LI Long, GAO De-zhen, ZHANG Wei-jie, et al., 2000. DEFORMATION OF ARCHAEAN WULASHAN GROUP IN GUYANG REGION OF INNER MONGOLIA. Journal of Geomechanics, 6 (4): 67-72.
Citation: WANG C X,LI X,2025. Tectonic characteristics and numerical simulation analysis of an arcuate structural belt:A case study of the middle and southern segments of the Red River fault[J]. Journal of Geomechanics,31(1):39−60 doi: 10.12090/j.issn.1006-6616.2024042

Tectonic characteristics and numerical simulation analysis of an arcuate structural belt:A case study of the middle and southern segments of the Red River fault

doi: 10.12090/j.issn.1006-6616.2024042
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grant No. 42262028).
More Information
  •   Objective  The southeast Yunnan Arcuate Structural Belt, with the central and southern segments of the Red River fault as its main body, serves as the southwestern boundary of the Sichuan-Yunnan block and the forefront of its south-southeastward movement. However, there is still controversy as to whether its current motion is primarily characterized by transpression or transtension. This debate is strongly correlated with the complex stress-strain patterns surrounding the southeastern margin of the Qinghai-Tibet Plateau. Clarification of the kinematic characteristics and genesis of the southeast Yunnan Arcuate Structural Belt will help to understand the regional tectonic evolution.  Methods  This study utilized the interpretation of remote sensing images and geological field surveys to identify evidence for late Quaternary tectonic activity in the central and southern segments of the Red River fault. A three-dimensional (3D) geological model tailored to the actual characteristics of the region was established. It considers the influence of lower crustal flow and includes finite-difference numerical simulations with different velocity boundary conditions set at 26.5°N.  Results  The study reveals: (1) Numerous geomorphic features and fault profiles in the central and southern segments of the Red River fault indicate that most of the faults along the line are predominantly high-angle, northwest-striking with a complex fault rock development. The presence of structural wedges and infill of overlying material has been observed in several typical outcrops. Additionally, there are significant undulations in the lower part of the overlying strata on both sides of the fault. (2) The numerical simulations show that the influence of the far-field stress on the horizontal and vertical deformation of the southeastern margin of the Qinghai-Tibet Plateau is quite different on both sides of 26.5°N, and the deformation is further enhanced by the presence of lower crustal flow. (3) Numerical simulations of velocity fields, maximum shear strain rates, and maximum principal stresses demonstrate that surface motion trajectories, velocity distributions, stress conditions, and deformation accumulation differ among different models for the arcuate structural belt area; the presence of lower crustal flow promotes deformation accumulation and makes the magnitude of the velocity field closer to that of the current GPS horizontal velocity field.  Conclusion  (1) The numerous geological profiles along the central and southern segments of the Red River fault reveal predominantly normal-strike-slip movement, indicating that the region is currently dominated by the effects of transtension; (2) Current tectonic deformation and landscape evolution in the southeastern margin of the Qinghai-Tibet Plateau are mainly controlled by two different force sources: one is the southeastward movement of material, and the other is the arc-parallel extension and slab rollback beneath the Sunda-Java subduction zone. The presence of lower crustal flow influencess the scale of tectonic deformation in the southeastern margin of the Qinghai-Tibet Plateau. In the southeast Yunnan Arcuate Structural Belt, arc-parallel extension and slab retreat play a more significant controlling role; (3) The initial curved shape of the southeast Yunnan Arcuate Structural Belt is mainly attributed to the influence of material migration towards the southeast and the Xiaojiang sinistral strike-slip fault. Under the constraints of pre-existing structural fabrics and the control of arc-parallel extension and slab retreat, it has led to continuous deformation.   Significance  The research contributes to the understanding of the current activity of the southeast Yunnan Arcuate Structural Belt and the causes of this activity. It provides a quantitative analysis reference and theoretical basis for the study of the tectonic evolution of the southeastern margin of the Qinghai-Tibet Plateau.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • [1]
    ALLEN C R, GILLESPIE A R, YUAN H, et al., 1984. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard[J]. Geological Society of America Bulletin, 95(6): 686-700. doi: 10.1130/0016-7606(1984)95<686:RRAAFY>2.0.CO;2
    [2]
    ALLMENDINGER R W, REILINGER R, LOVELESS J, 2007. Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano[J]. Tectonics, 26(3): TC3013.
    [3]
    BAI D H, UNSWORTH M J, MEJU M A, et al., 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3(5): 358-362. doi: 10.1038/ngeo830
    [4]
    BAI Z M, WANG C Y, 2003. Tomographic investigation of the upper crustal structure and seismotectonic environments in Yunnan Province[J]. Acta Seismologica Sinica, 25(2): 117-127. (in Chinese with English abstract
    [5]
    BAI Z M, WANG C Y, 2004. Tomography research of the Zhefang-Binchuan and Menglian-Malong wide—angle seismic profiles in Yunnan Province[J]. Chinese Journal of Geophysics, 47(2): 257-267. (in Chinese with English abstract
    [6]
    CAO J L, SHI Y L, ZHANG H, et al., 2009. Numerical simulation of GPS observed clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau[J]. Chinese Science Bulletin, 54(8): 1398-1410. (in Chinese with English abstract doi: 10.1007/s11434-008-0588-7
    [7]
    CAO Y, FU H, QIAN J W, 2023. Characteristics of 3D velocity structure in the arcuate tectonic belt of southeastern Yunnan[J]. Journal of Seismological Research, 46(2): 245-260. (in Chinese with English abstract
    [8]
    CHANG L J, DING Z F, WANG C Y, 2015. Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, China[J]. Chinese Journal of Geophysics, 58(11): 4052-4067. (in Chinese with English abstract
    [9]
    CHEN C Y, ZHAN W, LI X C, et al., 2024a. Block motion, slip rates, and earthquake hazard assessment of boundary faults in the Sichuan–Yunnan region, China[J]. Acta Geophysica, 72(6): 3831-3848. doi: 10.1007/s11600-024-01319-1
    [10]
    CHEN Y Y, LI Z H, TANG K, et al., 2024b. Mechanism of metamorphic fluid expulsion from ductile contact aureole: Insights from numerical modeling of a growing mid-crustal magma chamber[J]. Earth and Planetary Science Letters, 626: 118545. doi: 10.1016/j.jpgl.2023.118545
    [11]
    CHEN Z K, SU J B, LU Y, 2019. Application and trend of numerical simulation in dynamic study of orogenic belt in China[J]. Journal of Geomechanics, 25(2): 151-165. (in Chinese with English abstract
    [12]
    CLARK M K, ROYDEN L H, 2000. Topographic ooze : building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706.
    [13]
    CU'Ò'NG N, TOKARSKI A K, ŚWIERCZEWSKA A, et al., 2013. Late Tertiary tectonics of the Red River Fault Zone: Structural evolution of sedimentary rocks[J]. Journal of Geodynamics, 69: 31-53. doi: 10.1016/j.jog.2012.05.002
    [14]
    DONG L, SHEN X Z, QIAN Y P, 2020. Study on velocity and density contrasts across the Moho in the southeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 63(3): 915-927. (in Chinese with English abstract
    [15]
    DONG X P, LI Z H, JING X H, et al., 2023. Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau[J]. Journal of Geomechanics, 29(4): 465-484. (in Chinese with English abstract
    [16]
    FAN W J, ZHU Y, JI Y F, et al., 2023. Present-day tectonic stress evolution in southern Yunnan based on focal mechanisms[J]. Sensors, 23(17): 7406. doi: 10.3390/s23177406
    [17]
    FERRILL D A, GROSHONG R H, 1993. Kinematic model for the curvature of the northern Subalpine Chain, France[J]. Journal of Structural Geology, 15(3-5): 523-541. doi: 10.1016/0191-8141(93)90146-2
    [18]
    GAN W J, MOLNAR P, ZHANG P Z, et al., 2022. Initiation of clockwise rotation and eastward transport of southeastern Tibet inferred from deflected fault traces and GPS observations[J]. GSA Bulletin, 134(5-6): 1129-1142. doi: 10.1130/B36069.1
    [19]
    GAO Y, SHI Y T, WANG Q, 2020. Seismic anisotropy in the southeastern margin of the Tibetan Plateau and its deep tectonic significances[J]. Chinese Journal of Geophysics, 63(3): 802-816. (in Chinese with English abstract
    [20]
    GE J, SHI X H, CHEN H L, et al., 2022. Two kinematic transformations of the Pamir salient since the Mid-Cenozoic: constraints from multi-timescale deformation analysis[J]. Frontiers in Earth Science, 10: 967529. doi: 10.3389/feart.2022.967529
    [21]
    HAN S, WU Z H, WANG S F, et al., 2024. Late Quaternary surface deformation and tectonic implications of the Bue Co strike-slip fault system in central-western Qiangtang block[J]. Journal of Geomechanics, 30(2): 298-313. (in Chinese with English abstract
    [22]
    HAN X M, CHAI T J, XIAO J A, et al., 1982. Neotectonic movement of the central part of the Shiping-Jianshui Fault in Yunnan Province and earthquake[J]. Journal of Seismological Research, 5(2): 220-225. (in Chinese with English abstract
    [23]
    HAO M, WANG Q L, SHEN Z K, et al., 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau[J]. Tectonophysics, 632: 281-292. doi: 10.1016/j.tecto.2014.06.016
    [24]
    HE H L, LI P, FANG Z J, 1992. Analysis of seismogenic conditions in the wedge tectonic region of Southeast Yunnan Province[J]. Seismology and Geology, 13(3): 217-226. (in Chinese with English abstract
    [25]
    HU N, HAN Z J, 2013. Seismological study on behaviors of present-day movement of arcuate tectonic belt in Southeast Yunnan[J]. Seismology and Geology, 35(1): 1-21. (in Chinese with English abstract
    [26]
    HUANG Z C, JI C, WU H T, et al., 2021. Review on the crustal structures and deformations in the southeastern margin of the Tibetan Plateau[J]. Reviews of Geophysics and Planetary Physics, 52(3): 291-307. (in Chinese with English abstract
    [27]
    JIAO L Q, TAPPONNIER P, DONZÉ F V, et al., 2023. Discrete element modeling of southeast Asia's 3D lithospheric deformation during the Indian collision[J]. Journal of Geophysical Research: Solid Earth, 128(1): e2022JB025578. doi: 10.1029/2022JB025578
    [28]
    JIAO L Q, TAPPONNIER P, MCCALLUM A C C, et al., 2024. The shape of the Himalayan “Arc”: an ellipse pinned by syntaxial strike-slip fault tips[J]. Proceedings of the National Academy of Sciences of the United States of America, 121(4): e2313278121.
    [29]
    KAN R J, ZHANG S C, YAN F T, et al., 1977. Present tectonic stress field and its relation to the characteristics of recent tectonic activity in southwestern China[J]. Acta Geophysica Sinica, 20(2): 96-109. (in Chinese with English abstract
    [30]
    LAI K Y, CHEN Y G, LÂM D Đ, 2012. Pliocene-to-present morphotectonics of the Dien Bien Phu fault in northwest Vietnam[J]. Geomorphology, 173-174: 52-68. doi: 10.1016/j.geomorph.2012.05.026
    [31]
    LELOUP P H, LACASSIN R, TAPPONNIER P, et al., 1995. The Ailao Shan-Red river shear zone (Yunnan, China), tertiary transform boundary of Indochina[J]. Tectonophysics, 251(1-4): 3-84. doi: 10.1016/0040-1951(95)00070-4
    [32]
    LELOUP P H, ARNAUD N, LACASSIN R, et al., 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan‐Red River shear zone, SE Asia[J]. Journal of Geophysical Research: Solid Earth, 106(B4): 6683-6732. doi: 10.1029/2000JB900322
    [33]
    LI L, 2015. Study on the activity of the Xiaojian-Dianbianfu fault[D]. Kunming: Yunnan University. (in Chinese)
    [34]
    LI L Y, ZHAN W, CHEN C Y, et al., 2023. Stress-strain characteristics before the 2021 Ms 6.4 Yangbi earthquake in Yunnan Province, China, and implications for the seismogenic mechanism[J]. Pure and Applied Geophysics, 180(7): 2543-2559. doi: 10.1007/s00024-023-03314-x
    [35]
    LI S G, 1954. Vortex structure and other problems relating to the compounding of geotectonic systems of northwestern China[J]. Acta Geological Sinica, 34(4): 339-410. (in Chinese)
    [36]
    LI S H, HUANG B C, ZHU R X, 2012. Paleomagnetic constraints on the tectonic rotation of the southeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 55(1): 76-94. (in Chinese with English abstract doi: 10.1002/cjg2.1702
    [37]
    LI X, RAN Y K, CHEN L C, et al., 2016. The Holocene seismic evidence on southern segment of the Red River fault zone[J]. Seismology and Geology, 38(3): 596-604. (in Chinese with English abstract
    [38]
    LI Y F, QU G S, ZHANG J, 2007. Developments in research of arcuate structure[J]. Advances in Earth Sciences, 22(7): 708-715. (in Chinese with English abstract
    [39]
    LI Z H, 2014. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation[J]. Science China Earth Sciences, 57(1): 47-69. doi: 10.1007/s11430-013-4696-0
    [40]
    LI Z H, LIU M Q, GERYA T, 2015. Material transportation and fluid-melt activity in the subduction channel: numerical modeling[J]. Science China Earth Sciences, 58(8): 1251-1268. doi: 10.1007/s11430-015-5123-5
    [41]
    LI Z J, WANG Y, GAN W J, et al., 2020. Diffuse deformation in the SE Tibetan Plateau: new insights from geodetic observations[J]. Journal of Geophysical Research: Solid Earth, 125(10): e2020JB019383. doi: 10.1029/2020JB019383
    [42]
    LIN G, ZHAO C B, ZHANG Y H, et al., 2005. The principle, method and related research progress on the numerical modeling of geological structural deformation[J]. Advance in Earth Sciences, 20(5): 549-555. (in Chinese with English abstract
    [43]
    LIU M, YANG Y Q, STEIN S, et al., 2000. Crustal shortening in the Andes: why do GPS rates differ from geological rates?[J]. Geophysical Research Letters, 27(18): 3005-3008. doi: 10.1029/2000GL008532
    [44]
    LIU X X, SHAO Z G, 2020. Current fault movement characteristics in the Lijiang-Xiaojinhe fault zone[J]. Chinese Journal of Geophysics, 63(3): 1117-1126. (in Chinese with English abstract
    [45]
    MA H Y, LUO A X, WANG C Y, et al., 2022. Formation and evolution characteristics of arcuate tectonic belt[J]. Journal of Xi'an University of Science and Technology, 42(4): 752-759. (in Chinese with English abstract
    [46]
    MACEDO J, MARSHAK S, 1999. Controls on the geometry of fold-thrust belt salients[J]. Geological Society of America Bulletin, 111(12): 1808-1822. doi: 10.1130/0016-7606(1999)111<1808:COTGOF>2.3.CO;2
    [47]
    MARSHAK S, 1988. Kinematics of orocline and arc formation in thin-skinned orogens[J]. Tectonics, 7(1): 73-86. doi: 10.1029/TC007i001p00073
    [48]
    NING S X, CHEN Y S, 2023. Is there an interconnected lower crustal channel flow beneath southeastern margin of Tibetan Plateau?[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 59(3): 395-406. (in Chinese with English abstract
    [49]
    PEI X, LI Z H, SHI Y L, 2021. Formation mechanism of arcuate tectonic structures around Northeast Tibetan Plateau: insight from 3‐D numerical modeling[J]. Terra Nova, 33(4): 345-355. doi: 10.1111/ter.12519
    [50]
    QIAO L, YAO H J, LAI Y C, et al., 2018. Crustal structure of Southwest China and northern Vietnam from ambient noise tomography: implication for the large‐scale material transport model in SE Tibet[J]. Tectonics, 37(5): 1492-1506. doi: 10.1029/2018TC004957
    [51]
    REN L L, ZHANG B, ZHENG D W, et al., 2020. Tectonic transformation and its exhumation history of the Ailao Shan-Red River shear zone in Oligocene: Evidences from apatite fission track thermochronology of the southern segment of the Ailao Shan range[J]. Acta Petrologica Sinica, 36(6): 1787-1802. (in Chinese with English abstract doi: 10.18654/1000-0569/2020.06.09
    [52]
    REPLUMAZ A, LACASSIN R, TAPPONNIER P, et al., 2001. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China)[J]. Journal of Geophysical Research: Solid Earth, 106(B1): 819-836. doi: 10.1029/2000JB900135
    [53]
    SCHELLART W P, CHEN Z, STRAK V, et al., 2019. Pacific subduction control on Asian continental deformation including Tibetan extension and eastward extrusion tectonics[J]. Nature Communications, 10(1): 4480. doi: 10.1038/s41467-019-12337-9
    [54]
    SCHOENBOHM L M, BURCHFIEL B C, LIANGZHONG C, et al., 2006a. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow[J]. GSA Bulletin, 118(5-6): 672-688. doi: 10.1130/B25816.1
    [55]
    SCHOENBOHM L M, BURCHFIEL B C, LIANGZHONG C, et al., 2006b. Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan Plateau[J]. Geology, 34(10): 813-816. doi: 10.1130/G22679.1
    [56]
    SHEN Z K, LÜ J, WANG M, et al., 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 110(B11): 1-17.
    [57]
    SHI X H, SIEH K, WELDON R, et al., 2018. Slip rate and rare large prehistoric earthquakes of the Red River fault, southwestern China[J]. Geochemistry, Geophysics, Geosystems, 19(7): 2014-2031. doi: 10.1029/2017GC007420
    [58]
    SHI Y T, GAO Y, SU Y J, et al., 2012. Shear-wave splitting beneath Yunnan area of Southwest China[J]. Earthquake Science, 25(1): 25-34. doi: 10.1007/s11589-012-0828-4
    [59]
    SHU Y H, SHI X H, HAINES S, et al., 2024. Illite K‐Ar dating of the Leibo fault zone, southeastern margin of the Tibetan Plateau: Implications for the quasi‐synchronous far‐field tectonic response to the India‐Asia collision[J]. Geophysical Research Letters, 51(6): e2023GL108027. doi: 10.1029/2023GL108027
    [60]
    SUN Y, NIU F, LIU H, et al., 2012. Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data[J]. Earth and Planetary Science Letters, 349-350: 186-197. doi: 10.1016/j.jpgl.2012.07.007
    [61]
    TAN X H, SONG C Z, ZHA F S, et al., 2010. Application of numerical simulation in tectonic deformation research[J]. Journal of Hefei University of Technology (Natural Science), 33(12): 1851-1857. (in Chinese with English abstract
    [62]
    TAPPONNIER P, MOLNAR P, 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature, 264(5584): 319-324. doi: 10.1038/264319a0
    [63]
    TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    [64]
    TAPPONNIER P, LACASSIN R, LELOUP P H, et al., 1990. The Ailao Shan/Red River metamorphic belt: tertiary left-lateral shear between Indochina and South China[J]. Nature, 343(6257): 431-437. doi: 10.1038/343431a0
    [65]
    TAPPONNIER P, XU Z Q, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(547): 1671-1677.
    [66]
    WAN Y K, SHEN X Q, LIU R F, et al., 2021. Present slip and stress distribution of block boundary faults in the Sichuan-Yunnan region[J]. Seismology and Geology, 43(6): 1614-1637. (in Chinese with English abstract
    [67]
    WANG A, WANG G C, WANG T L, et al., 2023. Cenozoic tectonics and geomorphic evolution of the lower Jinsha River on the southeastern margin of the Tibetan Plateau[J]. Journal of Geomechanics, 29(4): 453-464. (in Chinese with English abstract
    [68]
    WANG C Y, ZHU C N, LIU Y Q, 1978. Determination of earthquake fault parameter for the Tonghai earthquake from ground deformation data[J]. Acta Geophysica Sinica, 21(3): 191-198. (in Chinese with English abstract
    [69]
    WANG C Y, HAN W B, WU J P, et al., 2007. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 112(B7): B07307.
    [70]
    WANG E, BURCHFIEL B C, ROYDEN L H, et al. , 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China[M]. Geological Society of America.
    [71]
    WANG H, CAO J L, ZHANG H, et al., 2007. Numerical simulation of the influence of lower-crustal flow on the deformation of the Sichuan-Yunnan region[J]. Acta Seismologica Sinica, 29(6): 581-591. (in Chinese with English abstract
    [72]
    WANG R R, XU Z Q, LIANG F H, 2013. Origin of the Dabashan salient: evidence from numerical modelling[J]. Acta Geologica Sinica, 87(10): 1489-1497. (in Chinese with English abstract
    [73]
    WANG Y, ZHANG B, HOU J J, et al., 2014. Structure and tectonic geomorphology of the Qujiang fault at the intersection of the Ailao Shan–Red River fault and the Xianshuihe–Xiaojiang fault system, China[J]. Tectonophysics, 634: 156-170. doi: 10.1016/j.tecto.2014.07.031
    [74]
    WANG Y, ZHANG B, SCHOENBOHM L M, et al., 2016. Late Cenozoic tectonic evolution of the Ailao Shan‐Red River fault (SE Tibet): implications for kinematic change during plateau growth[J]. Tectonics, 35(8): 1969-1988. doi: 10.1002/2016TC004229
    [75]
    WANG Y, WANG Y J, SCHOENBOHM L M, et al., 2020. Cenozoic exhumation of the Ailaoshan‐Red River shear zone: New insights from low-temperature thermochronology[J]. Tectonics, 39(9): e2020TC006151. doi: 10.1029/2020TC006151
    [76]
    WANG Y, WANG Y J, ZHANG P Z, et al., 2022. Cenozoic tectonic evolution of regional fault systems in the SE Tibetan Plateau[J]. Science China Earth Sciences, 65(4): 601-623. doi: 10.1007/s11430-021-9880-3
    [77]
    WANG Y Z, WANG E N, SHEN Z K, et al., 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China[J]. Science in China Series D: Earth Sciences, 51(9): 1267-1283. (in Chinese with English abstract doi: 10.1007/s11430-008-0106-4
    [78]
    WEI W X, 2013. Study on mechanisms and characteristics of major faults in the eastern boundary of the Sichuan-Yunnan block[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract
    [79]
    WEN X Z, MA S L, XU X W, et al., 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China[J]. Physics of the Earth and Planetary Interiors, 168(1-2): 16-36. doi: 10.1016/j.pepi.2008.04.013
    [80]
    WEN X Z, DU F, LONG F, et al., 2011. Tectonic dynamics and correlation of major earthquake sequences of the Xiaojiang and Qujiang-Shiping fault systems, Yunnan, China[J]. Science China Earth Sciences, 54(10): 1563-1575. doi: 10.1007/s11430-011-4231-0
    [81]
    WU H L, SHI W, DONG S W, et al., 2009. A numerical simulating study of mechanical characteristic of superposed deformation in Daba Mountain Foreland[J]. Earth Science Frontiers, 16(3): 190-196. (in Chinese with English abstract doi: 10.1016/S1872-5791(08)60088-3
    [82]
    WU Z H, LONG C X, FAN T Y, et al., 2015. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 34(1): 1-31. (in Chinese with English abstract
    [83]
    XIANG H F, WAN J L, HAN Z J, et al., 2007. Geological analysis and FT dating of the large-scale right-lateral strike-slip movement of the Red River fault zone[J]. Science in China Series D: Earth Sciences, 50(3): 331-342. (in Chinese with English abstract doi: 10.1007/s11430-007-2037-x
    [84]
    XU X W, WEN X Z, ZHENG R Z, et al., 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region[J]. Science in China Series D: Earth Sciences, 46(2): 210-226.
    [85]
    XU Y G, HE B, CHUNG S L, et al.,2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province[J]. Geology,32(10):917-920. (in Chinese with English abstract
    [86]
    XU Z Q, WANG Q, LI Z H, et al., 2016. Indo-Asian collision: tectonic transition from compression to strike slip[J]. Acta Geologica Sinica, 90(1): 1-23. (in Chinese with English abstract doi: 10.1111/1755-6724.12639
    [87]
    YANG H Y, PENG H C, HU J F, 2017. The lithospheric structure beneath southeast Tibet revealed by P and S receiver functions[J]. Journal of Asian Earth Sciences, 138: 62-71. doi: 10.1016/j.jseaes.2017.02.001
    [88]
    ZENG R S, SUN W G, 1992. Discussion on seismic activity, source mechanism and eastward flow of material from the Qinghai-Tibet Plateau and its adjacent regions[J]. Acta Seismologica Sinica, 14(S1): 534-564. (in Chinese)
    [89]
    ZHANG J G, DING Z F, 2016. Discussion about several issues on Dien Bien Phu fault & North-South Seismic Belt[J]. Journal of Seismological Research, 39(4): 527-536. (in Chinese with English abstract
    [90]
    ZHANG P Z, DENG Q D, ZHANG G M, et al., 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D: Earth Sciences, 46(2): 13-24.
    [91]
    ZHANG Z L, LIU X M, 1982. The focal characteristics of the Tonghai earthquake, Yunnan province, on January 5, 1970[J]. Acta Geophysica Sinica, 25(5): 440-447. (in Chinese with English abstract
    [92]
    ZHANG Z Q, 2019. Crustal thicknesses and Poisson's ratios of the southeastern margin of the Tibetan Plateau[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration. (in Chinese with English abstract
    [93]
    ZHANG Z Q, GAO Y, 2019. Crustal thicknesses and Poisson's ratios beneath the Chuxiong‐Simao Basin in the Southeast Margin of the Tibetan Plateau[J]. Earth and Planetary Physics, 3(1): 69-84. doi: 10.26464/epp2019008
    [94]
    ZHANG Z Q, 2022. Crust and upper mantle shear wave velocity structure of the southeastern Tibetan Plateau and its deformation characteristics[D]. Beijing: University of Science and Technology of China. (in Chinese with English abstract
    [95]
    ZHENG G, WANG H, WRIGHT T J, et al., 2017. Crustal deformation in the India‐Eurasia collision zone from 25 years of GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 122(11): 9290-9312 doi: 10.1002/2017JB014465
    [96]
    ZHENG H W, LI T D, GAO R, et al., 2006. The advance of numerical simulation in geodynamics[J]. Progress in Geophysics, 21(2): 360-369. (in Chinese with English abstract
    [97]
    ZHENG T Y, HE Y M, DING L, et al., 2020. Direct structural evidence of Indian continental subduction beneath Myanmar[J]. Nature Communications, 11(1): 1944. doi: 10.1038/s41467-020-15746-3
    [98]
    ZHOU Q Y, LI X, CHANG Y Q, et al., 2023. Strong earthquake recurrence interval in the southern segment of the Red River Fault, southwestern China[J]. Frontiers in Earth Science, 11: 1280787. doi: 10.3389/feart.2023.1280787
    [99]
    ZHU L Y, 2020. Numerical simulation of crustal deformation dynamics in southeastern Tibet[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract
    [100]
    ZHU S B, SHI Y L, 2004. Genetic algorithm-finite element inversion of drag forces exerted by the lower crust on the upper crust in the Sichuan-Yunnan area[J]. Chinese Journal of Geophysics, 47(2): 232-239. (in Chinese with English abstract
    [101]
    白志明,王椿镛,2003. 云南地区上部地壳结构和地震构造环境的层析成像研究[J]. 地震学报,25(2):117-127. doi: 10.3321/j.issn:0253-3782.2003.02.001
    [102]
    白志明,王椿镛,2004. 云南遮放-宾川和孟连-马龙宽角地震剖面的层析成像研究[J]. 地球物理学报,47(2):257-267. doi: 10.3321/j.issn:0001-5733.2004.02.012
    [103]
    曹建玲,石耀霖,张怀,等,2009. 青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟[J]. 科学通报,54(2):224-234.
    [104]
    曹颖,付虹,钱佳威,2023. 滇东南弧形构造区三维速度结构特征[J]. 地震研究,46(2):245-260.
    [105]
    常利军,丁志峰,王椿镛,2015. 南北构造带南段上地幔各向异性特征[J]. 地球物理学报,58(11):4052-4067. doi: 10.6038/cjg20151114
    [106]
    陈振坤,苏金宝,陆艺,2019. 中国造山带动力学研究中的数值模拟应用与发展[J]. 地质力学学报,25(2):151-165. doi: 10.12090/j.issn.1006-6616.2019.25.02.014
    [107]
    董蕾,沈旭章,钱银苹,2020. 青藏高原东南缘Moho面速度密度跃变研究[J]. 地球物理学报,63(3):915-927. doi: 10.6038/cjg2020N0168
    [108]
    董晓朋,李振宏,井向辉,等,2023. 青藏高原东北缘弧形构造带新生代地层沉积序列及年代学研究进展[J]. 地质力学学报,29(4):465-484.
    [109]
    高原,石玉涛,王琼,2020. 青藏高原东南缘地震各向异性及其深部构造意义[J]. 地球物理学报,63(3):802-816. doi: 10.6038/cjg2020O0003
    [110]
    韩帅,吴中海,王世锋,等,2024. 羌塘地块中西部布木错走滑断裂系的第四纪晚期地表变形特征与构造意义[J]. 地质力学学报,30(2):298-313.
    [111]
    韩新民,柴天俊,肖九安,等,1982. 石屏-建水断裂中段的新活动与地震[J]. 地震研究,5(2):220-225.
    [112]
    何宏林,李玶,方仲景,1992. 滇东南楔形构造区发震构造背景探讨[J]. 地震地质,13(3):217-226.
    [113]
    呼楠,韩竹军,2013. 滇东南弧形构造带现今活动性质的地震学研究[J]. 地震地质,35(1):1-21.
    [114]
    黄周传,吉聪,吴寒婷,等,2021. 青藏高原东南缘地壳结构与变形机制研究进展[J]. 地球与行星物理论评,52(3):291-307.
    [115]
    阚荣举,张四昌,晏凤桐,等,1977. 我国西南地区现代构造应力场与现代构造活动特征的探讨[J]. 地球物理学报,20(2):96-109.
    [116]
    李力,2015. 小江—奠边府断裂活动性研究[D]. 昆明:云南大学.
    [117]
    李四光,1954. 旋卷构造及其他有关中国西北部大地构造体系复合问题[J]. 地质学报,34(4):339-410.
    [118]
    李仕虎,黄宝春,朱日祥,2012. 青藏高原东南缘构造旋转的古地磁学证据[J]. 地球物理学报,55(1):76-94.
    [119]
    李西,冉勇康,陈立春,等,2016. 红河断裂带南段全新世地震活动证据[J]. 地震地质,38(3):596-604.
    [120]
    李岩峰,曲国胜,张进,2007. 弧形构造研究进展[J]. 地球科学进展,22(7):708-715. doi: 10.3321/j.issn:1001-8166.2007.07.006
    [121]
    林舸,赵重斌,张晏华,等,2005. 地质构造变形数值模拟研究的原理、方法及相关进展[J]. 地球科学进展,20(5):549-555.
    [122]
    刘晓霞,邵志刚,2020. 丽江—小金河断裂带现今断层运动特征[J]. 地球物理学报,63(3):1117-1126. doi: 10.6038/cjg2020N0228
    [123]
    马海勇,罗安湘,王朝阳,等,2022. 弧形构造带形成演化特征研究[J]. 西安科技大学学报,42(4):752-759.
    [124]
    宁铄现,陈永顺,2023. 青藏高原东南缘存在连通的下地壳流吗?[J]. 北京大学学报(自然科学版),59(3):395-406.
    [125]
    任龙龙,张波,郑德文,等,2020. 哀牢山-红河剪切带渐新世的构造体制转换与剥露历史:来自哀牢山南段磷灰石裂变径迹的证据[J]. 岩石学报,36(6):1787-1802. doi: 10.18654/1000-0569/2020.06.09
    [126]
    谭晓慧,宋传中,查甫生,等,2010. 数值模拟方法在构造变形研究中的应用[J]. 合肥工业大学学报(自然科学版),33(12):1851-1857. doi: 10.3969/j.issn.1003-5060.2010.12.021
    [127]
    万永魁,沈小七,刘瑞丰,等,2021. 川滇地区活动块体边界断裂现今运动和应力分布[J]. 地震地质,43(6):1614-1637. doi: 10.3969/j.issn.0253-4967.2021.06.015
    [128]
    王岸,王国灿,王团乐,等,2023. 青藏高原东南缘金沙江下游新生代构造与地貌演化[J]. 地质力学学报,29(4):453-464. doi: 10.12090/j.issn.1006-6616.2023043
    [129]
    王椿镛,朱成男,刘玉权,1978. 用地形变资料测定通海地震的地震断层参数[J]. 地球物理学报,21(3):191-198.
    [130]
    王辉,曹建玲,张怀,等,2007. 川滇地区下地壳流动对上地壳运动变形影响的数值模拟[J]. 地震学报,29(6):581-591. doi: 10.3321/j.issn:0253-3782.2007.06.003
    [131]
    王瑞瑞,许志琴,梁凤华,2013. 大巴山弧形构造的成因:来自数值模拟的证据[J]. 地质学报,87(10):1489-1497.
    [132]
    王阎昭,王恩宁,沈正康,等,2008. 基于GPS资料约束反演川滇地区主要断裂现今活动速率[J]. 中国科学 D辑:地球科学,38(5):582-597.
    [133]
    魏文薪,2013. 川滇块体东边界主要断裂带运动特性及动力学机制研究[D]. 北京:中国地震局地质研究所.
    [134]
    闻学泽,杜方,龙锋,等,2011. 小江和曲江-石屏两断裂系统的构造动力学与强震序列的关联性[J]. 中国科学:地球科学,41(5):713-724.
    [135]
    武红岭,施炜,董树文,等,2009. 大巴山前陆叠加构造力学特征的模拟研究[J]. 地学前缘,16(3):190-196. doi: 10.3321/j.issn:1005-2321.2009.03.015
    [136]
    吴中海,龙长兴,范桃园,等,2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报,34(1):1-31. doi: 10.3969/j.issn.1671-2552.2015.01.002
    [137]
    向宏发,万景林,韩竹军,等,2006. 红河断裂带大型右旋走滑运动发生时代的地质分析与FT测年[J]. 中国科学 D辑:地球科学,36(11):977-987.
    [138]
    徐锡伟,闻学泽,郑荣章,等,2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑),33(S1):151-162.
    [139]
    许志琴,王勤,李忠海,等,2016. 印度-亚洲碰撞:从挤压到走滑的构造转换[J]. 地质学报,90(1):1-23. doi: 10.3969/j.issn.0001-5717.2016.01.001
    [140]
    曾融生,孙为国,1992. 青藏高原及其邻区的地震活动性和震源机制以及高原物质东流的讨论[J]. 地震学报,14(S1):534-564.
    [141]
    张建国,丁志峰,2016. 奠边府断裂与南北地震带若干问题讨论[J]. 地震研究,39(4):527-536. doi: 10.3969/j.issn.1000-0666.2016.04.001
    [142]
    张培震,邓起东,张国民,等,2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑),33(S1):12-20.
    [143]
    张之立,刘新美,1982. 1970年1月5日云南通海地震的震源特征[J]. 地球物理学报,25(5):440-447. doi: 10.3321/j.issn:0001-5733.1982.05.007
    [144]
    张智奇,2022. 青藏高原东南缘地壳上地幔速度结构与变形特征研究[D]. 北京:中国科学技术大学.
    [145]
    张子琦,2019. 青藏高原东南缘地壳厚度和泊松比研究[D]. 北京:中国地震局地震预测研究所.
    [146]
    郑洪伟,李廷栋,高锐,等,2006. 数值模拟在地球动力学中的研究进展[J]. 地球物理学进展,21(2):360-369. doi: 10.3969/j.issn.1004-2903.2006.02.005
    [147]
    朱良玉,2020. 青藏高原东南缘地壳形变动力学数值模拟研究[D]. 北京:中国地震局地质研究所.
    [148]
    朱守彪,石耀霖,2004. 用遗传有限单元法反演川滇下地壳流动对上地壳的拖曳作用[J]. 地球物理学报,47(2):232-239. doi: 10.3321/j.issn:0001-5733.2004.02.009
  • 加载中

Catalog

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (426) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return