Citation: | ZHAO Y D,ZHANG W G,LIU H,et al.,2024. The spatial and temporal evolution of thermal stress after granite emplacement and its influencing factors[J]. Journal of Geomechanics,30(1):38−56 doi: 10.12090/j.issn.1006-6616.2023157 |
[1] |
ABOOTALEBI P, SIEMENS G, 2018. Thermal properties of engineered barriers for a Canadian deep geological repository[J]. Canadian Geotechnical Journal, 55(6): 759-776. doi: 10.1139/cgj-2017-0150
|
[2] |
AHRENS T J, 1995. Mineral physics & crystallography: a handbook of physical constants[M]. Washington: American Geophysical Union.
|
[3] |
ANNEN C, LATYPOV R, CHISTYAKOVA S, et al. , 2022. Catastrophic growth of totally molten magma chambers in months to years[J]. Science Advances, 8(38): eabq0394. doi: 10.1126/sciadv.abq0394
|
[4] |
ARTEMIEVA I M, THYBO H, JAKOBSEN K, et al. , 2017. Heat production in granitic rocks: Global analysis based on a new data compilation GRANITE2017[J]. Earth-Science Reviews, 172: 1-26. doi: 10.1016/j.earscirev.2017.07.003
|
[5] |
BARBOZA S A, BERGANTZ G W, 1996. Dynamic model of dehydration melting motivated by a natural analogue: applications to the Ivrea–Verbano zone, northern Italy[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 23-31. doi: 10.1017/S0263593300006441
|
[6] |
BEA F, 2012. The sources of energy for crustal melting and the geochemistry of heat-producing elements[J]. Lithos, 153: 278-291. doi: 10.1016/j.lithos.2012.01.017
|
[7] |
BERGBAUER S, MARTEL S J, HIERONYMUS C F, 1998. Thermal stress evolution in cooling pluton environments of different geometries[J]. Geophysical Research Letters, 25(5): 707-710. doi: 10.1029/98GL00047
|
[8] |
BERGBAUER S, MARTEL S J, 1999. Formation of joints in cooling plutons[J]. Journal of Structural Geology, 21(7): 821-835. doi: 10.1016/S0191-8141(99)00082-6
|
[9] |
BIOT M A, 1956. Thermoelasticity and irreversible thermodynamics[J]. Journal of Applied Physics, 27(3): 240-253. doi: 10.1063/1.1722351
|
[10] |
BOHRSON W A, SPERA F J, 2001. Energy-constrained open-system magmatic processes II: application of energy-constrained assimilation–fractional crystallization (EC-AFC) model to magmatic systems[J]. Journal of Petrology, 42(5): 1019-1041. doi: 10.1093/petrology/42.5.1019
|
[11] |
CAO H W, 2015. Research on Mesozoic-Cenozoic magmatic evolution and its relation with metallogeny in Tengchong-Lianghe tin ore belt, Western Yunnan[D]. Beijing: China University of Geosciences (Beijing): 1-340. (in Chinese with English abstract)
|
[12] |
CATHLES L M, ERENDI A H J, BARRIE T, 1997. How long can a hydrothermal system be sustained by a single intrusive event? [J]. Economic Geology, 92(7-8): 766-771. doi: 10.2113/gsecongeo.92.7-8.766
|
[13] |
CEN K, TIAN Z X, 2012. Ore-forming system around magma — model of spatial zonation for magmatic rock and deposit set[J]. Geoscience, 26(5): 1051-1057. (in Chinese with English abstract)
|
[14] |
CHANG C, LUO G, 2022. The fracture forming mechanism at the top of the intrusion body in porphyry deposits: the insights from a multi-physical field coupled numerical model[J]. Chinese Journal of Geophysics, 65(8): 3006-3024. (in Chinese with English abstract)
|
[15] |
CHAPPELL B W, WHITE A J R, WILLIAMS I S, et al. , 2004. Low- and high-temperature granites[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 95, 125–140.
|
[16] |
CHEN B L, GAO Y, 2022. Study on ore-bearing fracture system of veinlet orebody in Tongchang porphyry copper deposit, Dexing of Jiangxi[J]. Mineral Deposits, 41(6): 1093-1107. (in Chinese with English abstract)
|
[17] |
CHEN Y, WU X D, ZHANG F Q, 1999. Experimental study on thermal cracking of rocks[J]. Chinese Science Bulletin, 44(8): 880-883. (in Chinese) doi: 10.1360/csb1999-44-8-880
|
[18] |
CHEN Y M, XU D P, 2013. FLAC/FLAC 3D fundamentals and engineering examples[M]. 2nd ed. Beijing: China Water & Power Press. (in Chinese)
|
[19] |
COLEMAN D S, GRAY W, GLAZNER A F, 2004. Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California[J]. Geology, 32(5): 433-436. doi: 10.1130/G20220.1
|
[20] |
CRUDEN A R, MCCAFFREY K J W, 2001. Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(4-5): 303-315. doi: 10.1016/S1464-1895(01)00060-6
|
[21] |
DWIVEDI R D, GOEL R K, PRASAD V V R, et al. , 2008. Thermo-mechanical properties of Indian and other granites[J]. International Journal of Rock Mechanics and MINING SCIENCES, 45(3): 303-315. doi: 10.1016/j.ijrmms.2007.05.008
|
[22] |
DUHAMEL J M C, 1837. Second mémoire sur les phénoménes thermo-mécaniques[J]. J de l’École Polytechnique,15(25): 1–57.
|
[23] |
ELLIS J F, BLENKINSOP T, 2019. Analogue modelling of fracturing in cooling plutonic bodies[J]. Tectonophysics, 766: 14-19. doi: 10.1016/j.tecto.2019.05.019
|
[24] |
ENGLISH J M, 2012. Thermomechanical origin of regional fracture systems[J]. AAPG Bulletin, 96(9): 1597-1625. doi: 10.1306/01021211018
|
[25] |
ESLAMI M R, HETNARSKI R B, IGNACZAK J, et al. , 2013. Theory of elasticity and thermal stresses: explanations, problems and solutions[M]. Dordrecht: Springer.
|
[26] |
EVANS D J, ROWLEY W J, CHADWICK R A, et al. , 1994. Seismic reflection data and the internal structure of the Lake District batholith, Cumbria, northern England[J]. Proceedings of the Yorkshire Geological Society, 50: 11-24. doi: 10.1144/pygs.50.1.11
|
[27] |
FAN Y L, GAO J W, YU S, et al. , 2023. Prediction and analysis on large deformation of surrounding rocks in the Muzhailing Tunnel of the Weiyuan–Wudu Expressway under high in-situ stress[J]. Journal of Geomechanics, 29(6): 786-800. (in Chinese with English abstract)
|
[28] |
FANG G C, WANG D H, FENG Z X, et al. , 2021. The fan-like distribution of ore veins in the quartz-vein type tungsten deposits in South China and its prospecting significance[J]. Geotectonica et Metallogenia, 45(3): 523-533. (in Chinese with English abstract)
|
[29] |
FOURIER J B J, 2009. The analytical theory of heat[M]. Cambridge: Cambridge University Press: 466.
|
[30] |
FU H F, ZHANG B H, GE J H, et al. , 2019. Thermal diffusivity and thermal conductivity of granitoids at 283-988 K and 0.3-1.5 GPa [J]. American Mineralogist, 104(11): 1533-1545. doi: 10.2138/am-2019-7099
|
[31] |
GERCEK H, 2007. Poisson's ratio values for rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 44(1): 1-13. doi: 10.1016/j.ijrmms.2006.04.011
|
[32] |
GERDES M L, BAUMGARTNER L P, PERSON M, 1998. Convective fluid flow through heterogeneous country rocks during contact metamorphism[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 23983-24003. doi: 10.1029/98JB02049
|
[33] |
GERLA P J, 1988. Stress and fracture evolution in a cooling pluton: An example from the Diamond Joe stock, western Arizona, U. S. A. [J]. Journal of Volcanology and Geothermal Research, 34(3-4): 267-282. doi: 10.1016/0377-0273(88)90038-8
|
[34] |
GHIORSO M S, 1991. Temperatures in and around cooling magma bodies[M]//PERCHUK L L. Progress in metamorphic and magmatic petrology: a memorial volume in Honour of D. S. Korzhinskiy. Cambridge: Cambridge University Press: 387-410.
|
[35] |
GU D S, LI X B, 2003. Science problems and research state of deep mining in metal and nonferrous mines[J]. Mining Research and Development, 23(S1): 1-5. (in Chinese with English abstract)
|
[36] |
Guangdong Nonferrous Metal Geological Exploration Company 932 Team, 1966. How we use the "five-story" law to find, evaluate and explore wolframite quartz vein deposits[J]. Geology and Exploration, (5): 15-19. (in Chinese)
|
[37] |
GUILLOU-FROTTIER L, BUROV E, 2003. The development and fracturing of plutonic apexes: implications for porphyry ore deposits[J]. Earth and Planetary Science Letters, 214(1-2): 341-356. doi: 10.1016/S0012-821X(03)00366-2
|
[38] |
HAN X H, CHU Z H, ZHANG Y Z, 2005. Thermal-induced rock cracking and its significance in engineering[J]. Petroleum Geology & Experiment, 27(1): 98-100. (in Chinese with English abstract)
|
[39] |
HEARD H C, PAGE L, 1982. Elastic moduli, thermal expansion, and inferred permeability of two granites to 350°C and 55 megapascals[J]. Journal of Geophysical Research: Solid Earth, 87(B11): 9340-9348. doi: 10.1029/JB087iB11p09340
|
[40] |
HEUZE F E, 1983. High-temperature mechanical, physical and thermal properties of granitic rocks—a review[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(1): 3-10.
|
[41] |
HU H, ARGYROPOULOS S A, 1996. Mathematical modelling of solidification and melting: a review[J]. Modelling and Simulation in Materials Science and Engineering, 4(4): 371. doi: 10.1088/0965-0393/4/4/004
|
[42] |
HUPPERT H E, SPARKS R S J, 1988. The generation of granitic magmas by intrusion of basalt into continental crust[J]. Journal of Petrology, 29(3): 599-624. doi: 10.1093/petrology/29.3.599
|
[43] |
ITASCA CONSULTING GROUP INC, 2012. FLAC 3D Fast Lagrangian Analysis of Continua in 3 Dimensions—FLAC 3D help. Minneapolis, Minnesota.
|
[44] |
KUMARI W G P, RANJITH P G, PERERA M S A, et al. , 2017. Mechanical behaviour of Australian Strathbogie granite under in-situ stress and temperature conditions: an application to geothermal energy extraction[J]. Geothermics, 65: 44-59. doi: 10.1016/j.geothermics.2016.07.002
|
[45] |
LANGE R A, CASHMAN K V, NAVROTSKY A, 1994. Direct measurements of latent heat during crystallization and melting of a ugandite and an olivine basalt[J]. Contributions to Mineralogy and Petrology, 118(2): 169-181. doi: 10.1007/BF01052867
|
[46] |
LESSEN M, 1956. Thermoelasticity and thermal shock[J]. Journal of the Mechanics and Physics of Solids, 5(1): 57-61. doi: 10.1016/0022-5096(56)90007-2
|
[47] |
LI W T, HUANG B H, BI Z B, 2004. Thermal stress theory analysis and application[M]. Beijing: China Electric Power Press. (in Chinese)
|
[48] |
LI Z H, CHI G X, BETHUNE K M, 2016. The effects of basement faults on thermal convection and implications for the formation of unconformity‐related uranium deposits in the Athabasca Basin, Canada[J]. Geofluids, 16(4): 729-751. doi: 10.2113/econgeo.112.2.451
|
[49] |
LI Z H, CHI G X, BETHUNE K M, et al. , 2017. Structural controls on fluid flow during compressional reactivation of basement faults: insights from numerical modeling for the formation of unconformity-related uranium deposits in the Athabasca Basin, Canada[J]. Economic Geology, 112(2): 451-466.
|
[50] |
LIENHARD V J H, LIENHARD IV J H, 2011. A heat transfer textbook[M]. 4th ed. Massachusetts: Phlogiston Press, 749.
|
[51] |
LIU X C, XING H L, ZHANG D H, 2015. The mechanisms of the infill textures and its implications for the five-floor zonation at the Dajishan vein-type tungsten deposit, China[J]. Ore Geology Reviews, 65: 365-374. doi: 10.1016/j.oregeorev.2014.10.011
|
[52] |
LIU X C, ZHANG D H, ZHAO B, et al. , 2017. Quantitative analysis of the “five-floor” vertical morphological zonation in the Piaotang tungsten deposits, South China[J]. Geological Journal of China Universities, 23(3): 408-416. (in Chinese with English abstract)
|
[53] |
LIU X C, XIAO C H, ZHANG S H, et al. , 2020. Whether Sanguliu granite provided energy required for forming Wulong gold deposit, Liaoning Province, China?[J]. Earth Science, 45(11): 3998-4013. (in Chinese with English abstract)
|
[54] |
LIU X C, ZHANG D H, YANG J W, et al. , 2023. High heat producing granites and prolonged extraction of tungsten and tin from melts[J]. Geochimica et Cosmochimica Acta, 348: 340-354. doi: 10.1016/j.gca.2023.03.012
|
[55] |
LORD H W, SHULMAN Y, 1967. A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids, 15(5): 299-309. doi: 10.1016/0022-5096(67)90024-5
|
[56] |
MA C Q, LI Y Q, 2017. Incremental growth of granitoid plutons and highly crystalline magmatic differentiation[J]. Acta Petrologica Sinica, 33(5): 1479-1488. (in Chinese with English abstract)
|
[57] |
MAO J W, XIE G Q, CHENG Y B, et al. , 2009. Mineral deposit models of Mesozoic ore deposits in South China[J]. Geological Review, 55(3): 347-354. (in Chinese with English abstract)
|
[58] |
MATZEL J E P, BOWRING S A, MILLER R B, 2006. Time scales of pluton construction at differing crustal levels: examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington[J]. Geological Society of America Bulletin, 118(11-12): 1412-1430. doi: 10.1130/B25923.1
|
[59] |
MERRIMAN J D, WHITTINGTON A G, HOFMEISTER A M, et al. , 2013. Thermal transport properties of major Archean rock types to high temperature and implications for cratonic geotherms[J]. Precambrian Research, 233: 358-372. doi: 10.1016/j.precamres.2013.05.009
|
[60] |
MIAO S Q, LI H P, CHEN G, 2014. Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks[J]. Journal of Thermal Analysis and Calorimetry, 115(2): 1057-1063. doi: 10.1007/s10973-013-3427-2
|
[61] |
MICHEL J, BAUMGARTNER L, PUTLITZ B, et al. , 2008. Incremental growth of the Patagonian Torres del Paine laccolith over 90 k. y. [J]. Geology, 36(6): 459-462. doi: 10.1130/G24546A.1
|
[62] |
MÜLLER G, 1998. Experimental simulation of basalt columns[J]. Journal of Volcanology and Geothermal Research, 86(1-4): 93-96. doi: 10.1016/S0377-0273(98)00045-6
|
[63] |
NABELEK P I, HOFMEOSTER A M, WHITTINGTON A G, 2012. The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature-time paths in contact aureoles[J]. Earth and Planetary Science Letters, 317-318: 157-164. doi: 10.1016/j.jpgl.2011.11.009
|
[64] |
NAJAFI M, JALALI S M E, KHALOKAKAIE R, 2014. Thermal–mechanical–numerical analysis of stress distribution in the vicinity of underground coal gasification (UCG) panels[J]. International Journal of Coal Geology, 134-135: 1-16. doi: 10.1016/j.coal.2014.09.014
|
[65] |
PETFORD N, CRUDEN A R, MCCAFFREY K J W, et al. , 2000. Granite magma formation, transport and emplacement in the Earth's crust[J]. Nature, 408(6813): 669-673. doi: 10.1038/35047000
|
[66] |
POLYAKOVA I G, 2014. The main silica phases and some of their properties[M]//SCHMELZER J W P. Glass: selected properties and crystallization. Berlin: De Gruyter: 197-268.
|
[67] |
QIN K Z, ZHAO J X, FAN H R, et al. , 2021. On the ore-forming depth and possible maximum vertical extension of the major type ore deposits[J]. Earth Science Frontiers, 28(3): 271-294. (in Chinese with English abstract)
|
[68] |
RAGHAMI E, SCHRANK C, KRUHL J H, 2020. 3D modelling of the effect of thermal-elastic stress on grain-boundary opening in quartz grain aggregates[J]. Tectonophysics, 774: 228242. doi: 10.1016/j.tecto.2019.228242
|
[69] |
SCAILLET B, PICHAVANT M, ROUX J, 1995. Experimental crystallization of leucogranite magmas[J]. Journal of Petrology, 36(3): 663-705. doi: 10.1093/petrology/36.3.663
|
[70] |
SCAILLET B, HOLTZ F, PICHAVANT M, 2016. Experimental constraints on the formation of silicic magmas[J]. Elements, 12(2): 109-114. doi: 10.2113/gselements.12.2.109
|
[71] |
SCHÖN J H, 2015. Physical properties of rocks: fundamentals and principles of petrophysics[M]. Amsterdam: Elsevier.
|
[72] |
SCHÖPA A, ANNEN C, DILLES J H, et al. , 2017. Magma emplacement rates and porphyry copper deposits: thermal modeling of the Yerington Batholith, Nevada[J]. Economic Geology, 112(7): 1653-1672. doi: 10.5382/econgeo.2017.4525
|
[73] |
SCHRANK C E, FUSSEIS F, KARRECH A, et al. , 2012. Thermal-elastic stresses and the criticality of the continental crust[J]. Geochemistry, Geophysics, Geosystems, 13(9): Q09005.
|
[74] |
SONG Z X, QIAN X L, 1996. On the formation mechanism of granite: a review[J]. Geological Science and Technology Information, 15(3): 20-26. (in Chinese with English abstract)
|
[75] |
STEIN C A, STEIN S, 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age[J]. Nature, 359(6391): 123-129. doi: 10.1038/359123a0
|
[76] |
TOSDAL R M, RICHARDS J P, 2001. Magmatic and structural controls on the development of porphyry Cu ± Mo ± Au deposits[M]//RICHARDS J P, TOSDAL R M. Structural controls on ore genesis. Society of Economic Geologists, 14: 157-181.
|
[77] |
VOSTEEN H D, SCHELLSCHMIDT R, 2003. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock[J]. Physics and Chemistry of the Earth, Parts A/B/C, 28(9-11): 499-509. doi: 10.1016/S1474-7065(03)00069-X
|
[78] |
WANG D H, TANG J X, YING L J, et al. , 2010. Application of “Five levels + Basement” model for prospecting deposits into depth[J]. Journal of Jilin University (Earth Science Edition), 40(4): 733-738. (in Chinese with English abstract)
|
[79] |
WANG D H, HUANG F, WANG Y, et al. , 2020a. Regional metallogeny of Tungsten-tin-polymetallic deposits in Nanling region, South China[J]. Ore Geology Reviews, 120: 103305. doi: 10.1016/j.oregeorev.2019.103305
|
[80] |
WANG F, KONIETZKY H, 2019. Thermo-mechanical properties of granite at elevated temperatures and numerical simulation of thermal cracking[J]. Rock Mechanics and Rock Engineering, 52(10): 3737-3755. doi: 10.1007/s00603-019-01837-1
|
[81] |
WANG F, KONIETZKY H, FRÜHWIRT T, et al. , 2020b. Laboratory testing and numerical simulation of properties and thermal-induced cracking of Eibenstock granite at elevated temperatures[J]. Acta Geotechnica, 15(8): 2259-2275. doi: 10.1007/s11440-020-00926-8
|
[82] |
WANG X N, HUANG R Q, 1998. Influence of thermal stress on the surface stability of surrounding rock in a diversion tunnel[J]. Journal of Geological Hazards and Environment Preservation, 9(1): 43-48. (in Chinese with English abstract)
|
[83] |
WEI X Y, LI Z H, DU P F, et al. , 2022. Application of numerical modeling in the study of fluid flow mechanism related to sandstone-type uranium deposits[J]. Uranium Geology, 38(1): 106-114. (in Chinese with English abstract)
|
[84] |
WEIS P, DRIESNER T, HEINRICH C A, 2012. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes[J]. Science, 338(6114): 1613-1616. doi: 10.1126/science.1225009
|
[85] |
XING H L, MAKINOUCHI A, 2002. Three-dimensional finite element modeling of thermomechanical frictional contact between finite deformation bodies using R-minimum strategy[J]. Computer Methods in Applied Mechanics and Engineering, 191(37-38): 4193-4214. doi: 10.1016/S0045-7825(02)00372-9
|
[86] |
XU J X, ZENG Z L, WANG D H, et al. , 2008. A new type of tungsten deposit in southern Jiangxi and the new model of "Five Floors + Basement" for prospecting[J]. Acta Geologica Sinica, 82(7): 880-887. (in Chinese with English abstract)
|
[87] |
ŽÁK J, VYHNÁLEK B, KABELE P, 2006. Is there a relationship between magmatic fabrics and brittle fractures in plutons? A view based on structural analysis, anisotropy of magnetic susceptibility and thermo-mechanical modelling of the Tanvald pluton (Bohemian Massif) [J]. Physics of the Earth and Planetary Interiors, 157(3-4): 286-310. doi: 10.1016/j.pepi.2006.05.001
|
[88] |
ZHANG D, LI F, HE J L, et al. , 2021. Mesozoic tectonic deformation and its rock / ore-control mechanism in the important metallogenic belts in South China [J]. Journal of Geomechanics, 27(4): 497-528. (in Chinese with English abstract)
|
[89] |
ZHANG D H, JIN X D, MAO S D, et al. , 2011. The classification of ore-forming fluid and the efficiency of ore formation of magmatic hydrothermal solution[J]. Earth Science Frontiers, 18(5): 90-102. (in Chinese with English abstract)
|
[90] |
ZHANG Q, JIN W J, LI C D, et al. , 2014. Magma-thermal field: its basic characteristics, and differences with geothermal field[J]. Acta Petrologica Sinica, 30(2): 341-349. (in Chinese with English abstract)
|
[91] |
ZHANG S K, YU X F, JIA C, et al. , 2018. Effect study on thermal stress to weathering damage of dinosaur fossils[J]. Shandong Land and Resources, 34(5): 42-48. (in Chinese with English abstract)
|
[92] |
ZHANG S S, 2011. Numerical simulation of magmatic hydrothermal system: a case study of Gejiu polymetallic mining district[D]. Wuhan: China University of Geosciences (Wuhan): 1-54. (in Chinese with English abstract)
|
[93] |
ZHAO M C, YU X C, ZHANG Y F, et al. , 2020. Conceptual model for genesis of mineralized fissures in porphyry deposits and its geological significance[J]. Mineral Deposits, 39(1): 19-41. (in Chinese with English abstract)
|
[94] |
ZHU Z N, YANG S Q, WANG R, et al. , 2022. Effects of high temperature on the linear thermal expansion coefficient of Nanan granite[J]. Acta Geodaetica et Geophysica, 57(2): 231-243. doi: 10.1007/s40328-022-00375-7
|
[95] |
曹华文, 2015. 滇西腾-梁锡矿带中-新生代岩浆岩演化与成矿关系研究[D]. 北京: 中国地质大学(北京): 1-340.
|
[96] |
岑况, 田兆雪, 2012. 岩浆中心成矿系: 岩浆岩体和矿床组合的空间分带理想模式[J]. 现代地质, 26(5): 1051-1057. doi: 10.3969/j.issn.1000-8527.2012.05.026
|
[97] |
常成, 罗纲, 2022. 斑岩矿床侵入体顶部破裂系统形成的力学机制: 多场耦合数值模拟的启示[J]. 地球物理学报, 65(8): 3006-3024. doi: 10.6038/cjg2022P0375
|
[98] |
陈柏林, 高允, 2022. 江西德兴铜厂斑岩铜矿床细脉型矿体含矿裂隙系统研究[J]. 矿床地质, 41(6): 1093-1107.
|
[99] |
陈颙, 吴晓东, 张福勤, 1999. 岩石热开裂的实验研究[J]. 科学通报, 44(8): 880-883. doi: 10.3321/j.issn:0023-074X.1999.08.022
|
[100] |
陈育民, 徐鼎平, 2013. FLAC/FLAC 3D基础与工程实例[M]. 2版. 北京: 中国水利水电出版社.
|
[101] |
范玉璐, 曹佳文, 余顺, 等, 2023. 高地应力作用下渭武高速木寨岭隧道围岩大变形灾变预测分析研究[J]. 地质力学学报, 29(6): 786-800. doi: 10.12090/j.issn.1006-6616.2022110
|
[102] |
方贵聪, 王登红, 冯佐海, 等, 2021. 华南石英脉型钨矿床扇状成矿的规律及其找矿意义[J]. 大地构造与成矿学, 45(3): 523-533.
|
[103] |
古德生, 李夕兵, 2003. 有色金属深井采矿研究现状与科学前沿[J]. 矿业研究与开发, 23(S1): 1-5.
|
[104] |
广东有色金属地质勘探公司九三二队, 1966. 我们是怎样用“五层楼”规律寻找、评价和勘探黑钨石英脉矿床的[J]. 地质与勘探(5): 15-19.
|
[105] |
韩学辉, 楚泽涵, 张元中, 2005. 岩石热开裂及其在工程学上的意义[J]. 石油实验地质, 27(1): 98-100. doi: 10.3969/j.issn.1001-6112.2005.01.018
|
[106] |
李维特, 黄保海, 毕仲波, 2004. 热应力理论分析及应用[M]. 北京: 中国电力出版社.
|
[107] |
刘向冲, 张德会, 赵波, 等, 2017. 漂塘钨矿床“五层楼”垂直形态分带定量分析[J]. 高校地质学报, 23(3): 408-416.
|
[108] |
刘向冲, 肖昌浩, 张拴宏, 等, 2020. 辽东三股流岩体是否为五龙金矿成矿提供必要的能量?[J]. 地球科学, 45(11): 3998-4013.
|
[109] |
马昌前, 李艳青, 2017. 花岗岩体的累积生长与高结晶度岩浆的分异[J]. 岩石学报, 33(5): 1479-1488.
|
[110] |
毛景文, 谢桂青, 程彦博, 等, 2009. 华南地区中生代主要金属矿床模型[J]. 地质论评, 55(3): 347-354. doi: 10.3321/j.issn:0371-5736.2009.03.005
|
[111] |
秦克章, 赵俊兴, 范宏瑞, 等, 2021. 试论主要类型矿床的形成深度与最大延深垂幅[J]. 地学前缘, 28(3): 271-294.
|
[112] |
宋子新, 钱祥麟, 1996. 花岗岩成因机制研究综述[J]. 地质科技情报, 15(3): 20-26.
|
[113] |
王登红, 唐菊兴, 应立娟, 等, 2010. “五层楼+地下室”找矿模型的适用性及其对深部找矿的意义[J]. 吉林大学学报(地球科学版), 40(4): 733-738.
|
[114] |
王贤能, 黄润秋, 1998. 引水隧洞工程中热应力对围岩表层稳定性的影响分析[J]. 地质灾害与环境保护, 9(1): 43-48.
|
[115] |
韦晓艳, 李增华, 杜鹏飞, 等, 2022. 数值模拟在砂岩型铀矿流体运移机制研究中的应用[J]. 铀矿地质, 38(1): 106-114. doi: 10.3969/j.issn.1000-0658.2022.38.009
|
[116] |
许建祥, 曾载淋, 王登红, 等, 2008. 赣南钨矿新类型及“五层楼+地下室”找矿模型[J]. 地质学报, 82(7): 880-887. doi: 10.3321/j.issn:0001-5717.2008.07.003
|
[117] |
张达, 李芳, 贺晓龙, 等, 2021. 华南重要成矿区带中生代构造变形及其控岩控矿机理[J]. 地质力学学报, 27(04): 497-528.
|
[118] |
张德会, 金旭东, 毛世德, 等, 2011. 成矿热液分类兼论岩浆热液的成矿效率[J]. 地学前缘, 18(5): 90-102.
|
[119] |
张旗, 金惟俊, 李承东, 等, 2014. 岩浆热场: 它的基本特征及其与地热场的区别[J]. 岩石学报, 30(2): 341-349.
|
[120] |
张尚坤, 于学峰, 贾超, 等, 2018. 热应力对恐龙化石风化损坏的影响研究[J]. 山东国土资源, 34(5): 42-48. doi: 10.3969/j.issn.1672-6979.2018.05.005
|
[121] |
张嵩松, 2011. 岩浆热液成矿系统的数值模拟: 以云南个旧锡多金属矿区为例[D]. 武汉: 中国地质大学(武汉): 1-54.
|
[122] |
赵茂春, 余先川, 张翼飞, 等, 2020. 斑岩型矿床容矿裂隙成因的几种概念模型及其意义[J]. 矿床地质, 39(1): 19-41.
|