Volume 30 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
TONG H M,ZHANG H X,HOU Q L,et al.,2024. Generalized fracturing activation criteria[J]. Journal of Geomechanics,30(1):3−14 doi: 10.12090/j.issn.1006-6616.2023180
Citation: TONG H M,ZHANG H X,HOU Q L,et al.,2024. Generalized fracturing activation criteria[J]. Journal of Geomechanics,30(1):3−14 doi: 10.12090/j.issn.1006-6616.2023180

Generalized fracturing activation criteria

doi: 10.12090/j.issn.1006-6616.2023180
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grants No. 41272160 and 20772086) and the National Oil and Gas Major Projects (Grants No. 2011zx05-006-02-01 and 2011zx5023-004-012).
More Information
  • Received: 2023-11-06
  • Revised: 2023-12-29
  • Accepted: 2024-01-12
  • Available Online: 2024-02-02
  • Published: 2024-02-01
  •   Objective  Rock fracturing and its subsequent activations are the most basic tectonic deformation modes. However, the classical fracturing criteria (Coulomb-Mohr criterion, Griffith criterion, and Byerlee sliding-friction law) have different limitations in practical applications.   Methods  Based on the classical fracturing criteria and the analysis of the physical nature of fracturing generation (extensional fracturing and shear fracturing), combined with the generalized shear activation criterion and long-term research practice, a "generalized fracturing activation criterion" is proposed through theoretical analysis in this paper.   Conclusion  This criterion can be used to quantitatively determine the possibility and types of fracturing of any medium, under any triaxial stress state, and at any orientation interface (including pre-existing weak surface and non-weakness surface). It unifies the Coulomb-Mohr criterion, Byerlee's law, and Griffith's criterion, and extends fracturing to fracturing activation.   Significance  The proposed criterion has broad application prospects in the fracturing activation-related resource (such as shale gas and hot, dry rock) exploration and development and prediction and prevention of natural disasters (such as earthquakes and landslides).

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    ANDERSON E M, 1951. The dynamics of faultingand dyke formation with applications to Britain[M]. 2nd ed. Edinburgh: Oliver and Boyd.
    [2]
    BAILEY I W, BEN-ZION Y, 2009. Statistics of earthquake stress drops on a heterogeneous fault in an elastic half-space[J]. Bulletin of the Seismological Society of America, 99(3): 1786-1800. doi: 10.1785/0120080254
    [3]
    BOTT M H P, 1959. The mechanics of oblique slip faulting[J]. Geological Magazine, 96(2): 109-117. doi: 10.1017/S0016756800059987
    [4]
    BYERLEE J, 1978. Friction of rocks[J]. Pure and AppliedGeophysics, 116(4-5): 615-626.
    [5]
    CÉLÉRIER B, 2008. Seeking Anderson’s faulting in seismicity: a centennial celebration[J]. Reviews of Geophysics, 46(4): RG4001.
    [6]
    GRIFFITH A A, 1921. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal SocietyA: Mathematical, Physical and Engineering Sciences, 221(582-593): 163-198.
    [7]
    GUDMUNDSSON A, SIMMENES T H, LARSEN B, et al. , 2010. Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones[J]. Journal of Structural Geology, 32(11): 1643-1655. doi: 10.1016/j.jsg.2009.08.013
    [8]
    JAEGER J C, COOK N G W, 1979. Fundamentals of rock mechanics[M]. 3rd ed. London: Chapman and Hall.
    [9]
    MCKENZIE D P, 1969. The relation between fault plane solutions for earthquakes and the directions of the principal stresses[J]. Bulletin of the Seismological Society of America, 59(2): 591-601. doi: 10.1785/BSSA0590020591
    [10]
    MORLEY C K, GABDI S, SEUSUTTHIYAK, 2007. Fault superimposition and linkage resulting from stress changes during rifting: examples from 3D seismic data, Phitsanulok Basin, Thailand[J]. Journal of Structural Geology, 29(4): 646-663. doi: 10.1016/j.jsg.2006.11.005
    [11]
    MORRIS A, FERRILL D A, HENDERSON D B, 1996. Slip-tendency analysis and fault reactivation[J]. Geology, 24(3): 275-278. doi: 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2
    [12]
    TONG H M, MENG L J, CAI D S, et al. , 2009. Fault formation and evolution in rift basins: sandbox modeling and cognition[J]. Acta Geologica Sinica, 83(6): 759-774. (in Chinese with English abstract)
    [13]
    TONG H M, CAI D S, WU Y P, et al. , 2010. Activity criterion of pre-existing fabrics in non-homogeneous deformation domain[J]. Science China Earth Sciences, 53(8): 1115-1125. doi: 10.1007/s11430-010-3080-6
    [14]
    TONG H M, YIN A, 2011. Reactivation tendency analysis: a theory for predicting the temporal evolution of preexisting weakness under uniform stress state[J]. Tectonophysics, 503(3-4): 195-200. doi: 10.1016/j.tecto.2011.02.012
    [15]
    TONG H M, KOYI H, HUANG S, et al. , 2014. The effect of multiple pre-existing weaknesses on formation and evolution of faults in extended sandbox models[J]. Tectonophysics, 626: 197-212. doi: 10.1016/j.tecto.2014.04.046
    [16]
    TONG H M, WANG J J, ZHAO H T, et al. , 2014. Mohr space and its application to the activation prediction of pre-existing weakness[J]. Science China Earth Sciences, 57(7): 1595-1604. doi: 10.1007/s11430-014-4860-1
    [17]
    TONG H M, CHEN Z L, LIU R X, 2015. Generalized shear activation criterion[J]. Chinese Journal of Nature, 37(6): 441-447. (in Chinese with English abstract)
    [18]
    TONG H M, LIU Z P, ZHANG H X, et al. , 2021. Theory and method of temporary macrofracture plugging to prevent casing deformation in shale gas horizontal wells[J]. Natural Gas Industry, 41(5): 92-100. (in Chinese with English abstract)
    [19]
    TONG H M, ZHANG P, ZHANG H X, et al. , 2021. Geomechanical mechanisms and prevention countermeasures of casing deformation in shale gas horizontal wells[J]. Natural Gas Industry, 41(1): 189-197. (in Chinese with English abstract)
    [20]
    TWISS R J, MOORES E M, 1992. Structural geology[M]. San Francisco: W. H. Freeman & Co. : 532.
    [21]
    WALLACE R E, 1951. Geometry of shearing stress and relation to faulting[J]. The Journal of Geology, 59(2): 118-130. doi: 10.1086/625831
    [22]
    XU K L, ZHUZ C, 1989. Structural geology[M]. 2nd ed. Beijing: Geology Press: 270. (in Chinese)
    [23]
    YIN A, 1994. Mechanics of monoclinal systems in the Colorado plateau during the Laramide orogeny[J]. Journal of Geophysical Research: Solid Earth, 99(B11): 22043-22058. doi: 10.1029/94JB01408
    [24]
    ZOBACK M D, 2007. Reservoir geomechanics[M]. New York: Cambridge University Press.
    [25]
    童亨茂, 孟令箭, 蔡东升, 等, 2009. 裂陷盆地断层的形成和演化: 目标砂箱模拟实验与认识[J]. 地质学报, 83(6): 759-774. doi: 10.3321/j.issn:0001-5717.2009.06.002
    [26]
    童亨茂, 王建君, 赵海涛, 等, 2014. “摩尔空间”及其在先存构造活动性预测中的应用[J]. 中国科学: 地球科学, 44(9): 1948-1957.
    [27]
    童亨茂, 陈正乐, 刘瑞珣, 2015. 广义剪切活动准则[J]. 自然杂志, 37(6): 441-447.
    [28]
    童亨茂, 刘子平, 张宏祥, 等, 2021a. 暂堵大裂缝防治页岩气水平井套管变形的理论与方法[J]. 天然气工业, 41(5): 92-100.
    [29]
    童亨茂, 张平, 张宏祥, 等, 2021b. 页岩气水平井开发套管变形的地质力学机理及其防治对策[J]. 天然气工业, 41(1): 189-197.
    [30]
    徐开礼, 朱志澄, 1989. 构造地质学[M]. 2版. 北京: 地质出版社: 270.
  • 加载中

Catalog

    Figures(5)

    Article Metrics

    Article views (543) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return