40Ar-39Ar年代学制约[J]. 岩石学报, 34(7): 2087-2098.
    [98]
    孙立新, 张家辉, 任邦方, 等, 2017. 北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义[J]. 岩石矿物学杂志, 36(2): 131-147.
    [99]
    王丹阳, 李猛兴, 王权, 等, 2024. 华北克拉通减薄的岩浆浅表响应: 来自大青山岩体的证据[J]. 华东地质, 45(2): 173-186.
    [100]
    王峰, 王驹, 范洪海, 等, 2005. 甘肃北山旧井地区晚第四纪活动断裂分布及其构造意义[J]. 地质论评, 51(3): 250-256. doi: 10.3321/j.issn:0371-5736.2005.03.004
    [101]
    王国强, 李向民, 徐学义, 等, 2021. 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 40(1): 71-81.
    [102]
    王文宝, 雷聪聪, 李刚, 等, 2023. 内蒙古西北部望湖山韧性剪切带构造特征及其地质意义[J]. 地质学报, 97(7): 2141-2156. doi: 10.3969/j.issn.0001-5717.2023.07.004
    [103]
    王志强, 李娟, 王丽娟, 等, 2023. 兴安地块南段哈达地区中晚侏罗世侵入岩成因及对蒙古-鄂霍茨克洋演化的制约[J]. 华东地质, 44(4): 386-401.
    [104]
    辛后田, 牛文超, 田健, 等, 2020. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 39(9): 1297-1316. doi: 10.12097/gbc.dztb-39-9-1297
    [105]
    严加永, 吕庆田, 孟贵祥, 等, 2009. 内蒙古北山地区地球物理场特征与构造分区及深部结构研究[J]. 地球物理学进展, 24(2): 439-447. doi: 10.3969/j.issn.1004-2903.2009.02.009
    [106]
    杨镇熙, 丁书宏, 张晶, 等, 2023. 甘肃北山南带前红泉金矿的发现及其找矿意义[J]. 西北地质, 56(6): 274-284. doi: 10.12401/j.nwg.2023148
    [107]
    衣可心, JOLIVET M, 郭召杰, 2025. 阿尔金断裂带东西两端构造转换与扩展过程: 从三联点谈起[J]. 地质力学学报, 31(1): 24-38.
    [108]
    张国震, 张永, 辛后田, 等, 2021. 内蒙古北山老硐沟金多金属矿床闪长玢岩年代学、地球化学及其成矿意义[J]. 矿床地质, 40(3): 555-573.
    [109]
    张欢, 王慧, 潘志龙, 等, 2021. 内蒙古北山地区石板井韧性剪切带西段变形特征及年龄约束[J]. 地质通报, 40(6): 930-941. doi: 10.12097/j.issn.1671-2552.2021.06.009
    [110]
    张进, 曲军峰, 赵衡, 等, 2023a. 中亚造山带中部大型韧性走滑双重构造的形成、机制与涵义[J]. 矿产勘查, 14(4): 519-540.
    [111]
    张进, 张北航, 赵衡, 等, 2023b. 北山-阿拉善晚新生代变形的特征与机制[J]. 地学前缘, 30(5): 334-357.
    [112]
    郑荣国, 吴泰然, 张文, 等, 2012. 北山地区月牙山-洗肠井蛇绿岩的地球化学特征及形成环境[J]. 地质学报, 86(6): 961-971.
    [113]
    左国朝, 何国琦, 1990. 北山板块构造及成矿规律[M]. 北京: 北京大学出版社: 1-255.
    [114]
    左国朝, 郑亚东, 1991. 1990年北山岩石圈研究野外调研取得重大突破: 发现八条区域性韧性剪切带及特大型推覆构造[J]. 甘肃地质科技情报(1): 1-4.
  • 加载中

Catalog

    Figures(20)

    Article Metrics

    Article views (440) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return