Volume 30 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
LIU X S,WANG W,BAO H,et al.,2024. Metamorphism and geochronology of the spinel−cordierite granulite in the Mirror Peninsula, East Antarctica[J]. Journal of Geomechanics,30(3):487−505 doi: 10.12090/j.issn.1006-6616.2023172
Citation: LIU X S,WANG W,BAO H,et al.,2024. Metamorphism and geochronology of the spinel−cordierite granulite in the Mirror Peninsula, East Antarctica[J]. Journal of Geomechanics,30(3):487−505 doi: 10.12090/j.issn.1006-6616.2023172

Metamorphism and geochronology of the spinel−cordierite granulite in the Mirror Peninsula, East Antarctica

doi: 10.12090/j.issn.1006-6616.2023172
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grants No. 42172068, 41941004, 41530209, and 41672062), the Fundamental Research Funds of the Chinese Academy of Geological Sciences (Grant No. JYYWF201819), and the Geological Survey Project of the China Geological Survey (Grant No. DD20221810).
More Information
  • Received: 2023-10-23
  • Revised: 2023-11-22
  • Accepted: 2023-11-24
  • Available Online: 2023-11-28
  • Published: 2024-06-28
  •   Objective  The Prydz Bay belt in East Antarctica recorded two significant tectono-thermal events, the Grenvillian event and the Pan-African event, which are considered to be closely related to the evolution of the Rodinia and Gondwana supercontinents. However, the geological history and the tectonic nature of the two events remain controversial.   Methods  Mineralogical and petrological analyses, phase equilibria modelling and zircon geochronology are combined to investigate the spinel−cordierite granulite from the Mirror Peninsula in order to better understand the tectono-thermal history of the Prydz Bay belt.   Results  The spinel−cordierite granulite contains different stages of mineral assemblages. The major stage of mineral assemblage involves cordierite, spinel, biotite, sillimanite, K-feldspar and minor garnet and ilmenite. The later stage of mineral assemblage is indicated by the emergence of magnetite as the increasing volumes of biotite and cordierite. Minor garnet and corundum are locally preserved, implying the mineral reaction ‘g+cor→sp+sill’ and more garnet and corundum in the peak stage. The garnet grains consist of 70%−72% almandine, 20%−22% pyrope, ~4% grossularite and ~4% spessartine. The XFe (Fe2+/(Fe2++Mg2+)) of representative garnet grains ranges from 0.77 to 0.80. The spinel exhibits an XFe range from 0.80 to 0.86. Different cordierite grains have similar compositions with Al of 3.89−3.93 a.p.f.u (atoms per formula unit) and XFe of 0.32−0.36. Biotite has high TiO2 (4.13%−5.23%) and Ti (0.23−0.30 a.p.f.u). K-feldspar grains consist of 78%−85% orthoclase, 15%−23% albite and ~1% anorthite. Based on the mineral compositions and phase equilibrium modelling, the pressure−temperature (PT) conditions of the major stage of mineral assemblage are constrained to 870−910 °C and 0.64−0.69 GPa, followed by later retrogression to 810−820°C and 0.49−0.53 GPa. A peak stage with higher PT conditions (T>910 ℃, P>0.69 GPa) can be inferred based on the relict peak minerals and characteristic mineral compositions (e.g. Ti in biotite). Zircon grains commonly show core-mantle-rim structures in cathodoluminescence (CL) images. The LA−ICP−MS zircon U−Pb dating analyses reveal a wide age range from 613±7 Ma to 877±9 Ma (except a maximum of 916±11 Ma) for the cores. The zircon bright rims yield a weighted mean age of 526±8 Ma with a wide range of Th/U (0.06−1.23), mostly higher than 0.1.   Conclusion  Based on the results, a few conclusions can be drawn: (1) The spinel−cordierite granulite recorded medium−low pressure/high-ultrahigh temperature metamorphism with a clockwise P−T evolution path and high dT/dP. (2) The results of zircon geochronological analysis show that zircon cores mainly record U−Pb ages in the range of 800~600 Ma, younger than typical ages of Grenvillian events, which may reflect younger inherited zircon cores or significant isotopic resetting. (3) The age of ~530 Ma of zircon rims is interpreted to represent the post-peak cooling stage of the Pan-African tectono-thermal event. [Significance] This study examined the P−T conditions and the zircon ages of the spinel−cordierite granulite in the Mirror Peninsula. In combination with previous results, the P−T−t path constructed for the spinel−cordierite granulite provides new constraints on the evolution of the Prydz Bay belt during the Pan-African period.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    ARORA D, PANT N, PANDEY M, et al, 2020. Insights into geological evolution of Princess Elizabeth Land, East Antarctica-clues for continental suturing and breakup since Rodinian time[J]. Gondwana Research, 84: 260-283. doi: 10.1016/j.gr.2020.05.002
    [2]
    BIAO X, WANG W, WU J, et al, 2022. Ultra-high temperature metamorphism in the Prydz Bay region, East Antarctica[J]. Chinese Journal of Polar Research, 34(4): 516-529. (in Chinese with English abstract
    [3]
    BROWN M, 2007. Metamorphic conditions in orogenic belts: A record of secular change[J]. International Geology Review, 49(3): 193-234. doi: 10.2747/0020-6814.49.3.193
    [4]
    BROWN M, JOHNSON T, 2018. Secular change in metamorphism and the onset of global plate tectonics[J]. American Mineralogist, 103(2): 181-196. doi: 10.2138/am-2018-6166
    [5]
    CARSON C J, FANNING C M, WILSON C J L, 1996. Timing of the Progress Granite, Larsemann Hills: additional evidence for early Palaeozoic orogenesis within the east Antarctic Shield and implications for Gondwana assembly[J]. Australian Journal of Earth Sciences, 43(5): 539-553. doi: 10.1080/08120099608728275
    [6]
    CARSON C J, POWELL R, WILSON C J L, et al, 1997. Partial melting during tectonic exhumation of a granulite terrane: an example from the Larsemann Hills, East Antarctica[J]. Journal of Metamorphic Geology, 15(1): 105-126. doi: 10.1111/j.1525-1314.1997.00059.x
    [7]
    CARSON C J, GREW E S, BOGER S D, et al , 2007. Age of boron- and phosphorus-rich paragneisses and associated orthogneisses in the Larsemann Hills: New constraints from SHRIMP U-Pb zircon geochronology. In: (Cooper A. K. &Raymond C. R. (eds)) [C]//A Keystone in a Changing World–Online Proceedings of the 10th ISAES USGS Open-File Report 1047, 1–4.
    [8]
    CHEN L Y, WANG W, LIU X C, et al, 2018. Metamorphism and zircon U-Pb dating of high-pressure pelitic granulites from glacial moraines in the Grove Mountains, East Antarctica[J]. Advances in Polar Science, 29(2): 118-134.
    [9]
    CHEN T Y, LI G C, XIE L Z, et al , 1995. Geological map and description of Antarctica (1: 5000000)[M]. Beijing: Geology Press: 1-36. (in Chinese)
    [10]
    DEER W A, HOWIE R A, ZUSSMAN J, 1992. An introduction to the rock-forming minerals[M]. 2nd ed. London: Longman Scientific & Technical: 695.
    [11]
    DIRKS P H G M, HAND M, 1995. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica[J]. Australian Journal of Earth Sciences, 42(2): 157-172. doi: 10.1080/08120099508728189
    [12]
    FITZSIMONS I C W, 1996. Metapelitic migmatites from brattstrand bluffs, East Antarctica-metamorphism, melting and exhumation of the mid crust[J]. Journal of Petrology, 37(2): 395-414. doi: 10.1093/petrology/37.2.395
    [13]
    FITZSIMONS I C W, 1997. The brattstrand paragneiss and the Søstrene orthogneiss: a review of Pan-African metamorphism and Grenvillian relics in southern Prydz Bay[M]//RICCI C A. The Antarctic region: geological evolution and processes. Siena: Terra Antartica Publication: 121-130.
    [14]
    FOSTER M D, 1960. Interpretation of the composition of trioctahedral micas[R]. United States Department of the Interior, Washington: 11-49.
    [15]
    GREW E S, CARSON C J, CHRISTY A G, et al, 2012. New constraints from U-Pb, Lu-Hf and Sm-Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, East Antarctica[J]. Precambrian Research, 206-207: 87-108. doi: 10.1016/j.precamres.2012.02.016
    [16]
    HARLEY S L, 1987. Precambrian geological relationships in high-grade gneisses of the Rauer Islands, East Antarctica[J]. Australian Journal of Earth Sciences, 34(2): 175-207. doi: 10.1080/08120098708729404
    [17]
    HARLEY S L, 1998. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism[J]. Geological Society, London, Special Publications, 138(1): 81-107. doi: 10.1144/GSL.SP.1996.138.01.06
    [18]
    HARLEY S L, FITZSIMONS I C W, 1991. Pressure-temperature evolution of metapelitic granulites in a polymetamorphic terrane: the Rauer Group, East Antarctica[J]. Journal of Metamorphic Geology, 9(3): 231-243. doi: 10.1111/j.1525-1314.1991.tb00519.x
    [19]
    HARLEY S L, SNAPE I, BLACK L P, 1998. The evolution of a layered metaigneous complex in the Rauer Group, East Antarctica: evidence for a distinct Archaean terrane[J]. Precambrian Research, 89(3-4): 175-205. doi: 10.1016/S0301-9268(98)00031-X
    [20]
    HENSEN B J, ZHOU B, 1995. Retention of isotopic memory in garnets partially broken down during an overprinting granulite-facies metamorphism: Implications for the Sm-Nd closure temperature[J]. Geology, 23(3): 225-228. doi: 10.1130/0091-7613(1995)023<0225:ROIMIG>2.3.CO;2
    [21]
    HOLLAND T J B, POWELL R, 1998. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of Metamorphic Geology, 16(3): 309-343. doi: 10.1111/j.1525-1314.1998.00140.x
    [22]
    HOLLAND T J B, POWELL R, 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 29(3): 333-383. doi: 10.1111/j.1525-1314.2010.00923.x
    [23]
    HU Z C, LIU Y S, CHEN L, et al, 2011. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution[J]. Journal of Analytical Atomic Spectrometry, 26(2): 425-430. doi: 10.1039/C0JA00145G
    [24]
    INDARES A, MARTIGNOLE J, 1985. Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite[J]. American Mineralogist, 70(3-4): 272-278.
    [25]
    KELSEY D E, WHITE R W, POWELL R, et al, 2003. New constraints on metamorphism in the Rauer Group, Prydz Bay, East Antarctica[J]. Journal of Metamorphic Geology, 21(8): 739-759. doi: 10.1046/j.1525-1314.2003.00476.x
    [26]
    KELSEY D E, WHITE R W, POWELL R, 2005. Calculated phase equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O for silica-undersaturated sapphirine-bearing mineral assemblages[J]. Journal of Metamorphic Geology, 23(4): 217-239. doi: 10.1111/j.1525-1314.2005.00573.x
    [27]
    KELSEY D E, HAND M, CLARK C, et al, 2007. On the application of in situ monazite chemical geochronology to constraining P-T-t histories in high-temperature (>850 °C) polymetamorphic granulites from Prydz Bay, East Antarctica[J]. Journal of the Geological Society, 164(3): 667-683. doi: 10.1144/0016-76492006-013
    [28]
    KELSEY D E, CLARK C, HAND M, 2008. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammiticgranulites[J]. Journal of Metamorphic Geology, 26(2): 199-212. doi: 10.1111/j.1525-1314.2007.00757.x
    [29]
    KINNY P D, BLACK L P, SHERATON J W, 1993. Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands[J]. Antarctic Science, 5(2): 193-206. doi: 10.1017/S0954102093000252
    [30]
    LI M, LIU X C, ZHAO Y, 2007. Zircon U-Pb ages and geochemistry of granitoids from Prydz Bay, East Antarctica, and their tectonic significance[J]. Acta Petrologica Sinica, 23(5): 1055-1066. (in Chinese with English abstract
    [31]
    LIU X C, ZHAO Y, LIU X H, et al, 2007. Evolution of high-grade metamorphism in the Prydz Belt, East Antarctica[J]. Earth Science Frontiers, 14(1): 56-63. (in Chinese with English abstract
    [32]
    LIU X C, HU J M, ZHAO Y, et al, 2009a. Late Neoproterozoic/Cambrian high-pressure mafic granulites from the Grove Mountains, East Antarctica: P-T-t path, collisional orogeny and implications for assembly of East Gondwana[J]. Precambrian Research, 174(1-2): 181-199. doi: 10.1016/j.precamres.2009.07.001
    [33]
    LIU X C, ZHAO Y, SONG B, et al, 2009b. SHRIMP U-Pb zircon geochronology of high-grade rocks and charnockites from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: Constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly[J]. Gondwana Research, 16(2): 342-361. doi: 10.1016/j.gr.2009.02.003
    [34]
    LIU X C, WANG W, ZHAO Y, et al, 2014. Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, East Antarctica[J]. Journal of Metamorphic Geology, 32(9): 1041-1062. doi: 10.1111/jmg.12106
    [35]
    LIU Y S, ZONG K Q, KELEMEN P B, et al, 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016
    [36]
    LIU Y S, GAO S, HU Z C, et al, 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb Dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
    [37]
    LUSTRINO M, 2005. How the delamination and detachment of lower crust can influence basaltic magmatism[J]. Earth-Science Reviews, 72(1-2): 21-38. doi: 10.1016/j.earscirev.2005.03.004
    [38]
    MOTOYOSHI Y, THOST D E, HENSEN B J, 1991. Reaction textures in calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica: implications for the retrograde P-T path[J]. Journal of Metamorphic Geology, 9(3): 293-300. doi: 10.1111/j.1525-1314.1991.tb00524.x
    [39]
    POWELL R, HOLLAND T J B, 1988. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program[J]. Journal of Metamorphic Geology, 6(2): 173-204. doi: 10.1111/j.1525-1314.1988.tb00415.x
    [40]
    REN L D, 2021. Anatexis and enrichment mechanism of the Fe-Ti oxide minerals in the quartzofeldspathic gneisses from the Larsemann Hills, East Antarctica[J]. Journal of Geomechanics, 27(5): 736-746. (in Chinese with English abstract
    [41]
    SACK R O, GHIORSO M S, 1991. An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels[J]. Contributions to Mineralogy and Petrology, 107(3): 415. doi: 10.1007/BF00325108
    [42]
    SADIQ M, DHARWADKAR A, ROY S K, et al, 2021. Thermal evolution of mafic granulites of Princess Elizabeth Land, East Antarctica[J]. Polar Science, 30: 100641. doi: 10.1016/j.polar.2021.100641
    [43]
    SHAH M Y, SADIQ M, AYEMI K K, et al, 2021. P-T-t-d evolution of Brattnevet Peninsula, Larsemann Hills, East Antarctica[J]. Polar Science, 30: 100728. doi: 10.1016/j.polar.2021.100728
    [44]
    SHE Y M, WANG W, CHENG S H, et al, 2020. Metamorphism of gneisses in the Stornes Peninsula and adjacent region of the Larsemann Hills: Phase equilibrium modelling and zircon geochronology[J]. Acta Petrologica Sinica, 36(9): 2799-2814. (in Chinese with English abstract doi: 10.18654/1000-0569/2020.09.12
    [45]
    SHERATON J W, BLACK L P, MCCULLOCH M T, 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz bay area: The extent of proterozoic reworking of Qrchaean continental crust in East Antarctica[J]. Precambrian Research, 26(2): 169-198. doi: 10.1016/0301-9268(84)90043-3
    [46]
    SPREITZER S K, WALTERS J B, CRUZ-URIBE A, et al , 2021. Monazite petrochronology of polymetamorphic granulite-facies rocks of the Larsemann Hills, Prydz Bay, East Antarctica. Journal of Metamorphic Geology, 39(9): 1205-1228.
    [47]
    STÜWE K, POWELL R, 1989. Metamorphic segregations associated with garnet and orthopyroxene porphyroblast growth: two examples from the Larsemann Hills, East Antarctica[J]. Contributions to Mineralogy and Petrology, 103(4): 523-530. doi: 10.1007/BF01041757
    [48]
    TONG L X, WILSON C J L, 2006. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, East Antarctica[J]. Precambrian Research, 149(1-2): 1-20. doi: 10.1016/j.precamres.2006.04.004
    [49]
    TONG L X, LIU X H, WANG Y B, et al, 2012. Metamorphism evolution of Pelitic Granulites from the Larsemann Hills, East Antarctica[J]. Acta Geologica Sinica, 86(8): 1273-1290. (in Chinese with English abstract
    [50]
    TONG L X, LIU X H, WANG Y B, et al, 2014. Metamorphic P-T paths of metapelitic granulites from the Larsemann Hills, East Antarctica[J]. Lithos, 192-195: 102-115. doi: 10.1016/j.lithos.2014.01.013
    [51]
    TONG L X, LIU Z, WANG Y B, 2021. Research progress of the ultrahigh-temperature granulites in the Rauer Group, East Antarctica[J]. Journal of Geomechanics, 27(5): 705-718. (in Chinese with English abstract
    [52]
    WANG W, LIU X S, HU J M, et al, 2014. Late Paleoproterozoic medium-P high grade metamorphism of basement rocks beneath the northern margin of the Ordos Basin, NW China: Petrology, phase equilibrium modelling and U–Pb geochronology[J]. Precambrian Research, 251: 181-196. doi: 10.1016/j.precamres.2014.06.016
    [53]
    WANG W, ZHAO Y, WEI C J, et al, 2022. High-ultrahigh temperature metamorphism in the Larsemann Hills: Insights into the tectono-thermal evolution of the Prydz Bay Region, East Antarctica[J]. Journal of Petrology, 63(2): egac002. doi: 10.1093/petrology/egac002
    [54]
    WANG W, ZHAO Y, WEI C J, et al, 2022. Ultrahigh temperature metamorphism in Antarctica and its tectonic setting[J]. Acta Geologica Sinica, 96(9): 3102-3119. (in Chinese with English abstract
    [55]
    WANG Y B, LIU D Y, CHUNG S L, et al, 2008. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a late Mesoproterozoic to early Neoproterozoic tectono-thermal event in East Antarctica[J]. American Journal of Science, 308(4): 573-617. doi: 10.2475/04.2008.07
    [56]
    WHITE R W, POWELL R, HOLLAND T J B, et al, 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems[J]. Journal of Metamorphic Geology, 32(3): 261-286. doi: 10.1111/jmg.12071
    [57]
    WILSON C J L, QUINN C, TONG L X, et al, 2007. Early Palaeozoic intracratonic shears and post-tectonic cooling in the Rauer Group, Prydz Bay, East Antarctica constrained by 40Ar/39Ar thermochronology[J]. Antarctic Science, 19(3): 339-353. doi: 10.1017/S0954102007000478
    [58]
    WU C M, CHEN H X, 2013. Estimation of minimum or maximum pressure or temperature conditions in metamorphic rocks[J]. Acta Petrologica Sinica, 29(5): 1499-1510. (in Chinese with English abstract
    [59]
    YAKYMCHUK C, BROWN M, 2014. Behaviour of zircon and monazite during crustal melting[J]. Journal of the Geological Society, 171(4): 465-479. doi: 10.1144/jgs2013-115
    [60]
    ZHAO Y, SONG B, WANG Y J, et al , 1992. Geochronology of the late granite in the Larsemann Hills, East Antarctica[M]//YOSHIDA Y, KAMINUMA K, SHIRAISHI K. Recent progress in Antarctic earth science. Tokyo: Terra Scientific Publishing Company: 155-161.
    [61]
    ZHAO Y, LIU X H, SONG B, et al, 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: possible implications for Neoproterozoic tectonics[J]. Precambrian Research, 75(3-4): 175-188. doi: 10.1016/0301-9268(95)00038-0
    [62]
    ZHOU X, TONG L X, LIU X H, et al, 2014. Metamorphism evolution of mafic granulite from the Larsemann Hills, East Antarctica[J]. Acta Petrologica Sinica, 30(6): 1731-1747. (in Chinese with English abstract
    [63]
    ZONG S, REN L D, WU M Q, 2020. Grenvillian metamorphism of sillimanite-garnet feldspar paragneiss in the Larsemann Hills, East Antarctica and tectonic implications[J]. Acta Petrologica Sinica, 36(6): 1931-1944. (in Chinese with English abstract doi: 10.18654/1000-0569/2020.06.18
    [64]
    表璇,王伟,吴江,等,2022. 东南极普里兹湾地区超高温变质作用[J]. 极地研究,34(4):516-529.
    [65]
    陈廷愚,李光岑,谢良珍,等,1995. 南极洲地质图及说明书(1:500万)[M]. 北京:地质出版社:1-36.
    [66]
    李淼,刘晓春,赵越,2007. 东南极普里兹湾地区花岗岩类的锆石U-Pb年龄、地球化学特征及其构造意义[J]. 岩石学报,23(5):1055-1066.
    [67]
    刘晓春,赵越,刘小汉,等,2007. 东南极普里兹带高级变质作用演化[J]. 地学前缘,14(1):56-63.
    [68]
    任留东,2021. 东南极拉斯曼丘陵长英质片麻岩的深熔作用与铁钛氧化物的聚集机制[J]. 地质力学学报,27(5):736-746.
    [69]
    佘一民,王伟,程素华,等,2020. 东南极拉斯曼丘陵斯图尔内斯半岛及邻区片麻岩变质作用:相平衡模拟与锆石年代学[J]. 岩石学报,36(9):2799-2814.
    [70]
    仝来喜,刘小汉,王彦斌,等,2012. 东南极拉斯曼丘陵泥质麻粒岩的变质作用演化[J]. 地质学报,86(8):1273-1290.
    [71]
    仝来喜,刘兆,王彦斌,2021. 东南极茹尔群岛超高温麻粒岩的研究进展[J]. 地质力学学报,27(5):705-718.
    [72]
    王伟,赵越,魏春景,等,2022. 南极大陆超高温变质作用及其大地构造背景[J]. 地质学报,96(9):3102-3119.
    [73]
    吴春明,陈泓旭,2013. 变质作用温度与压力极限值的估算方法[J]. 岩石学报,29(5):1499-1510.
    [74]
    周信,仝来喜,刘小汉,等,2014. 东南极拉斯曼丘陵镁铁质麻粒岩的变质作用演化[J]. 岩石学报,30(6):1731-1747.
    [75]
    宗师,任留东,武梅千,2020. 东南极拉斯曼丘陵夕线石榴二长片麻岩的格林威尔期变质作用和构造意义[J]. 岩石学报,36(6):1931-1944.
  • 加载中

Catalog

    Figures(11)  / Tables(5)

    Article Metrics

    Article views (504) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return