Citation: | RAN L N,ZHANG Y S,REN S S,et al.,2025. Formation mechanism and stability analysis of a landslide in altered ophiolite in the upper reaches of Jinsha River: A case study of the Duirongtong landslide[J]. Journal of Geomechanics,31(2):267−277 doi: 10.12090/j.issn.1006-6616.2024084 |
[1] |
BAI Y J, NI H Y, GE H, 2019. Advances in research on the geohazard effect of active faults on the southeastern margin of the Tibetan Plateau[J]. Journal of Geomechanics, 25(6): 1116-1128. (in Chinese with English abstract
|
[2] |
BAI Y L, LV F J, SU H B, et al., 2023. Review of hyperspectral remote sensing altered mineral information extraction[J]. Remote Sensing Information, 38(1): 1-10. (in Chinese with English abstract
|
[3] |
BAO Y D, CHEN J P, SU L J, et al., 2023. A novel numerical approach for rock slide blocking river based on the CEFDEM model: a case study from the Samaoding paleolandslide blocking river event[J]. Engineering Geology, 312: 106949. doi: 10.1016/j.enggeo.2022.106949
|
[4] |
CHANG H, CHANG Z F, Liu C W, 2021. The relationship between activity of Jinsha River fault zone and large-scale landslides: a case study of the section between Narong and Rongxue along the Jinsha River[J]. Seismology and Geology, 43(6): 1435-1458. (in Chinese with English abstract
|
[5] |
CHEN J, ZHOU W, CUI Z J, et al., 2018. Formation process of a large paleolandslide-dammed lake at Xuelongnang in the upper Jinsha river, SE Tibetan Plateau: constraints from OSL and 14C dating[J]. Landslides, 15(12): 2399-2412. doi: 10.1007/s10346-018-1056-3
|
[6] |
CHEN J P, LI H Z, 2016. Genetic mechanism and disasters features of complicated structural rock mass along the rapidly uplift section at the upstream of Jinsha River[J]. Journal of Jilin University: Earth Science Edition, 46(4): 1153-1167. (in Chinese with English abstract
|
[7] |
DARMAWAN H, TROLL V R, WALTER T R, et al., 2022. Hidden mechanical weaknesses within lava domes provided by buried high-porosity hydrothermal alteration zones[J]. Scientific Reports, 12(1): 3202. doi: 10.1038/s41598-022-06765-9
|
[8] |
DEL RODRIGO P, HÜRLIMANN M, 2009. The decrease in the shear strength of volcanic materials with argillic hydrothermal alteration, insights from the summit region of Teide stratovolcano, Tenerife[J]. Engineering Geology, 104(1-2): 135-143. doi: 10.1016/j.enggeo.2008.09.005
|
[9] |
DENG J H, GAO Y J, YU Z Q, et al., 2019. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River, China[J]. Advanced Engineering Sciences, 51(1): 9-16. (in Chinese with English abstract
|
[10] |
DENG J H, LI H, DAI F C, et al., 2022. A gigantic paleo-dammed lake in the upper reaches of Jinsha River and its relevant issues[J]. Advanced Engineering Sciences, 54(6): 75-84. (in Chinese with English abstract
|
[11] |
GAO Y, LI B, FENG Z, et al., 2017. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 23(1): 65-77. (in Chinese with English abstract
|
[12] |
HEAP M J, BAUMANN T S, ROSAS-CARBAJAL M, et al., 2021. Alteration-induced volcano instability at La Soufrière de Guadeloupe (eastern Caribbean)[J]. Journal of Geophysical Research: Solid Earth, 126(8): e2021JB022514. doi: 10.1029/2021JB022514
|
[13] |
LI J Q, ZHANG Y S, LI X, et al., 2023. Identification of clayey altered ophiolite in the Nujiang tectonic belt and new understanding of its impacts on engineering stability[J]. China Geology, 6(4): 754-758.
|
[14] |
LI J Q, ZHANG Y S, REN S S, et al., 2024. Catastrophic mechanical behavior of clay-altered rock in the Baige landslide upstream of the Jinsha River[J]. Advanced Engineering Sciences, 56(3): 72-82. (in Chinese with English abstract
|
[15] |
LIU K, ZHOU X P, SHI Y, et al,2023. Basic characteristics and mechanisms of the giant Shaweitaizi paleo-landslide dammed the Jinsha River[J]. Water Resources and Hydropower Engineering,54(8):167-177.
|
[16] |
LIU Z, LI B, HE K, et al., 2020. An analysis of dynamic response characteristics of the Yigong landslide in Tibet under strong earthquake[J]. Journal of Geomechanics, 26(4): 471-480. (in Chinese with English abstract
|
[17] |
PAN G T, REN F, YIN F G, et al., 2020. Key zones of Oceanic Plate geology and Sichuan-Tibet railway project[J]. Earth Science, 45(7): 2293-2304. (in Chinese with English abstract
|
[18] |
POLA A, CROSTA G, FUSI N, et al., 2012. Influence of alteration on physical properties of volcanic rocks[J]. Tectonophysics, 566-557: 67-86.
|
[19] |
REN S S, ZHANG Y S, XU N X, et al. , 2021. Mobilized strength of sliding zone soils with gravels in reactivated landslides[J]. Rock and Soil Mechanics, 42(3): 863-873, 881. (in Chinese with English abstract
|
[20] |
REN S S, ZHANG Y S, LI J Q, et al., 2023. A new type of sliding zone soil and its severe effect on the formation of giant landslides in the Jinsha River tectonic suture zone, China[J]. Natural Hazards, 117(2): 1847-1868. doi: 10.1007/s11069-023-05931-0
|
[21] |
SCHAEFER L N, KERESZTURI G, KENNEDY B M, et al., 2023. Characterizing lithological, weathering, and hydrothermal alteration influences on volcanic rock properties via spectroscopy and laboratory testing: a case study of Mount Ruapehu volcano, New Zealand[J]. Bulletin of Volcanology, 85(8): 43. doi: 10.1007/s00445-023-01657-w
|
[22] |
SHAO S, SHAO S J, LI N, et al., 2021. Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 43(2): 245-253. (in Chinese with English abstract
|
[23] |
TANG Y, QIN Y D, GONG X D, et al., 2022. Determination of material composition of Jinshajiang tectonic mélange belt in Gonjo-Baiyu area, eastern Tibet[J]. Sedimentary Geology and Tethyan Geology, 42(2): 260-278. (in Chinese with English abstract
|
[24] |
TONG Peng, WU Shangqian, XIE Meng, et al, 2023. Remote Sensing Interpretation and Risk Assessment of Landslide Hazards in Newly Built High-speed Railway[J]. Railway Investigation and Surveying, 49(6): 56-63.
|
[25] |
WANG W, WANG Z L, LI Z Q, et al., 2006. Study of effect of rock softness-hardness on evolution of 1-D stress waves[J]. Hydrogeology & Engineering Geology, 33(1): 11-15. (in Chinese with English abstract
|
[26] |
WU X G, CAI C X, 1992. The neotectonic activity along the central segment of Jinshajiang fault zone and the epicentral determination of Batang M6.5 earthquake[J]. Journal of Seismological Research, 15(4): 401-410. (in Chinese with English abstract
|
[27] |
XU Q, ZHENG G, LI W L, et al., 2018. Study on successive landslide damming events of Jinsha River in Baige village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 26(6): 1534-1551. (in Chinese with English abstract
|
[28] |
YOUSUFI A, AHMADI H, BEKBOTAYEVA A, et al., 2023. Integration of remote sensing and field data in ophiolite investigations: a case study of Logar ophiolite complex, SE Afghanistan[J]. Minerals, 13(12): 234.
|
[29] |
ZHANG W, WANG J, CHEN J P, et al., 2022. Mass-wasting-inferred dramatic variability of 130, 000-year Indian summer monsoon intensity from deposits in the Southeast Tibetan Plateau[J]. Geophysical Research Letters, 49(6): e2021GL097301. doi: 10.1029/2021GL097301
|
[30] |
ZHANG Y S, BA R J, REN S S, et al., 2020. An analysis of geo-mechanism of the Baige landslide in Jinsha River, Tibet[J]. Geology in China, 47(6): 1637-1645. (in Chinese with English abstract
|
[31] |
ZHANG Y S, LI J Q, REN S S, et al., 2022. Development characteristics of clayey altered rocks in the Sichuan-Tibet Traffic corridor and their promotion to large-scale landslides[J]. Earth Science, 47(6): 1945-1956. (in Chinese with English abstract
|
[32] |
ZHANG Y S, REN S S, LI J Q, et al., 2023. Prone sliding geo-structure and high-position initiating mechanism of Duolasi landslide in Nu River tectonic mélange belt[J]. Earth Science, 48(12): 4668-4679. (in Chinese with English abstract
|
[33] |
ZHANG Y S, WANG D B, LI X, et al., 2024. Research on hazard prone geological genes and major engineering geological problems in tectonic mélange belts of Tibetan Plateau[J]. Acta Geologica Sinica, 98(3): 992-1005. (in Chinese with English abstract
|
[34] |
白杨林,吕凤军,苏鸿博,等,2023. 高光谱遥感蚀变矿物信息提取研究综述[J]. 遥感信息,38(1):1-10.
|
[35] |
白永健,倪化勇,葛华,2019. 青藏高原东南缘活动断裂地质灾害效应研究现状[J]. 地质力学学报,25(6):1116-1128. doi: 10.12090/j.issn.1006-6616.2019.25.06.095
|
[36] |
常昊,常祖峰,刘昌伟,2021. 金沙江断裂带活动与大型滑坡群的关系研究:以金沙江拿荣—绒学段为例[J]. 地震地质,43(6):1435-1458.
|
[37] |
陈剑平,李会中,2016. 金沙江上游快速隆升河段复杂结构岩体灾变特征与机理[J]. 吉林大学学报(地球科学版),46(4):1153-1167.
|
[38] |
邓建辉,高云建,余志球,等,2019. 堰塞金沙江上游的白格滑坡形成机制与过程分析[J]. 工程科学与技术,51(1):9-16.
|
[39] |
邓建辉,李化,戴福初,等,2022. 金沙江上游超大古堰塞湖及其相关问题[J]. 工程科学与技术,54(6):75-84.
|
[40] |
高杨,李滨,冯振,等,2017. 全球气候变化与地质灾害响应分析[J]. 地质力学学报,23(1):65-77.
|
[41] |
李金秋,张永双,任三绍,等,2024. 金沙江上游白格滑坡黏土化蚀变岩的灾变力学行为研究[J]. 工程科学与技术,56(3):72-82.
|
[42] |
刘科,周小棚,施炎,等,2023. 金沙江杀威台子巨型堵江古滑坡基本特征与成因机理研究[J]. 水利水电技术(中英文),54(8):167-177.
|
[43] |
刘铮,李滨,贺凯,等,2020. 地震作用下西藏易贡滑坡动力响应特征分析[J]. 地质力学学报,26(4):471-480.
|
[44] |
潘桂棠,任飞,尹福光,等,2020. 洋板块地质与川藏铁路工程地质关键区带[J]. 地球科学,45(7):2293-2304.
|
[45] |
任三绍,张永双,徐能雄,等,2021. 含砾滑带土复活启动强度研究[J]. 岩土力学,42(3):863-873,881.
|
[46] |
邵帅,邵生俊,李宁,等,2021. 地震作用下黄土边坡震陷破坏的动力离心模型试验研究[J]. 岩土工程学报,43(2):245-253.
|
[47] |
唐渊,秦雅东,巩小栋,等,2022. 藏东贡觉—白玉地区金沙江构造混杂岩带物质组成的厘定[J]. 沉积与特提斯地质,42(2):260-278.
|
[48] |
童鹏,伍尚前,谢猛,等,2023. 新建高速铁路滑坡隐患遥感解译及风险评估[J]. 铁道勘察,49(6):56-63.
|
[49] |
王伟,王志亮,李振强,2006. 岩体软硬度对一维应力波演化影响研究[J]. 水文地质工程地质,33(1):11-15.
|
[50] |
伍先国,蔡长星,1992. 金沙江断裂带新活动和巴塘6.5级地震震中的确定[J]. 地震研究,15(4):401-410.
|
[51] |
许强,郑光,李为乐,等,2018. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,26(6):1534-1551.
|
[52] |
张永双,巴仁基,任三绍,等,2020. 中国西藏金沙江白格滑坡的地质成因分析[J]. 中国地质,47(6):1637-1645.
|
[53] |
张永双,李金秋,任三绍,等,2022. 川藏交通廊道黏土化蚀变岩发育特征及其对大型滑坡的促滑作用[J]. 地球科学,47(6):1945-1956.
|
[54] |
张永双,任三绍,李金秋,等,2023. 怒江构造混杂岩带多拉寺滑坡的易滑地质结构及高位启滑运动机制[J]. 地球科学,48(12):4668-4679.
|
[55] |
张永双,王冬兵,李雪,等,2024. 青藏高原构造混杂岩带的孕灾地质基因与重大工程地质问题研究[J]. 地质学报,98(3):992-1005.
|