Volume 31 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
GAO Y,WANG Y,WANG H,et al.,2025. Monazite U-Pb age, geochemistry, and genesis of ore-bearing granites in the Zhukeng tungsten deposit, southern Jiangxi Province[J]. Journal of Geomechanics,31(2):325−339 doi: 10.12090/j.issn.1006-6616.2024083
Citation: GAO Y,WANG Y,WANG H,et al.,2025. Monazite U-Pb age, geochemistry, and genesis of ore-bearing granites in the Zhukeng tungsten deposit, southern Jiangxi Province[J]. Journal of Geomechanics,31(2):325−339 doi: 10.12090/j.issn.1006-6616.2024083

Monazite U-Pb age, geochemistry, and genesis of ore-bearing granites in the Zhukeng tungsten deposit, southern Jiangxi Province

doi: 10.12090/j.issn.1006-6616.2024083
Funds:  This research is financially supported by the Open Fund Project of the State Key Laboratory of Nuclear Resources and Environment of East China University of Technology (Grant No. 2022NRE09), the Open Fund Project of Jiangxi Province Key Laboratory of Exploration and Development of Critical Mineral Resources (Grant No. GHKC2024KF08), the Open Fund Project of the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (Grant No. 2022RGET08), the National Natural Science Foundation of China (Grant No. 42062006), the Jiangxi Provincial Natural Science Foundation (Grant No. 20232BAB213065), the Jiangxi Provincial Geological Bureau of Science and Technology Research Project (Grant No. 2022JXDZKJKY02), the Jiangxi Province's Science−Technology and Geology Joint Project (Grant No. 2023KDG01003) and the Training Program for the Young Talents in Science and Technology from the Jiangxi Provincial Bureau of Geology (Grant No. 2022JXDZKJRC04).
More Information
  • Received: 2024-08-06
  • Revised: 2025-02-26
  • Accepted: 2025-02-27
  • Available Online: 2025-02-28
  • Published: 2025-04-27
  •   Objective  The composite Zhukeng granite is composed of two-mica granite and muscovite granite and closely related to tungsten and niobium-tantalum deposits in southern Jiangxi Province.   Methods  Based on systematic lithogeochemical analysis and rock-forming age determination of muscovite granite and two-mica granite from the Zhukeng tungsten deposit, combined with regional studies concerning diagenesis and mineralization, the genesis and tectonic setting of the rock mass are discussed.   Result  The LA-ICP-MS analysis of monazite from the fine-grained muscovite granite yielded a 206Pb/238U weighted average U-Pb age of 156.7 ± 1.3 Ma. Major elements exhibit high silica contents (SiO2 ranging from 65.54% to 74.95%), high alkalis contents (Na2O+K2O ranging from 8.48% to 12.85%), high aluminum contents (A/CNK ratios ranging from1.10 to 1.22), and low magnesium contents. The total rare earth elements (ΣREE) range from 61.12×10−6 to 173.98×10−6, and there are right-dipping light rare earth enrichment patterns with a weak negative Eu anomalies. The trace elements Rb, Ta, Th, Pb, Nd, and Hf are enriched, while Ba, Nb, Sr, and Ti are depleted, indicating a highly differentiated S-type granite. The LA-ICP-MS analysis of monazite U-Pb from the two-mica granite yielded an 206Pb/238U weighted average age of 159.5 ± 0.5 Ma. Major elements exhibit high silica contents (SiO2 ranging from 75.02% to 77.03%), high alkalis contents (Na2O+K2O ranging from 5.92% to 8.58%), high aluminum contents (A/CNK ranging from 1.14 to 1.65), and low magnesium contents. Total rare earth elements (ΣREE) range from 106.86×10−6 to 124.24×10−6, and there are right-dipping light rare earth enrichment patterns with a significant negative Eu anomalies. The trace elements Rb, Ta, Th, Pb, Nd, and Hf are enriched, while Ba, Nb, Sr, and Ti are depleted, suggesting a highly differentiated S-type granite.   Conclusion  By combining geochronological and lithogeochemical characteristics, the authors conclude that the Zhukeng tungsten deposit formed during an Upper Jurassic mineralization event caused by large-scale granitic magmatic activity related to subduction.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    BUDZYŃ B, SLÁMA J, CORFU F, et al., 2021. TS-Mnz-A new monazite age reference material for U-Th-Pb microanalysis[J]. Chemical Geology, 572: 120195.
    [2]
    CHAPPELL B W, 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 535-551.
    [3]
    CHEN J, LU J J, CHEN W F, et al., 2008. W-Sn-Nb-Ta-bearing granites in the Nanling range and their relationship to metallogengesis[J]. Geological Journal of China Universities, 14(4): 459-473. (in Chinese with English abstract
    [4]
    CHEN Y C, CHEN Z H, ZENG Z L, et al., 2013. Research on the site selection of Nanling scientific drilling-1[J]. Geology in China, 40(3): 659-670. (in Chinese with English abstract).
    [5]
    CHEN Y J, CHEN B, DUAN X X, et al., 2021. Origin of highly fractionated peraluminous granites in South China: implications for crustal anatexis and evolution[J]. Lithos, 402-403: 106145.
    [6]
    DAI H T, ZHANG Y, PAN J Y, et al., 2023. Characteristics and geological significance of muscovite in Zhukeng tungsten deposit, southern Jiangxi province[J]. Journal of East China University of Technology (Natural Science), 46(5): 472-485. (in Chinese with English abstract).
    [7]
    DANG F P, LYU C, TANG X S, et al., 2023. Geochronology and petrogeochemical characteristics of U-bearing granites in the Dongshang deposit, northwestern Jiangxi, China and its geological significance[J]. Journal of Geomechanics, 29(6): 898-914. (in Chinese with English abstract
    [8]
    FENG C Y, XU J X, ZENG Z L, et al., 2007. Zircon SHRIMP U-Pb and molybdenite Re-Os dating in Tianmenshan—Hongtaoling tungsten-tin Orefield, southern Jiangxi Province, China, and its geological implication[J]. Acta Geologica Sinica, 81(7): 952-963. (in Chinese with English abstract
    [9]
    FENG C Y, ZENG Z L, ZHANG D Q, et al., 2011. SHRIMP zircon U-Pb and molybdenite Re-Os isotopic dating of the tungsten deposits in the Tianmenshan-Hongtaoling W-Sn orefield, southern Jiangxi Province, China, and geological implications[J]. Ore Geology Reviews, 43(1): 8-25.
    [10]
    GONÇALVES G O, LANA C, SCHOLZ R, et al., 2016. An assessment of monazite from the Itambé pegmatite district for use as U–Pb isotope reference material for microanalysis and implications for the origin of the “Moacyr” monazite[J]. Chemical Geology, 424: 30-50.
    [11]
    GUO C L, LIN Z Y, WANG D H, et al., 2008. Petrologic characteristics of the granites and greisens and muscovite 40Ar/39Ar dating in the Taoxikeng tungsten polymetallic deposit, Southern Jiangxi Province[J]. Acta Geologica Sinica, 82(9): 1274-1284. (in Chinese with English abstract
    [12]
    GUO C L, CHEN Y C, LI C B, et al., 2011. Zircon SHRIMP U-Pb dating, geochemistry, Sr-Nd isotopic analysis of the late Jurassic granitoids in the Jiulongnao W-Sn-Pb-Zn ore-concentrated areas in Jiangxi Province and their geological significance[J]. Acta Geologica Sinica, 85(7): 1188-1205. (in Chinese with English abstract
    [13]
    GUO C L, CHEN Y C, ZENG Z L, et al., 2012. Petrogenesis of the Xihuashan granites in southeastern China: constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes[J]. Lithos, 148: 209-227.
    [14]
    GUO N X, ZHAO Z, GAO J F, et al., 2018. Magmatic evolution and W-Sn-U-Nb-Ta mineralization of the Mesozoic Jiulongnao granitic complex, Nanling Range, South China[J]. Ore Geology Reviews, 94: 414-434. doi: 10.1016/j.oregeorev.2018.02.015
    [15]
    GUO X F, WANG Q L, JING Y H, et al., 2022. Zircon U-Pb geochronology and Hf isotope characteristics of the Xihuashan granites in southern Jiangxi Province and their geological significance[J]. Geology and Exploration, 58(3): 585-596. (in Chinese with English abstract
    [16]
    GUO Z Q, QIN J H, WANG D H, et al., 2024. Geochronology and geochemical characteristics of magmatic rocks and their relationship with mineralization in Taoxiba deposit, southern Jiangxi Province[J]. Mineral Deposits, 43(3): 655-687. (in Chinese with English abstract
    [17]
    HU R Z, ZHOU M F, 2012. Multiple Mesozoic mineralization events in South China: an introduction to the thematic issue[J]. Mineralium Deposita, 47(6): 579-588.
    [18]
    HUA R M, CHEN P R, ZHANG W L, et al., 2005. Three major metallogenic events in Mesozoic in South China[J]. Mineral Deposits, 24(2): 99-107. (in Chinese with English abstract
    [19]
    IRVINE T N, BARAGAR W R A,1971. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences,8(5):523-548.
    [20]
    LI W, LIU C H, TAN Y, et al., 2021. Zircon U-Pb age, petro-geochemical and mineralization characteristics of Keshuling granites in southern Jiangxi Province[J]. Geological Review, 67(5): 1309-1320. (in Chinese with English abstract
    [21]
    LI W, TANG J X, LU J, et al., 2024. Geochemical characteristics, U-Pb age and Hf isotope of zircons from granite porphyry in Tieshanlong tungsten ore field, southern Jiangxi Province[J]. Geological Review, 70(1): 175-188. (in Chinese with English abstract
    [22]
    LIU J, MAO J W, YE H S, et al., 2008. Zircon LA-ICPMS U-Pb dating of Hukeng granite in Wugongshan area, Jiangxi Province and its geochemical characteristics[J]. Acta Petrologica Sinica, 24(8): 1813-1822. (in Chinese with English abstract
    [23]
    LIU X X, ZHANG J, HUANG F, et al., 2022. Tungsten deposits in southern Jiangxi Province: constraints on the origin of wolframite from in-situ U-Pb isotope dating[J]. Ore Geology Reviews, 143: 104774.
    [24]
    LIU Y S, HU Z C, GAO S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
    [25]
    LIU Y S, GAO S, HU Z C, et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb Dating, Hf isotopes and trace elements in zircons from mantle xenolithS[J]. Journal of Petrology, 51(1-2): 537-571.
    [26]
    MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    [27]
    MAO J W, HUA R M, LI X B, 1999. A preliminary study of large-scale metallogenesis and large clusters of mineral deposits[J]. Mineral Deposits, 18(4): 291-299. (in Chinese with English abstract
    [28]
    MAO J W, XIE G Q, GUO C L, et al., 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings[J]. Geological Journal of China Universities, 14(4): 510-526. (in Chinese with English abstract
    [29]
    MAO J W, CHENG Y B, CHEN M H, et al., 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 48(3): 267-294. doi: 10.1007/s00126-012-0446-z
    [30]
    MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
    [31]
    NI P, PAN J Y, HAN L, et al., 2023. Tungsten and tin deposits in South China: temporal and spatial distribution, metallogenic models and prospecting directions[J]. Ore Geology Reviews, 157: 105453. doi: 10.1016/j.oregeorev.2023.105453
    [32]
    PEARCE J, 1996. Sources and settings of granitic rocks[J]. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005
    [33]
    SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]//SAUNDERS A D, NORRY M J, eds. Magmatism in the ocean basins. London: Geological Society, London, Special Publications: 42(1): 313-345.
    [34]
    SUN W D, YANG X Y, FAN W M, et al., 2012. Mesozoic large scale magmatism and mineralization in South China: preface[J]. Lithos, 150: 1-5. doi: 10.1016/j.lithos.2012.06.028
    [35]
    TAN J, WEI J H, LI Y J, et al., 2007. Some reviews on diagenesis and metallogeny of the Mesozoic crustal remelting granitoids in the Nanling region[J]. Geological Review, 53(3): 349-362. (in Chinese with English abstract
    [36]
    WANG D H, CHEN Y C, CHEN Z H, et al., 2007. Assessment on mineral resource in Nanling region and suggestion for further prospecting[J]. Acta Geologica Sinica, 81(7): 882-890. (in Chinese with English abstract
    [37]
    WANG H Y, ZHAO Z, CHEN W, et al., 2017. Geological characteristics, rock and ore forming age and prospecting of Meishuping tungsten-molybdenum deposit in Jiangxi[J]. Earth Science Frontiers, 24(5): 109-119. (in Chinese with English abstract
    [38]
    WANG L J, WANG J B, WANG Y W, et al., 2013. Geological characteristics of host granite intrusions of the W-Sn-Nb-Ta deposit, Nanling area, China[J]. Mineral Exploration, 4(6): 598-608. (in Chinese with English abstract
    [39]
    WANG R C, NI P, WANG X L, 2021. Mesozoic magmatism and mineralization in Southeastern China: an introduction[J]. Journal of Asian Earth Sciences, 219: 104921. doi: 10.1016/j.jseaes.2021.104921
    [40]
    WU F Y, LI X H, YANG J H, et al., 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217-1238. (in Chinese with English abstract
    [41]
    XU Z, ZHANG Y, PAN J Y, et al.,2023. Petrogeochemical and geochronological characteristics of Hailuoling granite-type niobium-tantalum deposit in Shicheng, Jiangxi Province and its geological significance[J]. ActaGeologicaSinical,97(6):1874-1899.(in Chinese with English abstract
    [42]
    XUE J X, LIU Z H, LIU J X, et al., 2020. Geochemistry, geochronology, Hf isotope and tectonic significance of late Jurassic Huangdi Pluton in Xiuyan, Liaodong Peninsula[J]. Earth Science, 45(6): 2030-2043. (in Chinese with English abstract
    [43]
    ZHANG Q, WANG Y, LI C D, et al., 2006. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 22(9): 2249-2269. (in Chinese with English abstract
    [44]
    ZHANG Y, PAN J Y, MA D S, 2020. Lithium element enrichment and inspiration for prospecting for rare-metal mineralization in the Dahutang tungsten deposit: constraints from mineralogy and geochemistry of hydrothermal alteration[J]. Acta Geologica Sinica, 94(11): 3321-3342. (in Chinese with English abstract
    [45]
    ZHAO Z, WANG D H, CHEN Y C, et al.,2017. Jiulongnao metallogenic model” and the demonstration of deep prospecting: the extended application of “Five levels+Basement”[J]. exploration mode. Earth Science Frontiers,24(5):08-16. (in Chinese with English abstract
    [46]
    ZHOU X M, SUN T, SHEN W Z, et al., 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004
    [47]
    ZHU J J, ZHANG L, DANG F P, et al., 2024. The genesis of intersection-type uranium deposits in south China: insights from zircon and pitchblende U-Pb geochronology and pyrite sulfur isotopes of the Egongtang uranium deposit, southern Jiangxi[J]. Applied Geochemistry, 175: 106178. doi: 10.1016/j.apgeochem.2024.106178
    [48]
    陈骏,陆建军,陈卫锋,等,2008. 南岭地区钨锡铌钽花岗岩及其成矿作用[J]. 高校地质学报,14(4):459-473. doi: 10.3969/j.issn.1006-7493.2008.04.001
    [49]
    陈毓川,陈郑辉,曾载淋,等,2013. 南岭科学钻探第一孔选址研究[J]. 中国地质,40(3):659-670. doi: 10.3969/j.issn.1000-3657.2013.03.001
    [50]
    戴浩橦,张勇,潘家永,等,2023. 赣南珠坑钨矿白云母矿物特征及其地质意义[J]. 东华理工大学学报(自然科学版),46(5):472-485. doi: 10.3969/j.issn.1674-3504.2023.05.005
    [51]
    党飞鹏,吕川,唐湘生,等,2023. 赣西北洞上铀矿床产铀花岗岩的时代、岩石地球化学特征及其地质意义[J]. 地质力学学报,29(6):898-914. doi: 10.12090/j.issn.1006-6616.2023028
    [52]
    丰成友,许建祥,曾载淋,等,2007. 赣南天门山-红桃岭钨锡矿田成岩成矿时代精细测定及其地质意义[J]. 地质学报,81(7):952-963. doi: 10.3321/j.issn:0001-5717.2007.07.011
    [53]
    郭春丽,蔺志永,王登红,等,2008. 赣南淘锡坑钨多金属矿床花岗岩和云英岩岩石特征及云英岩中白云母40Ar/39Ar定年[J]. 地质学报,82(9):1274-1284. doi: 10.3321/j.issn:0001-5717.2008.09.009
    [54]
    郭春丽,陈毓川,黎传标,等,2011. 赣南晚侏罗世九龙脑钨锡铅锌矿集区不同成矿类型花岗岩年龄、地球化学特征对比及其地质意义[J]. 地质学报,85(7):1188-1205.
    [55]
    郭小飞,王庆龙,荆一洪,等,2022. 赣南西华山成矿花岗岩锆石U-Pb年代学和Hf同位素特征及其地质意义[J]. 地质与勘探,58(3):585-596.
    [56]
    郭志强,秦锦华,王登红,等,2024. 赣南淘锡坝矿床岩浆岩年代学、地球化学特征及其与成矿关系[J]. 矿床地质,43(3):655-687.
    [57]
    华仁民,陈培荣,张文兰,等,2005. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质,24(2):99-107. doi: 10.3969/j.issn.0258-7106.2005.02.002
    [58]
    李伟,刘翠辉,谭友,等,2021. 赣南柯树岭岩体锆石U-Pb年龄、岩石地球化学及成矿作用特征[J]. 地质论评,67(5):1309-1320.
    [59]
    李伟,唐菊兴,鲁捷,等,2024. 赣南铁山垅钨矿田花岗斑岩地球化学特征、锆石U-Pb年龄及Hf同位素特征[J]. 地质论评,70(1):175-188.
    [60]
    刘珺,毛景文,叶会寿,等,2008. 江西省武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球化学特征[J]. 岩石学报,24(8):1813-1822.
    [61]
    毛景文,华仁民,李晓波,1999. 浅议大规模成矿作用与大型矿集区[J]. 矿床地质,18(4):291-299. doi: 10.3969/j.issn.0258-7106.1999.04.001
    [62]
    毛景文,谢桂青,郭春丽,等,2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报,14(4):510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005
    [63]
    谭俊,魏俊浩,李艳军,等,2007. 南岭中生代陆壳重熔型花岗岩类成岩成矿的有关问题[J]. 地质论评,53(3):349-362. doi: 10.3321/j.issn:0371-5736.2007.03.008
    [64]
    王登红,陈毓川,陈郑辉,等,2007. 南岭地区矿产资源形势分析和找矿方向研究[J]. 地质学报,81(7):882-890. doi: 10.3321/j.issn:0001-5717.2007.07.002
    [65]
    王浩洋,赵正,陈伟,等,2017. 江西梅树坪钨钼矿床地质、成岩成矿时代与找矿方向[J]. 地学前缘,24(5):109-119.
    [66]
    王莉娟,王京彬,王玉往,等,2013. 我国南岭地区钨锡铌钽矿床成矿花岗岩主要地质特征[J]. 矿产勘查,4(6):598-608. doi: 10.3969/j.issn.1674-7801.2013.06.001
    [67]
    吴福元,李献华,杨进辉,等,2007. 花岗岩成因研究的若干问题[J]. 岩石学报,23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
    [68]
    徐喆,张勇,潘家永,等,2023. 江西石城海罗岭花岗岩型铌钽矿床岩石地球化学、年代学特征及其地质意义[J]. 地质学报,97(6):1874-1899.
    [69]
    薛吉祥,刘正宏,刘杰勋,等,2020. 辽东岫岩晚侏罗世荒地岩体的地球化学、年代学与Hf同位素及构造意义[J]. 地球科学,45(6):2030-2043.
    [70]
    赵正, 王登红, 陈毓川,等,2017. “九龙脑成矿模式”及其深部找矿示范: “五层楼+地下室”勘查模型的拓展[J]. 地学前缘,24(5):8-16.
    [71]
    张旗,王焰,李承东,等,2006. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报,22(9):2249-2269. doi: 10.3321/j.issn:1000-0569.2006.09.001
  • 加载中

Catalog

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (129) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return