LI Long, GAO De-zhen, ZHANG Wei-jie, et al., 2000. DEFORMATION OF ARCHAEAN WULASHAN GROUP IN GUYANG REGION OF INNER MONGOLIA. Journal of Geomechanics, 6 (4): 67-72.
Citation: SI J T,BAI D S,ZHAO Z Q,et al.,2025. Geochemistry of pyrite and its implications for exploration of the Jiuzhanggou gold deposit in western Henan[J]. Journal of Geomechanics,31(1):61−79 doi: 10.12090/j.issn.1006-6616.2023140

Geochemistry of pyrite and its implications for exploration of the Jiuzhanggou gold deposit in western Henan

doi: 10.12090/j.issn.1006-6616.2023140
Funds:  This research is financially supported by the National Natural Science Foundation of China (Grant No. 41872091).
More Information
  •   Objective  Pyrite is a common auriferous mineral in gold deposits. Its mineral geochemistry not only plays a significant role in elucidating ore genesis, but also provides important information for the exploration of deposits. The Jiuzhanggou gold deposit in western Henan Province is a gold deposit typical of tectonically altered rocks in the Xiong'ershan gold ore cluster, and it is an ideal deposit to study the genetic indications and prospecting signs of pyrite in gold deposits.   Methods  In this study, the tectonically altered zones of the Jiuzhanggou gold deposit were investigated, and 8 samples of tectonically altered rocks were collected over a vertical depth of 280 m, from +260 m to −20 m. Electron microprobe and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite from the altered rocks were carried out, and the characteristics and variations of the element contents in pyrite of differently altered zones were obtained, revealing the indications of pyrite for ore genesis and prospection at greater depth.   Results  The interval between the +260 m and −20 m levels of the Jiuzhanggou gold deposit can be divided into four altered zones. Microscopic observation of the altered rocks shows that pyrite was formed during the metallogenic period. Given its Fe and S contents, most of the pyrite is sulfur-depleted. Cluster analysis shows that Au, Cu, As, Sb, Zn, Ag, Te, Se and Pb in pyrite belong to a group of hypothermal-mesothermal elements.   Conclusion  The Co/Ni ratio (1~10) and the Co-Ni-As diagram indicate a magmatic hydrothermal origin of pyrite. The Au in pyrite is positively correlated with Cu, As, Sb, Zn, Ag, Te, and Pb. The contents of these elements gradually decrease in the 1st~3rd altered zones, but increase in the 4th zone. It is speculated that the 1st~3rd altered zones are the product of the same hydrothermal mineralization activity, while the 4th altered zone is the product of another hydrothermal mineralization activity. According to the vertical extent of the 1st~3rd altered zones, it is speculated that the 4th altered zone may reach −60 meters. At least one level (40 m) can be explored at depth, which has a good prospecting potential.   Significance  The contents of Au, Cu, As, Sb, Zn, Ag, Te, Se, and Pb and the ratios of Au/As, Au/Ag, and Co/Ni in pyrite reflect the vertical mineralization zoning. These trace elements in pyrite are essential markers for prospecting targets in the deeper parts of gold deposits.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • [1]
    BABEDI L, VON DER HEYDEN B P, TADIE M, et al. , 2023. Trace elements in pyrite from five different gold ore deposit classes: a review and meta-analysis[M]//TORVELA T, LAMBERT-SMITH J S, CHAPMAN R J. Recent advances in understanding gold deposits: from orogeny to alluvium. London: Geological Society of London: 47-83.
    [2]
    BAJWAH Z U, SECCOMBE P K, OFFLER R, 1987. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia[J]. Mineralium Deposita, 22(4): 292-300.
    [3]
    CAO G S, ZHANG Y, CHEN H Y, 2023. Trace elements in pyrite from orogenic gold deposits: Implications for metallogenic mechanism[J]. Acta Petrologica Sinica, 39(8): 2330-2346. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.08.06
    [4]
    CAO G S, ZHANG Y, ZHAO H T, et al., 2023. Trace element variations of pyrite in orogenic gold deposits: Constraints from big data and machine learning[J]. Ore Geology Reviews, 157: 105447. doi: 10.1016/j.oregeorev.2023.105447
    [5]
    CAO M P, YAO J M, DENG X H, et al., 2017. Diverse and multistage Mo, Au, Ag-Pb-Zn and Cu deposits in the Xiong'er Terrane, East Qinling: from Triassic Cu mineralization[J]. Ore Geology Reviews, 81: 565-574. doi: 10.1016/j.oregeorev.2016.02.014
    [6]
    CHEN Y J, SANTOSH M, 2014. Triassic tectonics and mineral systems in the Qinling Orogen, central China[J]. Geological Journal, 49(4-5): 338-358. doi: 10.1002/gj.2618
    [7]
    COOK N J, CHRYSSOULIS S L, 1990. Concentrations of invisible gold in the common sulfides[J]. The Canadian Mineralogist, 28(1): 1-16.
    [8]
    DEDITIUS A P, REICH M, KESLER S E, et al., 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica et Cosmochimica Acta, 140: 644-670. doi: 10.1016/j.gca.2014.05.045
    [9]
    DENG Y, ZHANG J, ZHONG R C, et al., 2024. Application of principal component analysis method based on machine learning to gold deposit type discrimination: a case study of the geochemical characteristics of pyrite[J]. Acta Petrologica Sinica, 40(6): 1801-1816. (in Chinese with English abstract doi: 10.18654/1000-0569/2024.06.07
    [10]
    DI P F, TANG Q Y, LIU D X, et al., 2023. Trace element geochemistry of pyrite and its significance in the Gannan district, West Qinling: A case study from the Jiagantan and Zaozigou gold deposits[J]. Chinese Rare Earths, 44: 140-154. (in Chinese with English abstract
    [11]
    DING P C, WANG Z Q, GUO Q Q et al. , 2020. Mineralization and enrichment characteristics and deep prospecting prospect evaluation of the Miaoling-Jiuzhanggou gold metallogenic belt in Henan Province[J]. Gold, 41(10): 7-12, 18. (in Chinese with English abstract
    [12]
    HE X Y, WANG C M, YUAN J M, et al., 2019. Mesozoic Au-Mo metallogenic system in the Xiong'ershan-Waifangshan ore field[J]. Earth Science Frontiers, 26(5): 33-52. (in Chinese with English abstract
    [13]
    LARGE R R, DANYUSHEVSKY L, HOLLIT C, et al., 2009. Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits[J]. Economic Geology, 104(5): 635-668. doi: 10.2113/gsecongeo.104.5.635
    [14]
    LI H, YU B, WEI J, et al., 2021. Research on prediction of hidden ore bodies at depth in exploration (new) areas using structural superimposed halos and a reference practical ideal model[J]. Geology and Exploration, 57(2): 351-359. (in Chinese with English abstract
    [15]
    LI H B, ZENG F Z, 2005. The pyrite’s typomorphic characteristics in gold deposit[J]. Contributions to Geology and Mineral Resources Research, 20(3): 199-203. (in Chinese with English abstract
    [16]
    LI H B, 2005. The discussion about genesis of Jiuzhanggou gold deposit of Henan[J]. Resources Environment & Engineering, 19(1): 16-22, 58. (in Chinese with English abstract
    [17]
    LI J J, HE Y L, FU C, et al., 2016. Metallogenic characteristics and potential analysis of the Yuxi Au-Mo-W-Pb-Zn-Ag-Fe-bauxite-graphite metallogenic belt in Western Henan[J]. Acta Geologica Sinica, 90(7): 1504-1524. (in Chinese with English abstract
    [18]
    LI W, COOK N J, XIE G Q, et al., 2019. Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au-Sb deposit, South China[J]. Mineralium Deposita, 54(4): 591-610. doi: 10.1007/s00126-018-0826-0
    [19]
    LI X H, FAN H R, XIE H L, et al., 2022. Geochronology, ore-forming processes and fluid sources of the Qinglonggou gold deposit, North Qaidam (NW China): Constraints from in-situ U-Pb dating of monazite and geochemistry of pyrite[J]. Ore Geology Reviews, 149: 105093. doi: 10.1016/j.oregeorev.2022.105093
    [20]
    LIU S Y, ZHANG D, YANG M J, et al., 2024. Characteristics of chlorites from the Haopinggou Ag-Au polymetallic deposit in the Xiong'ershan ore concentration area and its exploration implications[J]. Journal of Geomechanics, 30(1): 129-146. (in Chinese with English abstract
    [21]
    LIU W Y, LIU J S, HE M X, et al., 2018. Geochemical features of Au-Ag polymetallic deposits in Xiong'ershan ore district of western Henan and their geological significances[J]. The Chinese Journal of Nonferrous Metals, 28(7): 1401-1417. (in Chinese with English abstract
    [22]
    LIU Y G, DING P C, XU J W et al., 2022. Discussion on genesis of F8 ore-bearing structure in Miaoling-Jiuzhanggou gold belt in Songxian, Henan Province[J]. Gold, 43(8): 5-9. (in Chinese with English abstract
    [23]
    NAGLIK B, TOBOŁA T, DUMAŃSKA-SŁOWIK M, et al., 2022. Multi-stage ore forming history of the Variscan porphyry Mo-Cu-W Myszków deposit (Poland): Evidence from trace elements of pyrite[J]. Ore Geology Reviews, 150: 105185. doi: 10.1016/j.oregeorev.2022.105185
    [24]
    PATON C, HELLSTROM J, PAUL B, et al., 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518. doi: 10.1039/c1ja10172b
    [25]
    QIN J Q J, QU W X, ZHOU Y L, et al., 2022. Vertical zoning characteristics and deep prediction of primary halo in Jiuzhanggou gold deposit, Western Henan Province[J]. Mining Technology, 22(6): 202-206. (in Chinese with English abstract
    [26]
    QIN J Q, QU W X, ZHOU Y L, et al., 2019. Geological characteristics of Jiuzhanggou gold deposit in Song County, Henan Province and prospects for deep prospecting[J]. Advances in Geosciences, 9(6): 429-436. (in Chinese with English abstract doi: 10.12677/AG.2019.96048
    [27]
    REICH M, KESLER S E, UTSUNOMIYA S, et al., 2005. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 69(11): 2781-2796. doi: 10.1016/j.gca.2005.01.011
    [28]
    REICH M, SIMON A C, DEDITIUS A, et al., 2016. Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: a missing link between Andean IOA and iron oxide copper-gold systems?[J]. Economic Geology, 111(3): 743-761. doi: 10.2113/econgeo.111.3.743
    [29]
    RILEY J F, 1968. The cobaltiferous pyrite series[J]. American Mineralogist, 53(1-2): 293-295.
    [30]
    SHEN J F, LI S R, HUANG S F, et al., 2021. The decennary new advances on the genetic mineralogy and prospecting mineralogy(2010-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 610-623. (in Chinese with English abstract
    [31]
    SHENG Y M, TANG L, ZHANG S T, et al., 2022a. Distal gold mineralization associated with porphyry system: the case of Hongzhuang and Yuanling deposits, East Qinling, China[J]. Ore Geology Reviews, 142: 104701. doi: 10.1016/j.oregeorev.2022.104701
    [32]
    SHENG Y M, TANG L, ZHANG S T, et al., 2022b. Influence of fluid-rock interaction on gold mineralization in the Dongwan deposit, East Qinling, China: constraints from systematic sulfur isotope and trace element geochemistry[J]. Ore Geology Reviews, 142: 104718. doi: 10.1016/j.oregeorev.2022.104718
    [33]
    SPRINGER G, SCHACHNER-KORN D, LONG J V P, 1964. Metastable solid solution relations in the system FeS2-CoS2-NiS2[J]. Economic Geology, 59(3): 475-491. doi: 10.2113/gsecongeo.59.3.475
    [34]
    TIAN G, ZHANG C Q, PENG H J, et al., 2014. Petrogenesis and geodynamic setting of the Chang’an gold deposit in southern Ailaoshan metallogenic belt[J]. Acta Petrologica Sinica, 2014, 30(1): 125-138. (in Chinese with English abstract
    [35]
    TIAN Y F, SUN J, YE H S, et al., 2017. Genesis of the Dianfang breccia-hosted gold deposit, western Henan Province, China: constraints from geology, geochronology and geochemistry[J]. Ore Geology Reviews, 91: 963-980. doi: 10.1016/j.oregeorev.2017.08.011
    [36]
    TIAN Y F, YE H S, MAO J W, et al., 2019. Geochronology and geochemistry of the Dianfang gold deposit, western Henan Province, central China: Implications for mineral exploration[J]. Ore Geology Reviews, 111: 102967. doi: 10.1016/j.oregeorev.2019.102967
    [37]
    WANG B Q, SONG Y, LI F Q, et al. , 2023. Study on element content and thermoelectrie properties of pyrite in porphyry copper-gold metallogenic system. Geological Review, 69(S1): 193-194. (in Chinese with English abstract
    [38]
    WANG M Y, LI J, SONG M C, et al., 2023. The metallogenic mechanism of the Dadengge gold polymetallic deposit in the Jiaodong Peninsula: Constraints from pyrite Rb-Sr dating, in situ S isotope and trace elements[J]. Acta Petrologica Sinica, 39(5): 1501-1515. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.05.17
    [39]
    WANG X H, GUO T, LI X Z, et al., 2022. A study on the geochemical characteristics and metallogenesis of the Lanmugou gold deposit in the South Qinling Belt, Shaanxi, China[J]. Journal of Geomechanics, 28(3): 464-479. (in Chinese with English abstract
    [40]
    WANG X M, SU K F, SUN H S, et al. , 2013. Study on the metallogenic settings and gold metallogenic regularity of Dongwan-Huaishuping ore deposit in Songxian County, Henan Province[M]. Wuhan: China University of Geosciences Press. (in Chinese)
    [41]
    WANG Y, WANG D H, WANG C H, 2024. Quantitative research on metallogenic regularity of gold deposits in China based on geological big data[J]. Earth Science Frontiers, 31(4): 438-455. (in Chinese with English abstract
    [42]
    WANG Y H, HAN D, PAN B D, et al., 2022. Characteristics and ore-forming material source of gold minerals in Jiuzhanggou gold deposit, Henan Province[J]. Gold, 43(7): 3-8. (in Chinese with English abstract
    [43]
    WILSON S A, RIDLEY W I, KOENIG A E, 2002. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique[J]. Journal of Analytical Atomic Spectrometry, 17(4): 406-409. doi: 10.1039/B108787H
    [44]
    YAN C H, LI X L, HAN J W, 2021. New understanding of gold polymetallic mineralization in Xiong'er mountain ore concentration area[J]. Metal Mine(5): 1-12. (in Chinese with English abstract
    [45]
    YAN Y T, LI S R, JIA B J, et al., 2012. Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J]. Earth Science Frontiers, 19(4): 214-226. (in Chinese with English abstract
    [46]
    YANG D P, LIU P R, SONG Y X, et al., 2023. Trace element characteristics of pyrite in Qujia gold deposit, Laizhou, Shandong Province, and its implication on metallogenic process[J]. Acta Petrologica et Mineralogica, 42(6): 788-808. (in Chinese with English abstract
    [47]
    ZHANG H Y, ZHAO Q Q, ZHAO G, et al., 2022. In situ LA-ICP-MS trace element analysis of pyrite and its application in study of Au deposit[J]. Mineral Deposits, 41(6): 1182-1199. (in Chinese with English abstract
    [48]
    ZHANG W, WU G, 2007. Structure analysis for ore body controlling of Jiuzanggou gold deposit in Henan[J]. Nonferrous Metals, 59(2): 70-74. (in Chinese with English abstract
    [49]
    ZHANG Y, LI S P, JING P, et al., 2024. Geochemical characteristics and exploration model of the Jiuzhanggou gold deposit, Songxian County, Henan province[J]. Gold Science and Technology, 32(2): 258-269. (in Chinese with English abstract
    [50]
    ZHANG Z M, ZENG Q D, WANG Y B, et al., 2023. Metallogenic age and fluid evolution of the Kangshan Au-polymetallic deposit in the southern margin of the North China Craton: Constraints from monazite U-Pb age, and in-situ trace elements and S isotopes of pyrite[J]. Acta Petrologica Sinica, 39(3): 865-885. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.03.14
    [51]
    ZHOU L H, FENG R, 1994. The application of pyrite prospecting-mineralogy to prospective value in Bainaimiao gold deposites[J]. Journal of Changchun University of Earth Sciences, 24(3): 265-270. (in Chinese with English abstract
    [52]
    ZHOU X W, SHAO J L, BIAN Q J, 1994. Study on typomorphic characteristics of pyrite from Dongbeizhai gold deposit, Sichuan Province[J]. Earth Science-Journal of China University of Geosciences, 19(1): 52-59. (in Chinese with English abstract
    [53]
    ZHOU Z J, CHEN Z L, WEYER S, et al., 2023. Metal source and ore precipitation mechanism of the Ashawayi orogenic gold deposit, southwestern Tianshan Orogen, western China: Constraints from textures and trace elements in pyrite[J]. Ore Geology Reviews, 157: 105452. doi: 10.1016/j.oregeorev.2023.105452
    [54]
    ZHU H L, YANG X K, HE H J, et al., 2023. Discrimination of gold deposit types based on convolutional neural network and pyrite big data[J]. Acta Geologica Sinica, 97(10): 3396-3409. (in Chinese with English abstract
    [55]
    ZHU S Z, CHU Z B, JIN G, et al., 2022. Geological characteristics and genetic mechanism of Jiuzhanggou gold deposit in southwest Henan Province[J]. China Manganese Industry, 40(2): 72-78. (in Chinese with English abstract
    [56]
    曹根深,张宇,陈华勇,2023. 造山型金矿床黄铁矿微量元素对成矿机制的指示[J]. 岩石学报,39(8):2330-2346. doi: 10.18654/1000-0569/2023.08.06
    [57]
    邓依,张静,钟日晨,等,2024. 基于机器学习的主成分分析方法在金矿类型判别中的应用:以黄铁矿元素地球化学特征为例[J]. 岩石学报,40(6):1801-1816. doi: 10.18654/1000-0569/2024.06.07
    [58]
    第鹏飞,汤庆艳,刘东晓,等,2023. 西秦岭甘南地区金矿床黄铁矿微量元素地球化学特征及意义:以加甘滩和早子沟金矿为例[J]. 稀土,44(4):140-154.
    [59]
    丁培超,王振强,郭勤强,等,2020. 河南省庙岭—九仗沟金矿带矿化富集特征及深部找矿远景评价[J]. 黄金,41(10):7-12,18. doi: 10.11792/hj202001002
    [60]
    贺昕宇,王长明,袁继明,等,2019. 熊耳山—外方山矿集区中生代Au-Mo成矿系统[J]. 地学前缘,26(5):33-52.
    [61]
    李红兵,2005. 河南嵩县九仗沟金矿床成因探讨[J]. 资源环境与工程,19(1):16-22,58. doi: 10.3969/j.issn.1671-1211.2005.01.004
    [62]
    李红兵,曾凡治,2005. 金矿中的黄铁矿标型特征[J]. 地质找矿论丛,20(3):199-203. doi: 10.3969/j.issn.1001-1412.2005.03.011
    [63]
    李惠,禹斌,魏江,等,2021. 勘查(新)区构造叠加晕研究方法及预测参照实用理想模型[J]. 地质与勘探,57(2):351-359. doi: 10.12134/j.dzykt.2021.02.010
    [64]
    李俊建,何玉良,付超,等,2016. 豫西Au-Mo-W-Pb-Zn-Ag-Fe-铝土矿-石墨成矿带主要地质成矿特征及潜力分析[J]. 地质学报,90(7):1504-1524. doi: 10.3969/j.issn.0001-5717.2016.07.017
    [65]
    刘松岩,张达,杨明建,等,2024. 熊耳山矿集区蒿坪沟Ag-Au多金属矿床绿泥石特征及其找矿意义[J]. 地质力学学报,30(1):129-146. doi: 10.12090/j.issn.1006-6616.2023121
    [66]
    刘文毅,刘继顺,何美香,等,2018. 豫西熊耳山矿集区金银多金属矿床地球化学特征及地质意义[J]. 中国有色金属学报,28(7):1401-1417.
    [67]
    刘玉刚,丁培超,徐金武,等,2022. 河南省嵩县庙岭—九仗沟金矿带F8含矿构造成因探讨[J]. 黄金,43(8):5-9. doi: 10.11792/hj20220802
    [68]
    秦军强,曲伟勋,周宇乐,等,2019. 河南省嵩县九仗沟金矿地质特征及深部找矿前景[J]. 地球科学前沿,9(6):429-436.
    [69]
    秦军强,曲伟勋,周宇乐,等,2022. 豫西九仗沟金矿床原生晕垂向分带特征及深部预测[J]. 采矿技术,22(6):202-206. doi: 10.3969/j.issn.1671-2900.2022.06.049
    [70]
    申俊峰,李胜荣,黄绍锋,等,2021. 成因矿物学与找矿矿物学研究进展(2010—2020)[J]. 矿物岩石地球化学通报,40(3):610-623.
    [71]
    田广,张长青,彭惠娟,等,2014. 哀牢山长安金矿成因机制及动力学背景初探:来自LA-ICP-MS锆石U-Pb定年和黄铁矿原位微量元素测定的证据[J]. 岩石学报,30(1):125-138.
    [72]
    王蓓琪,宋扬,李发桥,等,2023. 斑岩铜金成矿系统中黄铁矿的元素含量与热电性特征研究[J]. 地质论评,69(S1):193-194.
    [73]
    王美云,李杰,宋明春,等,2023. 胶东大邓格金多金属矿床成矿机制:来自黄铁矿Rb-Sr定年、原位硫同位素及微量元素的制约[J]. 岩石学报,39(5):1501-1515. doi: 10.18654/1000-0569/2023.05.17
    [74]
    王晓虎,郭涛,李效壮,等,2022. 南秦岭烂木沟金矿床地球化学特征与矿床成因研究[J]. 地质力学学报,28(3):464-479. doi: 10.12090/j.issn.1006-6616.2021002
    [75]
    王兴民,苏凯峰,孙华山,等,2013. 河南省嵩县东湾-槐树坪矿区成矿环境及金矿规律研究[M]. 武汉:中国地质大学出版社.
    [76]
    王岩,王登红,王成辉,等,2024. 基于地质大数据的中国金矿时空分布规律定量研究[J]. 地学前缘,31(4):438-455.
    [77]
    王颖辉,韩东,潘柏东,等,2022. 河南省九仗沟金矿床金矿物特征及成矿物质来源[J]. 黄金,43(7):3-8. doi: 10.11792/hj20220702
    [78]
    燕长海,李肖龙,韩江伟,等,2021. 熊耳山矿集区金多金属矿成矿的几点新认识[J]. 金属矿山(5):1-12.
    [79]
    严育通,李胜荣,贾宝剑,等,2012. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘,19(4):214-226.
    [80]
    杨德平,刘鹏瑞,宋英昕,等,2023. 山东莱州曲家金矿黄铁矿微量元素对成矿过程的指示[J]. 岩石矿物学杂志,42(6):788-808.
    [81]
    张红雨,赵青青,赵刚,等,2022. 黄铁矿微量元素LA-ICP-MS原位微区分析方法及其在金矿床研究中的应用[J]. 矿床地质,41(6):1182-1199.
    [82]
    张伟,伍刚,2007. 河南省九丈沟金矿控矿构造分析[J]. 有色金属,59(2):70-74.
    [83]
    张勇,李水平,荆鹏,等,2024. 河南嵩县九仗沟金矿床地球化学特征与勘查模式[J]. 黄金科学技术,32(2):258-269.
    [84]
    张哲铭,曾庆栋,王永彬,等,2023. 华北克拉通南缘康山金多金属矿床成矿时代及流体演化:来自独居石U-Pb年龄、黄铁矿微量元素和原位S同位素制约[J]. 岩石学报,39(3):865-885. doi: 10.18654/1000-0569/2023.03.14
    [85]
    周立宏,冯瑞,1994. 黄铁矿找矿矿物学在白乃庙金矿床远景评价中的应用[J]. 长春地质学院学报,24(3):265-270.
    [86]
    周学武,邵洁涟,边秋娟,1994. 四川松潘东北寨金矿黄铁矿标型特征研究[J]. 地球科学-中国地质大学学报,19(1):52-59.
    [87]
    朱昊磊,杨兴科,何虎军,等,2023. 基于卷积神经网络和黄铁矿大数据判别金矿类型[J]. 地质学报,97(10):3396-3409.
    [88]
    朱随洲,储照波,金刚,等,2022. 河南九仗沟金矿地质特征及成因机制探讨[J]. 中国锰业,40(2):72-78.
  • 加载中

Catalog

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (285) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return