Citation: | YANG Y Q,GAO P,ZHANG J,et al.,2024. Geochemical characteristics of apatite in metabasic rocks under different metamorphic conditions: a case study from the Paleoproterozoic Trans-North China Orogen[J]. Journal of Geomechanics,30(6):991−1011 doi: 10.12090/j.issn.1006-6616.2024046 |
[1] |
BAI J, 1986. The Early Precambrian geology of Wutaishan[M]. Tianjin: Tianjin Science and Technology Press: 1-475. (in Chinese)
|
[2] |
BRUAND E, FOWLER M, STOREY C, et al., 2017. Apatite trace element and isotope applications to petrogenesis and provenance[J]. American Mineralogist, 102(1): 75-84. doi: 10.2138/am-2017-5744
|
[3] |
CHEN H X, LIU J H, ZHANG Q W L, et al., 2020. A long-lived tectono-metamorphic event in the Late Paleoproterozoic: evidence from SIMS U-Th-Pb dating of monazite from metapelite in central-south Trans-North China Orogen[J]. Precambrian Research, 336: 105497. doi: 10.1016/j.precamres.2019.105497
|
[4] |
CHEN R X, ZHENG Y F, XIE L W, 2010. Metamorphic growth and recrystallization of zircon: distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircons from eclogite-facies rocks in the Sulu Orogen[J]. Lithos, 114(1-2): 132-154. doi: 10.1016/j.lithos.2009.08.006
|
[5] |
CHEN R X, ZHENG Y F, 2017. Metamorphic zirconology of continental subduction zones[J]. Journal of Asian Earth Sciences, 145: 149-176. doi: 10.1016/j.jseaes.2017.04.029
|
[6] |
CHEN W, SIMONETTI A, 2013. In-situ determination of major and trace elements in calcite and apatite, and U–Pb ages of apatite from the Oka carbonatite complex: insights into a complex crystallization history[J]. Chemical Geology, 353: 151-172. doi: 10.1016/j.chemgeo.2012.04.022
|
[7] |
CHEN Y X, ZHENG Y F, CHEN R X, et al., 2011. Metamorphic growth and recrystallization of zircons in extremely 18O-depleted rocks during eclogite-facies metamorphism: evidence from U-Pb ages, trace elements, and O-Hf isotopes[J]. Geochimica et Cosmochimica Acta, 75(17): 4877-4898. doi: 10.1016/j.gca.2011.06.003
|
[8] |
CHEW D M, SPIKINGS R A, 2021. Apatite U-Pb thermochronology: a review[J]. Minerals, 11(10): 1095. doi: 10.3390/min11101095
|
[9] |
CHU M F, WANG K L, GRILLFIN W L, et al., 2009. Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids[J]. Journal of Petrology, 50(10): 1829-1855. doi: 10.1093/petrology/egp054
|
[10] |
FENG W Y, ZHENG J H, 2023. Apatite trace elements and O-Sr isotopes reveal different magmatic sources of Fe-Ti oxide deposits in the eastern Tianshan, NW China[J]. Ore Geology Reviews, 163: 105764. doi: 10.1016/j.oregeorev.2023.105764
|
[11] |
FILIPPELLI G M, 2002. The global phosphorus cycle[J]. Reviews in Mineralogy and Geochemistry, 48(1): 391-425. doi: 10.2138/rmg.2002.48.10
|
[12] |
GALL Q, DAVIS W J, LOWE D G, et al., 2017. Diagenetic apatite character and in situion microprobe U-Pb age, Keeseville Formation, Potsdam Group, New York State[J]. Canadian Journal of Earth Sciences, 54(7): 785-797. doi: 10.1139/cjes-2016-0195
|
[13] |
GAO P, SANTOSH M, 2019. Building the Wutai arc: insights into the Archean-Paleoproterozoic crustal evolution of the North China Craton[J]. Precambrian Research, 333: 105429. doi: 10.1016/j.precamres.2019.105429
|
[14] |
GAO P, SANTOSH M, KWON S, et al., 2021. Ocean plate stratigraphy of a long-lived Precambrian subduction-accretion system: the Wutai complex, North China Craton[J]. Precambrian Research, 363: 106334. doi: 10.1016/j.precamres.2021.106334
|
[15] |
GAO S S, LI Q G, HU P Y, et al., 2023. Geochemical features and tectonic significance of Late Archean metavolcanic rocks in Hengshan Area, North China Craton[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 59(1): 143-160. (in Chinese with English abstract
|
[16] |
GUO R R, LIU S W, SANTOSH M, et al., 2013. Geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton[J]. Gondwana Research, 24(2): 664-686. doi: 10.1016/j.gr.2012.12.025
|
[17] |
GUO R R, LIU S W, WYMAN D, et al., 2015. Neoarchean subduction: a case study of arc volcanic rocks in Qinglong-Zhuzhangzi area of the eastern Hebei Province, North China Craton[J]. Precambrian Research, 264: 36-62. doi: 10.1016/j.precamres.2015.04.007
|
[18] |
GUO R R, LIU S W, BAI X, et al., 2017. A Neoarchean subduction recorded by the eastern Hebei Precambrian basement, North China Craton: geochemical fingerprints from metavolcanic rocks of the Saheqiao-Shangying-Qinglong supracrustal belt[J]. Journal of Asian Earth Sciences, 135: 347-369. doi: 10.1016/j.jseaes.2017.01.007
|
[19] |
HAMMERLI J, GREBER N D, MARTIN L, et al., 2021. Tracing sulfur sources in the crust via SIMS measurements of sulfur isotopes in apatite[J]. Chemical Geology, 579: 120242. doi: 10.1016/j.chemgeo.2021.120242
|
[20] |
HE L C, ZHANG J, ZHAO G C, et al., 2021. Macro-and microstructural analysis of the Zhujiafang ductile shear zone, Hengshan complex: tectonic nature and geodynamic implications of the evolution of Trans–North China orogen[J]. GSA Bulletin, 133(5-6): 1237-1255. doi: 10.1130/B35672.1
|
[21] |
HENRICHS I A, O'SULLIVAN G, CHEW D M, et al., 2018. The trace element and U-Pb systematics of metamorphic apatite[J]. Chemical Geology, 483: 218-238. doi: 10.1016/j.chemgeo.2017.12.031
|
[22] |
HOSKIN P W O, KINNY P D, WYBORN D, et al., 2000. Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach[J]. Journal of Petrology, 41(9): 1365-1396. doi: 10.1093/petrology/41.9.1365
|
[23] |
HU Y L, LIU S W, FU J H, et al., 2021. Neoarchean-early Paleoproterozoic granitoids, the geothermal gradient and geodynamic evolution in the Hengshan Terrane, North China Craton[J]. Gondwana Research, 94: 143-163. doi: 10.1016/j.gr.2021.03.004
|
[24] |
HUGHES J M, RAKOVAN J F, 2015. Structurally robust, chemically diverse: apatite and apatite supergroup minerals[J]. Elements, 11(3): 165-170. doi: 10.2113/gselements.11.3.165
|
[25] |
KRÖNER A, WILDE S A, LI J H, et al., 2005a. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of Northern China[J]. Journal of Asian Earth Sciences, 24(5): 577-595. doi: 10.1016/j.jseaes.2004.01.001
|
[26] |
KRÖNER A, WILDE S A, O’BRIEN P J, et al., 2005b. Field relationships, geochemistry, zircon ages and evolution of a Late Archaean to Palaeoproterozoic lower crustal section in the Hengshan Terrain of Northern China[J]. Acta Geologica Sinica (English Edition), 79(5): 605-632.
|
[27] |
LI T S, ZHAI M G, PENG P, et al., 2010. Ca. 2.5 billion year old coeval ultramafic–mafic and syenitic dykes in Eastern Hebei: implications for Cratonization of the North China Craton[J]. Precambrian Research, 180(3-4): 143-155. doi: 10.1016/j.precamres.2010.04.001
|
[28] |
LIU C H, LIU F L, SHI J R, et al., 2016a. Depositional age and provenance of the Wutai group: evidence from zircon U-Pb and Lu-Hf isotopes and whole-rock geochemistry[J]. Precambrian Research, 281: 269-290. doi: 10.1016/j.precamres.2016.06.002
|
[29] |
LIU C H, ZHAO G C, LIU F L, et al., 2016b. Constraints of volcanic rocks of the Wutai complex (Shanxi Province, Northern China) on a giant Late Neoarchean intra-oceanic arc system in the Trans-North China Orogen[J]. Journal of Asian Earth Sciences, 123: 178-212. doi: 10.1016/j.jseaes.2016.04.006
|
[30] |
LIU J B, ZHANG L M, CHEN Y, et al., 2013. Chlorine contents in apatites of eclogites and hosted veins from the Dabie-Sulu UHP belt: implication for fluid evolution in the process of metamorphism[J]. Chinese Science Bulletin, 58(22): 2165-2168. (in Chinese with English abstract doi: 10.1360/csb2013-58-22-2165
|
[31] |
LIU J H, ZHANG Q W L, LI Z M G, et al., 2020. Metamorphic evolution and U-Pb geochronology of metapelite, northeastern Wutai complex: implications for Paleoproterozoic tectonic evolution of the Trans-North China Orogen[J]. Precambrian Research, 350: 105928. doi: 10.1016/j.precamres.2020.105928
|
[32] |
LIU S Q, ZHANG G B, LI H J, 2023. Fingerprinting crustal anatexis with apatite trace element, halogen, and Sr isotope data[J]. Geochimica et Cosmochimica Acta, 351: 14-31. doi: 10.1016/j.gca.2023.04.021
|
[33] |
LIU S W, PAN Y M, LI J H, et al., 2002. Geological and isotopic geochemical constraints on the evolution of the Fuping complex, North China Craton[J]. Precambrian Research, 117(1-2): 41-56. doi: 10.1016/S0301-9268(02)00063-3
|
[34] |
LIU S W, PAN Y M, XIE Q L, et al., 2004. Archean geodynamics in the central zone, North China Craton: constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes[J]. Precambrian Research, 130(1-4): 229-249. doi: 10.1016/j.precamres.2003.12.001
|
[35] |
LIU S W, ZHAO G C, WILDE S A, et al., 2006. Th-U-Pb monazite geochronology of the Lüliang and Wutai complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen[J]. Precambrian Research, 148(3-4): 205-224. doi: 10.1016/j.precamres.2006.04.003
|
[36] |
MAO M X, LIOU P, DU L L, et al., 2024. Petrogenesis of 2.7-2.65Ga TTGs in the Wutai complex: constraints on the Neoarchean crustal evolution of the North China Craton[J]. Precambrian Research, 400: 107245. doi: 10.1016/j.precamres.2023.107245
|
[37] |
MIYASHIRO A, 1974. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 274(4): 321-355. doi: 10.2475/ajs.274.4.321
|
[38] |
NATHWANI C L, LOADER M A, WILKINSON J J, et al., 2020. Multi-stage arc magma evolution recorded by apatite in volcanic rocks[J]. Geology, 48(4): 323-327. doi: 10.1130/G46998.1
|
[39] |
O'SULLIVAN G, CHEW D, KENNY G, et al., 2020. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 201: 103044. doi: 10.1016/j.earscirev.2019.103044
|
[40] |
O'SULLIVAN G J, CHEW D M, 2020. The clastic record of a Wilson cycle: evidence from detrital apatite petrochronology of the Grampian-Taconic fore-arc[J]. Earth and Planetary Science Letters, 552: 116588. doi: 10.1016/j.jpgl.2020.116588
|
[41] |
PAN L C, HU R Z, WANG X S, et al., 2016. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: examples from four granite plutons in the Sanjiang Region, SW China[J]. Lithos, 254-255: 118-130. doi: 10.1016/j.lithos.2016.03.010
|
[42] |
PATON C, HELLSTROM J, PAUL B, et al., 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518. doi: 10.1039/c1ja10172b
|
[43] |
PEARCE J A, 1996. A user’s guide to basalt discrimination diagrams[M]//WYMAN D A. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. St. John's: Geological Association of Canada: 79-113.
|
[44] |
PENG P, FENG L J, SUN F B, et al., 2017. Dating the Gaofan and Hutuo groups – Targets to investigate the Paleoproterozoic great oxidation event in North China[J]. Journal of Asian Earth Sciences, 138: 535-547. doi: 10.1016/j.jseaes.2017.03.001
|
[45] |
PICCOLI P M, CANDELA P A, 2002. Apatite in igneous systems[J]. Reviews in Mineralogy and Geochemistry, 48(1): 255-292. doi: 10.2138/rmg.2002.48.6
|
[46] |
POLAT A, KUSKY T, LI J H, 2005. Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China Craton: implications for geodynamic setting and continental growth[J]. GSA Bulletin, 117(11-12): 1387-1399.
|
[47] |
QIAN J H, WEI C J, ZHOU X W, et al., 2013. Metamorphic P-T paths and new zircon U-Pb age data for garnet-mica schist from the Wutai group, North China Craton[J]. Precambrian Research, 233: 282-296. doi: 10.1016/j.precamres.2013.05.012
|
[48] |
QIAN J H, WEI C J, 2016. P-T-t evolution of garnet amphibolites in the Wutai-Hengshan area, North China Craton: insights from phase equilibria and geochronology[J]. Journal of Metamorphic Geology, 34(5): 423-446. doi: 10.1111/jmg.12186
|
[49] |
SPEAR F S, PYLE J M, 2002. Apatite, monazite, and xenotime in metamorphic rocks[J]. Reviews in Mineralogy and Geochemistry, 48(1): 293-335. doi: 10.2138/rmg.2002.48.7
|
[50] |
STOKES T N, BROMILEY G D, POTTS N J, et al., 2019. The effect of melt composition and oxygen fugacity on manganese partitioning between apatite and silicate melt[J]. Chemical Geology, 506: 162-174. doi: 10.1016/j.chemgeo.2018.12.015
|
[51] |
SUN D, LI Q G, LIU S W, et al., 2019. Neoarchean-Paleoproterozoic magmatic arc evolution in the Wutai-Hengshan-Fuping area, North China Craton: new perspectives from zircon U-Pb ages and Hf isotopic data[J]. Precambrian Research, 331: 105368. doi: 10.1016/j.precamres.2019.105368
|
[52] |
SUN J F, YANG J H, ZHANG J H, et al., 2021. Apatite geochemical and Sr-Nd isotopic insights into granitoid petrogenesis[J]. Chemical Geology, 566: 120104. doi: 10.1016/j.chemgeo.2021.120104
|
[53] |
SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Ocean Basins[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
|
[54] |
TAN H M R, HUANG X W, MENG Y M, et al., 2023. Multivariate statistical analysis of trace elements in apatite: discrimination of apatite with different origins[J]. Ore Geology Reviews, 153: 105269. doi: 10.1016/j.oregeorev.2022.105269
|
[55] |
TANG L, SANTOSH M, 2018. Neoarchean granite-greenstone belts and related ore mineralization in the North China Craton: an overview[J]. Geoscience Frontiers, 9(3): 751-768. doi: 10.1016/j.gsf.2017.04.002
|
[56] |
TANG M, LEE C T A, JI W Q, et al., 2020. Crustal thickening and endogenic oxidation of magmatic sulfur[J]. Science Advances, 6(31): eaba6342. doi: 10.1126/sciadv.aba6342
|
[57] |
TRAP P, FAURE M, LIN W, et al., 2007. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: implications for the understanding of the Trans-North-China belt, North China Craton[J]. Precambrian Research, 156(1-2): 85-106. doi: 10.1016/j.precamres.2007.03.001
|
[58] |
WAN Y S, DONG C Y, XIE H Q, et al., 2022. Huge growth of the Late Mesoarchean–Early Neoarchean (2.6~3.0 Ga) continental crust in the North China Craton: a review[J]. Journal of Geomechanics, 28(5): 866-906. (in Chinese with English abstract
|
[59] |
WANG C L, ZHANG L C, LAN C Y, et al., 2014. Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton: implications for their origin and tectonic setting[J]. Precambrian Research, 255: 603-626. doi: 10.1016/j.precamres.2014.08.002
|
[60] |
WANG X P, PENG P, LI X B, 2023. Petrogenesis and geological implications of the ca. 2520Ma gabbroic intrusions in Wutai Mountain of the North China Craton[J]. Acta Petrologica Sinica, 39(3): 845-864. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.03.13
|
[61] |
WANG Z H, WILDE S A, WANG K Y, et al., 2004. A MORB-arc basalt-Adakite association in the 2.5 Ga Wutai greenstone belt: Late Archean magmatism and crustal growth in the North China Craton[J]. Precambrian Research, 131(3-4): 323-343. doi: 10.1016/j.precamres.2003.12.014
|
[62] |
WEBSTER J D, PICCOLI P M, 2015. Magmatic apatite: a powerful, yet deceptive, mineral[J]. Elements, 11(3): 177-182. doi: 10.2113/gselements.11.3.177
|
[63] |
WEI C J, 2018. Paleoproterozoic metamorphism and tectonic evolution in Wutai-Hengshan region, Trans-North China Orogen[J]. Earth Science, 43(1): 24-43. (in Chinese with English abstract
|
[64] |
WILDE S A, CAWOOD P A, WANG K Y, et al., 2004. Determining Precambrian crustal evolution in China: a case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology[J]. Geological Society, London, Special Publications, 226(1): 5-25. doi: 10.1144/GSL.SP.2004.226.01.02
|
[65] |
XIA Q X, ZHENG Y F, YUAN H L, et al., 2009. Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie Orogen, China[J]. Lithos, 112(3-4): 477-496. doi: 10.1016/j.lithos.2009.04.015
|
[66] |
XIA Q X, ZHENG Y F, HU Z C, 2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie Orogen: implications for action of supercritical fluid during continental subduction-zone metamorphism[J]. Lithos, 114(3-4): 385-412. doi: 10.1016/j.lithos.2009.09.013
|
[67] |
XING K, SHU Q H, 2021. Applications of apatite in study of ore deposits: a review[J]. Mineral Deposits, 40(2): 189-205. (in Chinese with English abstract
|
[68] |
YANG Q Y, SANTOSH M, 2015. Paleoproterozoic arc magmatism in the North China Craton: no Siderian global plate tectonic shutdown[J]. Gondwana Research, 28(1): 82-105. doi: 10.1016/j.gr.2014.08.005
|
[69] |
YANG Q Y, SANTOSH M, 2017. The building of an Archean microcontinent: evidence from the North China Craton[J]. Gondwana Research, 50: 3-37. doi: 10.1016/j.gr.2017.01.003
|
[70] |
ZAFAR T, REHMAN H U, MAHAR M A, et al., 2020. A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and East China: new insights from apatite geochemistry[J]. Journal of Geodynamics, 136: 101723. doi: 10.1016/j.jog.2020.101723
|
[71] |
ZHAI M G, GUO J H, LIU W J, 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review[J]. Journal of Asian Earth Sciences, 24(5): 547-561. doi: 10.1016/j.jseaes.2004.01.018
|
[72] |
ZHAI M G, SANTOSH M, 2011. The Early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 20(1): 6-25. doi: 10.1016/j.gr.2011.02.005
|
[73] |
ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25(5): 722-745. (in Chinese with English abstract
|
[74] |
ZHAN Q Y, ZHU D C, WANG Q, et al., 2022. Partitioning behaviors of some key elements in apatite and their implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(6): 1087-1099. (in Chinese with English abstract
|
[75] |
ZHANG J, ZHAO G C, SUN M, et al., 2006. High-pressure mafic granulites in the Trans–North China Orogen: tectonic significance and age[J]. Gondwana Research, 9(3): 349-362. doi: 10.1016/j.gr.2005.10.005
|
[76] |
ZHANG J, ZHAO G C, LI S Z, et al., 2007. Deformation history of the Hengshan complex: implications for the tectonic evolution of the Trans–North China Orogen[J]. Journal of Structural Geology, 29(6): 933-949. doi: 10.1016/j.jsg.2007.02.013
|
[77] |
ZHANG J, ZHAO G C, LI S Z, et al., 2012. Structural pattern of the Wutai complex and its constraints on the tectonic framework of the Trans–North China Orogen[J]. Precambrian Research, 222-223: 212-229. doi: 10.1016/j.precamres.2011.08.009
|
[78] |
ZHANG J, ZHAO G C, SHEN W L, et al., 2015. Aeromagnetic study of the Hengshan-Wutai-Fuping region: unraveling a crustal profile of the Paleoproterozoic Trans–North China Orogen[J]. Tectonophysics, 662: 208-218. doi: 10.1016/j.tecto.2015.08.025
|
[79] |
ZHANG S Y, YANG L Q, HE W Y, et al., 2021. Melt volatile budgets and magma evolution revealed by diverse apatite halogen and trace elements compositions: a case study at Pulang porphyry Cu-Au deposit, China[J]. Ore Geology Reviews, 139: 104509. doi: 10.1016/j.oregeorev.2021.104509
|
[80] |
ZHAO G C, WILDE S A, CAWOOD P A, et al., 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. International Geology Review, 40(8): 706-721. doi: 10.1080/00206819809465233
|
[81] |
ZHAO G C, CAWOOD P A, WILDE S A, et al., 2000. Metamorphism of basement rocks in the central zone of the North China Craton: implications for Paleoproterozoic tectonic evolution[J]. Precambrian Research, 103(1-2): 55-88. doi: 10.1016/S0301-9268(00)00076-0
|
[82] |
ZHAO G C, WILDE S A, CAWOOD P A, et al., 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 107(1-2): 45-73. doi: 10.1016/S0301-9268(00)00154-6
|
[83] |
ZHAO G C, SUN M, WILDE S A, et al., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002
|
[84] |
ZHAO G C, KRÖNER A, WILDE S A, et al., 2007. Lithotectonic elements and geological events in the Hengshan–Wutai–Fuping belt: a synthesis and implications for the evolution of the Trans-North China Orogen[J]. Geological Magazine, 144(5): 753-775. doi: 10.1017/S0016756807003561
|
[85] |
ZHAO G C, WILDE S A, GUO J H, et al., 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton[J]. Precambrian Research, 177(3-4): 266-276. doi: 10.1016/j.precamres.2009.12.007
|
[86] |
ZHAO G C, CAWOOD P A, LI S Z, et al., 2012. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrian Research, 222-223: 55-76. doi: 10.1016/j.precamres.2012.09.016
|
[87] |
ZHAO Y F, HU J M, GONG W B, et al., 2019. Comparison of main characteristics of different Precambrian blocks in the Trans-North China Orogen[J]. Acta Petrologica Sinica, 35(7): 2259-2279. (in Chinese with English abstract doi: 10.18654/1000-0569/2019.07.19
|
[88] |
白瑾,1986. 五台山早前寒武纪地质[M]. 天津:天津科学技术出版社:1-475.
|
[89] |
高山松,李秋根,胡鹏月,等,2023. 华北克拉通恒山地区晚太古代变质火山岩的地球化学特征及构造意义[J]. 北京大学学报(自然科学版),59(1):143-160.
|
[90] |
刘景波,张灵敏,陈意,等,2013. 大别-苏鲁造山带超高压榴辉岩和脉体磷灰石含氯特征与变质流体演化[J]. 科学通报,58(22):2165-2168.
|
[91] |
万渝生,董春艳,颉颃强,等,2022. 华北克拉通新太古代早期—中太古代晚期(2.6~3.0 Ga)巨量陆壳增生:综述[J]. 地质力学学报,28(5):866-906. doi: 10.12090/j.issn.1006-6616.20222817
|
[92] |
王欣平,彭澎,李小兵,2023. 华北克拉通五台山~2520 Ma辉长岩侵入体的成因及其地质意义[J]. 岩石学报,39(3):845-864. doi: 10.18654/1000-0569/2023.03.13
|
[93] |
魏春景,2018. 华北中部造山带五台-恒山地区古元古代变质作用与构造演化[J]. 地球科学,43(1):24-43.
|
[94] |
邢凯,舒启海,2021. 磷灰石在矿床学研究中的应用[J]. 矿床地质,40(2):189-205.
|
[95] |
翟明国,2019. 华北克拉通构造演化[J]. 地质力学学报,25(5):722-745. doi: 10.12090/j.issn.1006-6616.2019.25.05.063
|
[96] |
詹琼窑,朱弟成,王青,等,2022. 磷灰石中一些关键元素的分配行为及意义[J]. 矿物岩石地球化学通报,41(6):1087-1099.
|
[97] |
赵远方,胡健民,公王斌,等,2019. 华北中部构造带不同前寒武纪地块主要特征对比研究[J]. 岩石学报,35(7):2259-2279. doi: 10.18654/1000-0569/2019.07.19
|