Volume 31 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
CHEN B L,GAO Y,2025. Analysis of ore-controlling structures of the Shimensi tungsten deposit, Dahutang ore field, northwest Jiangxi Province [J]. Journal of Geomechanics,31(2):169−196 doi: 10.12090/j.issn.1006-6616.2024106
Citation: CHEN B L,GAO Y,2025. Analysis of ore-controlling structures of the Shimensi tungsten deposit, Dahutang ore field, northwest Jiangxi Province [J]. Journal of Geomechanics,31(2):169−196 doi: 10.12090/j.issn.1006-6616.2024106

Analysis of ore-controlling structures of the Shimensi tungsten deposit, Dahutang ore field, northwest Jiangxi Province

doi: 10.12090/j.issn.1006-6616.2024106
Funds:  This research is financially supported by the National Key R&D Program of China (Grant Nos. 2016YFC0600207 and 2017YFC0602602), the China Geological Survey Project (Grant No. DD20242868), and the National Natural Science Foundation of China (Grant Nos. 42072227 and 42172258).
More Information
  • Received: 2024-10-20
  • Revised: 2025-02-12
  • Accepted: 2025-02-13
  • Available Online: 2025-02-14
  • Published: 2025-04-27
  •   Objective  The Dahutang tungsten ore field, located in the nearly EW-trending Jiuling uplift belt in northwestern Jiangxi Province, is a recently discovered area of concentrated, world-class, super-large, hydrothermal polymetallic tungsten deposits. It consists of two large tungsten deposits, namely Shimensi, Kunshan, and three medium-sized tungsten deposits, namely the Shiweidong, Dalingshang, Xin’anli deposits. The large Shimensi tungsten deposit is located in the north of the ore field, and the ore bodies are developed in Neoproterozoic granodiorite and Yanshanian granite. The mineralization is of quartz vein type, disseminated veinlet type, and hydrothermal crypto-explosive breccia type, and the three mineralization types occur regularly around the ore-forming granite mass. The ore bodies in the Shimensi tungsten deposit are obviously controlled by structure, but there is little research. Structure is the important ore-controlling factor. The analysis of ore-controlling structures and the construction of tectonic ore-controlling models can help to reconcile the formation and evolution of ore-forming structures and identify the main ore-controlling factors, which can provide technical support for prospection and prediction.   Methods  This study conducts a detailed field investigation of the ore-bearing fracture system, analyzes the combination of different types of ore-bearing fractures, explores the ore-forming conditions, and constructs a structural ore-controlling model.   Results  The research shows that the ore-bearing structure is a multi-directional small fault structure with the main trend being EW, followed by NEE and NWW; all the ore-bearing structures are present in a nearly elliptical distribution with EW-trending long axes. The ore-bearing structures change from the outside to the inside of the ore-forming granite, from those with conjugate dip at medium dip angles to those with sole outward dip at medium dip angles, and those with high dip angles; then hydrothermal crypto-explosion breccia appears in the center of the deposit. Among them, the ore-bearing conjugate shear fractures (with an X-shape in the profile) formed in the magmatic emplacement period little before mineralization in a tectonic stress field with a vertical maximum principal stress and a horizontal intermediate principal stress. The ore-bearing solely outward-dipping fractures with medium or high dip angles were formed as non-conjugate shear fractures and tension-shear fractures in the metallogenic period by hydrothermal crypto-explosion in a tectonic stress field with a vertical maximum principal stress and a horizontal intermediate principal stress. The hydrothermal crypto-explosion center formed in a tectonic stress field with a vertical maximum principal stress and similarly-sized intermediate and minimum principal stresses.   Conclusion  The ore-controlling structures of the Shimensi tungsten deposit are the emplacement structure of the ore-forming magmatic rock with an almost EW(NWW)-trending long axis and the hydraulic fracturing structure of the post-magmatic ore-forming fluid. The emplacement structure of the ore-forming magmatic rock, which was formed a little earlier and distributed over a larger area, developed mainly in the overlying surrounding rock (Neoproterozoic granodiorite) on the top of the ore-forming granite rock mass. The hydraulic fracturing structure of the post-magmatic ore-forming fluid was formed in the metallogenic period within a narrow distribution area in the upper and overlying surrounding rocks of the ore-forming granite rock mass. The latent explosion and hydraulic fracturing of ore-forming fluid instantly reduced the pressure of the ore-forming fluid, leading to the precipitation of ore-forming materials and the crystallization of valuable minerals, forming the tungsten deposits. The emplacement structure of the granite rock mass and the hydraulic fracturing structure of the ore-forming fluid are the sites of the tungsten ore body and control the development of tungsten ore body. The near EW(NWW)-trend of the mining area belongs to a concealed petro-controlling basement structure. This structure causes the long axis of the ore-forming granite rock mass to extend nearly EW and plays an indirect ore-controlling role. The NWW-trending faults such as F20 are neither the ore-conducting structures, nor the ore-controlling structures. They are ore-breaking, post-mineralization structures, with sinistral movement and normal shear sense. The NNE-trending concealed structure in the ore-field controls the distribution of the ore-forming magmatic rock belts and is a high-level petro-controlling structure. [ Significance ] This research can not only guide the exploration of the deeper and peripheral parts of the deposits—that is, further prospection should first search for concealed ore bodies at depth in the plunging part of the eastern and western ends of the near EW(NWW)-trending ore-forming granite rock body, and then search for other granites and fluid metallogenic systems in the area where the concealed ore-forming granite rock mass develops—but also has a demonstrative effect for studies of ore-controlling structures in similar deposits in southern China, enriching the theory of ore-controlling structures for high-temperature hydrothermal deposits.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    CHEN B L, GAO Y, SHEN J H, et al., 2021. Study on the ore-bearing fracture system of the Zoujiashan uranium deposit, Jiangxi, SE China[J]. Acta Geologica Sinica, 95(5): 1523-1544. (in Chinese with English abstract
    [2]
    CHEN B L, 2024. Characteristics of hydraulic ore-bearing structure: A case study of hydrothermal tungsten and uranium deposits in South China[J]. Journal of Geomechanics, 30(1): 15-37. (in Chinese with English abstract
    [3]
    CHEN C F, GAO J F, ZHANG Q Q, et al., 2021. Evolution of ore-forming fluids in Shimensi tungsten polymetallic deposit of northern Jiangxi: constraints from in situ trace element analysis of scheelite[J]. Mineral Deposits, 40(2): 293-310. (in Chinese with English abstract
    [4]
    CHEN M S, XIANG X K, ZHAN G L, et al., 2020. Geochronology, geochemical characteristics of the post-mineralization late Yanshanian granite porphyry and its constraints for the terminal of the metallogeny in the No. 1 Ore Beltt of the Dahutang district of the Dahutang district[J]. Journal of East China University of Technology (Natural Science), 43(5): 401-416. (in Chinese with English abstract
    [5]
    CHU P L, DUAN Z, LIAO S B, et al., 2019. Petrogenesis and tectonic significances of late Mesozoic granitoids in the Dahutang area, Jiangxi province: constraints from zircon U-Pb Dating, mineral-chemistry, geochemistry and Hf isotope[J]. Acta Geologica Sinica, 93(7): 1687-1707. (in Chinese with English abstract
    [6]
    DAN X H, JIANG S Y, ZHAN G L, et al. , 2019. Geological characteristics and ore controlling factors of Shiweidong and its peripheral tungsten deposit in Wuning County, Jiangxi Province[J]. Journal of East China University of Technology (Natural Science), 42(4): 342-350, 391. (in Chinese with English abstract
    [7]
    FAN X K, ZHANG Z Y, HOU Z Q, et al., 2021a. Magmatic processes recorded in plagioclase and the geodynamic implications in the giant Shimensi W-Cu-Mo deposit, Dahutang ore field, South China[J]. Journal of Asian Earth Sciences, 212: 104734, doi: 10.1016/j.jseaes.2021.104734
    [8]
    FAN X K, HOU Z Q, ZHANG Z Y, et al., 2021b. Metallogenic ages and sulfur sources of the giant Dahutang W-Cu-Mo ore field, South China: constraints from muscovite 40Ar/39Ar dating and in situ sulfur isotope analyses[J]. Ore Geology Reviews, 134: 104141, doi: 10.1016/j.oregeorev.2021.104141
    [9]
    FENG C Y, ZHANG D Q, XIANG X K, et al., 2012. Re-Os isotopic dating of molybdenite from the Dahutang tungsten deposit in northwestern Jiangxi Province and its geological implication[J]. Acta Petrologica Sinica, 28(12): 3858-3868. (in Chinese with English abstract
    [10]
    HAN L, HUANG X L, LI J, et al., 2016. Oxygen fugacity variation recorded in apatite of the granite in the Dahutang tungsten deposit, Jiangxi Province, South China[J]. Acta Petrologica Sinica, 32(3): 746-758. (in Chinese with English abstract
    [11]
    HUANG L C, JIANG S Y, 2012. Zircon U-Pb geochronology, geochemistry and petrogenesis of the porphyric-like muscovite granite in the Dahutang tungsten deposit, Jiangxi Province[J]. Acta Petrologica Sinica, 28(12): 3887-3900. (in Chinese with English abstract
    [12]
    HUANG L C, JIANG S Y, 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: geochronology, petrogenesis and their relationship with W-mineralization[J]. Lithos, 202-203: 207-226.
    [13]
    JIANG S Y, PENG N J, HUANG L C, et al., 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province[J]. Acta Petrologica Sinica, 31(3): 639-655. (in Chinese with English abstract
    [14]
    LI H W, ZHAO Z, CHEN Z Y, et al., 2021. Genetic relationship between the two-period magmatism and W mineralization in the Dahutang ore-field, Jiangxi Province: evidence from zircon geochemistry[J]. Acta Petrologica Sinica, 37(5): 1508-1530. (in Chinese with English abstract
    [15]
    LI J H, ZHANG Y Q, DONG S W, et al., 2014. Cretaceous tectonic evolution of south China: a preliminary synthesis[J]. Earth-Science Reviews, 134: 98-136.
    [16]
    LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract
    [17]
    LIU L, YAN B, WEI W F, et al., 2016. Characteristics and significance of the fluid inclusions in quartz veins type ore bodies from Shimensi tungsten deposit, northern Jiangxi[J]. Journal of Mineralogy and Petrology, 36(3): 44-52. (in Chinese with English abstract
    [18]
    LIU N Q, YIN Z, SHI Q, et al., 2011. Analysis on the mechanism of tectonic movement and its ore-controlling effect in the Pengshan and Jiujiang-Ruichang areas, northern Jiangxi province[J]. Geology and Exploration, 47(3): 333-343. (in Chinese with English abstract
    [19]
    LIU N Q, QIN R J, YIN Q Q, et al., 2016. Characteristics and mineralization model of the Dahutang tungsten—copper—polymetallic ore concentration area in northern Jiangxi province[J]. Geological Review, 62(5): 1225-1240. (in Chinese with English abstract
    [20]
    LIU N Q, QIN R J, SUN T J, et al., 2018. Formation age and origin of reticulate layers in southern Anhui Province[J]. East China Geology, 39(2): 106-115. (in Chinese with English abstract
    [21]
    LIU Y, XIE L, WANG R C, et al., 2018. Comparative study of petrogenesis and mineralization characteristics of Nb-Ta-bearing and W-bearing granite in the Dahutang deposit, northern Jiangxi province[J]. Acta Geologica Sinica, 92(10): 2120-2137. (in Chinese with English abstract
    [22]
    MAO J W, CHEN M H, YUAN S D, et al., 2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits[J]. Acta Geologica Sinica, 85(5): 636-658. (in Chinese with English abstract
    [23]
    MAO J W, WU S H, SONG S W, et al., 2020. The world-class Jiangnan tungsten belt: geological characteristics, metallogeny, and ore deposit model[J]. China Science Bulletin, 65(33): 3746-3762. (in Chinese with English abstract
    [24]
    MAO Z H, CHENG Y B, LIU J J, et al., 2013. Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China[J]. Ore Geology Reviews, 53: 422-433.
    [25]
    MAO Z H, LIU J J, MAO J W, et al., 2015. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China: implications for petrogenesis, geodynamic setting, and mineralization[J]. Gondwana Research, 28(2): 816-836.
    [26]
    PAN D P, WANG D, WANG X L, 2017. Petrogenesis of granites in Shimensi in northwestern Jiangxi Province and its implications for tungsten deposits[J]. Geology in China, 44(1): 118-135. (in Chinese with English abstract
    [27]
    RUAN K, PAN J Y, WU J Y, et al., 2015a. Geochemical Characteristics and ore genesis of the Shimensi cryptoexplosive breccia type tungsten deposit in Dahutang, Jiangxi province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 633-641. (in Chinese with English abstract
    [28]
    RUAN K, PAN J Y, CAO H J, et al., 2015b. Study on C-O-S Isotopes of Shimensi tungsten deposit in Dahutang[J]. Journal of Mineralogy and Petrology, 35(1): 57-62. (in Chinese with English abstract
    [29]
    TAO N, LI Z X, DANIŠÍK M, et al, 2019. Post-250 Ma thermal evolution of the central Cathaysia Block (SE China) in response to flat-slab subduction at the proto-Western Pacific margin[J]. Gondwana Research, 75: 1-15.
    [30]
    TONG H M, WANG J J, ZHAO H T, et al., 2014. Mohr space and its application to the activation prediction of pre-existing weakness[J]. Science China Earth Sciences, 57(7): 1595-1604.
    [31]
    WANG H, FENG C Y, LI D X, et al., 2015. Sources of granitoids and ore-forming materials of Dahutang tungsten deposit in northern Jiangxi Province: constraints from mineralogy and isotopic tracing[J]. Acta Petrologica Sinica, 31(3): 725-739. (in Chinese with English abstract
    [32]
    WANG X L, ZHAO G C, ZHOU J C, et al., 2008. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China: implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen[J]. Gondwana Research, 14(3): 355-367.
    [33]
    XIANG X K, CHEN M S, ZHAN G N, et al., 2012a. Metallogenic geological conditions of Shimensi tungsten-polymetallic deposit in north Jiangxi province[J]. Contributions to Geology and Mineral Resources Research, 27(2): 143-155. (in Chinese with English abstract
    [34]
    XIANG X K, LIU X M, ZHAN G N, 2012b. Discovery of Shimensi super-large tungsten deposit and its prospecting significance in Dahutang area, Jiangxi Province[J]. Resources Survey & Environment, 33(3): 141-151. (in Chinese with English abstract
    [35]
    XIANG X K, WANG P, ZHAN G N, et al., 2013a. Geological characteristics of Shimensi tungsten polymetallic deposit in northern Jiangxi province[J]. Mineral Deposits, 32(6): 1171-1187. (in Chinese with English abstract
    [36]
    XIANG X K, WANG P, SUN D M, et al., 2013b. Isotopic geochemical characteristics of the Shimensi Tungsten-polymetallic deposit in northern Jiangxi province[J]. Acta Geoscientica Sinica, 34(3): 263-271. (in Chinese with English abstract
    [37]
    XIANG X K, WANG P, SUN D M, et al., 2013c. Re-Os isotopic age of molybdeinte from the Shimensi tungsten polymetallic deposit in northern Jiangxi province and its geological implications[J]. Geological Bulletin of China, 32(11): 1824-1831. (in Chinese with English abstract
    [38]
    XIANG X K, YIN Q Q, SUN K K, et al., 2015. Origin of the Dahutang syn-collisional granite-porphyry in the middle segment of the Jiangnan orogen: zircon U-Pb geochronologic, geochemical and Nd-Hf isotopic constraints[J]. Acta Petrologica et Mineralogica, 34(5): 581-600. (in Chinese with English abstract
    [39]
    XIANG X K, YIN Q Q, ZHAN G N, et al., 2017. Metallogenic conditions and ore-prospecting of Shimensi tungsten ore section in the North of Dahutang area in Jiangxi province[J]. Journal of Jilin University (Earth Science Edition), 47(3): 645-658. (in Chinese with English abstract
    [40]
    YANG M G, MEI Y W, 1997. Characteristics of geology and metatllization in the Qinzhou-Hangzhou paleoplate juncture[J]. Geology and Mineral Resources of south China(3): 52-59. (in Chinese with English abstract
    [41]
    YANG M G, WANG F N, ZENG Y, et al. , 2004. Metallogenic geology of North Jiangxi[M]. Beijing: China Land Publishing House: 1-184. (in Chinese)
    [42]
    YANG Z, TAN R, YU Z D, et al., 2022. Geological characteristics and Metallogenic potential analysis of Qingling tungsten deposit, Jiangxi province[J]. China Tungsten Industry, 37(1): 12-19. (in Chinese with English abstract
    [43]
    YE H M, ZHANG X, ZHU Y H, 2016. In-situ monazite U-Pb Geochronology of granites in Shimensi tungsten polymetallic deposit, Jiangxi province and its geological significance[J]. Geotectonica et Metallogenia, 40(1): 58-70. (in Chinese with English abstract
    [44]
    YE Z H, WANG P, LI Y K, et al., 2021. Mineralization in the Shimensi deposit, northern Jiangxi province, China: evidence from Pb and O isotopes[J]. Geochemical Journal, 55(2): 39-49.
    [45]
    YU Z D, XIANG X K, TAN R, et al., 2020. Zircon U-Pb chronology, geochemistry and geological significance of coarse muscovite granite in Pingmiao mining area of Dahutang, north Jiangxi[J]. Journal of Jilin University (Earth Science Edition), 50(5): 1505-1517. (in Chinese with English abstract
    [46]
    ZHAI Y S, LIN X D, 1993. Structural geology in ore field[M]. Beijing: Geological Publishing House: 1-214. (in Chinese)
    [47]
    ZHAI Y S, 2002. A brief retrospect and prospect of study on ore-forming structures[J]. Geological Review, 48(2): 140-146. (in Chinese with English abstract
    [48]
    ZHAI Y S, WANG J P, 2011. A historical view of mineral deposit research[J]. Acta Geologica Sinica, 85(5): 603-611. ( in Chinese with English abstract
    [49]
    ZHANG M Y, FENG C Y, LI D X, et al., 2018. Geochemical and Hf isotopes of granites in the Kunshan W-Mo-Cu deposit, northern Jiangxi province[J]. Acta Geologica Sinica, 92(1): 77-93. (in Chinese with English abstract
    [50]
    ZHANG Y, PAN J Y, MA D S, et al., 2017. Re-Os molybdenite age of Dawutang tungsten ore district of northwest Jiangxi and its geological significance[J]. Mineral Deposits, 36(3): 749-769. (in Chinese with English abstract
    [51]
    ZHANG Y, LIU N Q, PAN J Y, et al. , 2018. Alkali-acid metasomatism characteristics and formation mechanism of Dahutang tungsten ore field[M]. Beijing: Science Press: 1-116. (in Chinese)
    [52]
    ZHANG Z H, HU B J, ZHANG D, et al., 2020. Zircon U-Pb age, geochemistry and Hf isotope characteristics of Shimensi granite porphyry in northern Jiangxi province and its constraint on mineralization[J]. Geological Bulletin of China, 39(8): 1267-1284. (in Chinese with English abstract
    [53]
    ZHOU X H, ZHANG Y J, LIAO S B, et al., 2012. LA-ICP-MS zircon U-Pb geochronology of volcanic rocks in the Shuangqiaoshan group at Anhui-Jiangxi boundary region and its geological implication[J]. Geological Journal of China University, 18(4): 609-622. (in Chinese with English abstract
    [54]
    陈柏林,高允,申景辉,等,2021. 邹家山铀矿床含矿裂隙系统研究[J]. 地质学报,95(5):1523-1544. doi: 10.3969/j.issn.0001-5717.2021.05.015
    [55]
    陈柏林,2024. 液压成因含矿构造主要特征:以华南热液钨矿和铀矿为例[J]. 地质力学学报,30(1):15-37. doi: 10.12090/j.issn.1006-6616.2023127
    [56]
    陈长发,高剑峰,张清清,等,2021. 赣北石门寺钨多金属矿床成矿流体演化过程:白钨矿微区成分限定[J]. 矿床地质,40(2):293-310.
    [57]
    陈茂松,项新葵,占岗乐,等,2020. 大湖塘矿集区一矿带燕山晚期成矿后花岗斑岩年代学、地球化学特征及对成矿结束时间的约束[J]. 东华理工大学学报(自然科学版),43(5):401-416. doi: 10.3969/j.issn.1674-3504.2020.05.001
    [58]
    褚平利,段政,廖圣兵,等,2019. 江西大湖塘中生代花岗岩的成因与构造指示意义:年代学、矿物化学、地球化学与Lu-Hf同位素制约[J]. 地质学报,93(7):1687-1707. doi: 10.3969/j.issn.0001-5717.2019.07.010
    [59]
    但小华,蒋少涌,占岗乐,等,2019. 江西省武宁县狮尾洞及外围钨矿床地质特征及控矿因素[J]. 东华理工大学学报(自然科学版),42(4):342-350,391. doi: 10.3969/j.issn.1674-3504.2019.04.006
    [60]
    丰成友,张德全,项新葵,等,2012. 赣西北大湖塘钨矿床辉钼矿Re-Os同位素定年及其意义[J]. 岩石学报,28(12):3858-3868.
    [61]
    韩丽,黄小龙,李洁,等,2016. 江西大湖塘钨矿花岗岩的磷灰石特征及其氧逸度变化指示[J]. 岩石学报,32(3):746-758.
    [62]
    黄兰椿,蒋少涌,2012. 江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究[J]. 岩石学报,28(12):3887-3900.
    [63]
    蒋少涌,彭宁俊,黄兰椿,等,2015. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨[J]. 岩石学报,31(3):639-655.
    [64]
    李宏伟,赵正,陈振宇,等,2021. 江西大湖塘矿田两期岩浆作用与钨成矿的关系:来自锆石矿物地球化学的证据[J]. 岩石学报,37(5):1508-1530. doi: 10.18654/1000-0569/2021.05.11
    [65]
    李三忠,曹现志,王光增,等,2019. 太平洋板块中—新生代构造演化及板块重建[J]. 地质力学学报,25(5):642-677. doi: 10.12090/j.issn.1006-6616.2019.25.05.060
    [66]
    刘磊,严冰,魏文凤,等,2016. 赣北石门寺钨矿床石英大脉型矿体流体包裹体特征及其研究意义[J]. 矿物岩石,36(3):44-52.
    [67]
    刘南庆,尹祝,施权,等,2011. 赣北九瑞-彭山地区构造运动机制及其控矿作用分析[J]. 地质与勘探,47(3):333-343.
    [68]
    刘南庆,秦润君,尹青青,等,2016. 赣北大湖塘钨铜多金属矿集区特征与成矿作用模式[J]. 地质论评,62(5):1225-1240.
    [69]
    刘南庆,秦润君,孙团结,等,2018. 赣北大湖塘地区燕山期构造—岩浆活动与成矿关系研究[J]. 华东地质,39(2):106-115.
    [70]
    刘莹,谢磊,王汝成,等,2018. 赣北大湖塘矿床的含铌钽与含钨花岗岩成岩成矿特征对比研究[J]. 地质学报,92(10):2120-2137. doi: 10.3969/j.issn.0001-5717.2018.10.012
    [71]
    毛景文,陈懋弘,袁顺达,等,2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报,85(5):636-658.
    [72]
    毛景文,吴胜华,宋世伟,等,2020. 江南世界级钨矿带:地质特征、成矿规律和矿床模型[J]. 科学通报,65(33):3746-3762.
    [73]
    潘大鹏,王迪,王孝磊,2017. 赣西北大湖塘石门寺钨矿区花岗岩的成因及其对钨矿的指示意义[J]. 中国地质,44(1):118-135. doi: 10.12029/gc20170109
    [74]
    阮昆,潘家永,吴建勇,等,2015a. 江西大湖塘石门寺钨矿隐爆角砾岩型矿体地球化学特征与成因探讨[J]. 矿物岩石地球化学通报,34(3):633-641.
    [75]
    阮昆,潘家永,曹豪杰,等,2015b. 大湖塘石门寺钨矿床碳、氧、硫同位素研究[J]. 矿物岩石,35(1):57-62.
    [76]
    童亨茂,王建君,赵海涛,等,2014. “摩尔空间”及其在先存构造活动性预测中的应用[J]. 中国科学:地球科学,44(9):1948-1957.
    [77]
    王辉,丰成友,李大新,等,2015. 赣北大湖塘钨矿成岩成矿物质来源的矿物学和同位素示踪研究[J]. 岩石学报,31(3):725-739.
    [78]
    项新葵,陈茂松,詹国年,等,2012a. 赣北石门寺矿区钨多金属矿床成矿地质条件[J]. 地质找矿论丛,27(2):143-155.
    [79]
    项新葵,刘显沐,詹国年,2012b. 江西省大湖塘石门寺矿区超大型钨矿的发现及找矿意义[J]. 资源调查与环境,33(3):141-151.
    [80]
    项新葵,王朋,詹国年,等,2013a. 赣北石门寺超大型钨多金属矿床地质特征[J]. 矿床地质,32(6):1171-1187.
    [81]
    项新葵,王朋,孙德明,等,2013b. 赣北石门寺钨多金属矿床同位素地球化学研究[J]. 地球学报,34(3):263-271.
    [82]
    项新葵,王朋,孙德明,等,2013c. 赣北石门寺钨多金属矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 地质通报,32(11):1824-1831.
    [83]
    项新葵,尹青青,孙克克,等,2015. 江南造山带中段大湖塘同构造花岗斑岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石矿物学杂志,34(5):581-600. doi: 10.3969/j.issn.1000-6524.2015.05.001
    [84]
    项新葵,尹青青,詹国年,等,2017. 江西大湖塘北区石门寺矿段钨矿成矿条件与找矿预测[J]. 吉林大学学报(地球科学版),47(3):645-658.
    [85]
    杨明桂,梅勇文,1997. 钦-杭古板块结合带与成矿带的主要特征[J]. 华南地质与矿产(3):52-59.
    [86]
    杨治,谭荣,余振东,等,2022. 江西青岭钨矿床地质特征及成矿潜力分析[J]. 中国钨业,37(1):12-19. doi: 10.3969/j.issn.1009-0622.2022.01.003
    [87]
    叶海敏,张翔,朱云鹤,2016. 江西石门寺钨多金属矿床花岗岩独居石U-Pb精确定年及地质意义[J]. 大地构造与成矿学,40(1):58-70.
    [88]
    余振东,项新葵,谭荣,等,2020. 赣北大湖塘平苗矿段白云母花岗岩锆石U-Pb年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版),50(5):1505-1517.
    [89]
    翟裕生,林新多,1993. 矿田构造学[M]. 北京:地质出版社:1-214.
    [90]
    翟裕生,2002. 成矿构造研究的回顾和展望[J]. 地质论评,48(2):140-146. doi: 10.3321/j.issn:0371-5736.2002.02.003
    [91]
    翟裕生,王建平,2011. 矿床学研究的历史观[J]. 地质学报,85(5):603-611.
    [92]
    张明玉,丰成友,李大新,等,2018. 赣北昆山钨钼铜矿床花岗岩地球化学及Hf同位素研究[J]. 地质学报,92(1):77-93. doi: 10.3969/j.issn.0001-5717.2018.01.006
    [93]
    张勇,潘家永,马东升,等,2017. 赣西北大雾塘钨矿区地质特征及Re-Os同位素年代学研究[J]. 矿床地质,36(3):749-769.
    [94]
    张勇,刘南庆,潘家永,等,2018. 大湖塘钨矿田碱-酸交代特征及其形成机制[M]. 北京:科学出版社:1-116.
    [95]
    张志辉,胡擘捷,张达,等,2020. 赣北石门寺花岗斑岩锆石U-Pb年龄、岩石地球化学、Hf同位素特征及其对成矿的制约[J]. 地质通报,39(8):1267-1284. doi: 10.12097/j.issn.1671-2552.2020.08.014
    [96]
    周效华,张彦杰,廖圣兵,等,2012. 皖赣相邻地区双桥山群火山岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 高校地质学报,18(4):609-622. doi: 10.3969/j.issn.1006-7493.2012.04.003
  • 加载中

Catalog

    Figures(16)

    Article Metrics

    Article views (127) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return