Volume 30 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
LIU S Y,ZHANG D,YANG M J,et al.,2024. Characteristics of chlorites from the Haopinggou Ag–Au polymetallic deposit in the Xiong’ershan ore concentration area and its exploration implications[J]. Journal of Geomechanics,30(1):129−146 doi: 10.12090/j.issn.1006-6616.2023121
Citation: LIU S Y,ZHANG D,YANG M J,et al.,2024. Characteristics of chlorites from the Haopinggou Ag–Au polymetallic deposit in the Xiong’ershan ore concentration area and its exploration implications[J]. Journal of Geomechanics,30(1):129−146 doi: 10.12090/j.issn.1006-6616.2023121

Characteristics of chlorites from the Haopinggou Ag–Au polymetallic deposit in the Xiong’ershan ore concentration area and its exploration implications

doi: 10.12090/j.issn.1006-6616.2023121
Funds:  This research is financially supported by the School–Enterprise Cooperation Project (Grant No. 33112021007) and the National Natural Science Foundation of China (Grant No. 42202067).
More Information
  • Received: 2023-07-25
  • Revised: 2023-10-18
  • Accepted: 2023-11-02
  • Available Online: 2024-01-31
  • Published: 2024-02-01
  •   Objective  The Haopinggou Ag-Au polymetallic deposit is a typical intermediate-sulfidation epithermal deposit in the Xiong'ershan ore concentration area. Ag-Pb-Zn mineralization mainly occurs in steeply dipping veins and breccia matrix. The relationship between large-scale Pb-Zn mineralization and widely developed alteration minerals remains unclear.   Methods  In order to discuss chlorite's significance related to Pb-Zn mineralization, chlorite composition in the Haopinggou Ag-Au polymetallic deposit has been analyzed by field geological observation and electron microprobe analysis (EMPA) in this paper.  Results  Three types of chlorite were observed in the deposit, occurring in altered wall rocks (Type I), in(with) Pb-Zn sulfides (Type II), and in(with) the breccia matrix (Type III). All three types of chlorite are prochlorites and fall within the compositional range of Fe-rich chlorite, indicating that they could be formed in a partially reducing acidic environment. Fe2+ for Mg2+ is the primary substitution in chlorite lattice, suggesting a close association between chlorite formation and mafic wall rocks. Based on the corrected chlorite geothermometer, these chlorites formed under aluminum-saturated conditions in the medium to low-temperature range of 196-239℃. The temperatures of chlorites associated with mineralization (Types II and III) are higher than those in chlorites around quartz veins (Type I). It is believed that during the mineralization process, the hydrothermal fluids evolved from acidic to nearly neutral conditions as the temperature gradually decreased. The initial acidic environment facilitated interaction between water and rocks, promoting the dissolution of surrounding rocks and providing space for the further precipitation of metal sulfides. The evolution of ore fluid properties also corresponds to the deposition process of Ag-Pb-Zn. The genesis of chlorite in the deposit is well-correlated with the ore-forming and holds significant prospecting value. (1) Type I chlorites mainly develop on both sides of quartz veins, formed by the dissolution and metasomatism of basic wall rocks by ore-bearing hydrothermal fluids. Type I chlorite's Fe and Mg components are mostly derived from the wall rocks. Although this type does not contain mineralization, it can be used to trace veins. (2) Type III chlorites reflect the migration process of ore-bearing hydrothermal fluids carrying dissolved minerals (biotite/clinopyroxene), which precipitate with changes in the physicochemical environment. Type III chlorite's Fe and Mg components are mainly introduced by ore-bearing hydrothermal fluids. This type of chlorite fills the intergranular pore spaces between minerals and easily replaces minerals such as biotite and hornblende, exhibiting apparent mineral alteration features in hand specimens, which is beneficial for prospecting.(3) The formation mechanism of Type II chlorites includes the possibilities mentioned above. This type of chlorite is formed by complete dissolution and metasomatism of cement in ore-bearing hydrothermal fluids, forming fine-grained cryptocrystalline chlorite fillings in breccia rocks. Ore-bearing hydrothermal fluids and wall rocks both contribute Fe and Mg in the chlorites. Hand specimens of Type II chlorite are dark green, disseminated and filled in the matrix, making it easy to distinguish. The chemical characteristics of Type II chlorites are similar to those of chemical characteristics of granite-related deposits, implying the contribution of magmatic fluids to ore-forming fluids.  Conclusion  The Haopinggou Ag-Au polymetallic deposit contains three types of chlorites. Their chemical characteristics all reflect an acidic and reducing metallogenic environment. In cation exchange, the primary substitution is Fe for Mg, and other substitutions are insignificant. The effect of Fe/(Fe+Mg) must be eliminated in order to calculate the temperature of such deposits using chlorite geothermometers. The formation mechanism of the three chlorites is closely related to mafic wall rock, and their chemical properties suggest the involvement of magmatic fluids in ore-forming fluids.  Significance  These three types of chlorite are well-matched with intense Ag-Pb-Zn mineralization and can serve as key indicators for locating Pb-Zn veins.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    BOURDELLE F, PARRA T, CHOPIN C, et al. , 2013. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions[J]. Contributions to Mineralogy and Petrology, 165(4): 723-735. doi: 10.1007/s00410-012-0832-7
    [2]
    BOURDELLE F, CATHELINEAU M, 2015. Low-temperature chlorite geothermometry: a graphical representation based on a T-R2+-Si diagram[J]. European Journal of Mineralogy, 27(5): 617-626. doi: 10.1127/ejm/2015/0027-2467
    [3]
    CATHELINEAU M, NIEVA D, 1985. A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system[J]. Contributions to Mineralogy and Petrology, 91(3): 235-244. doi: 10.1007/BF00413350
    [4]
    CATHELINEAU M, 1988. Cation site occupancy in chlorites and illites as a function of temperature[J]. Clay Minerals, 23(4): 471-485. doi: 10.1180/claymin.1988.023.4.13
    [5]
    CHEN Y J, SUI Y H, PIRAJNO F, 2003. Exclusive evidences for CMF model and a case of orogenic silver deposits: isotope geochemistry of the Tieluping silver deposit, east Qinling orogen[J]. Acta Petrologica Sinica, 19(3): 551-568. (in Chinese with English abstract)
    [6]
    CHEN Y J, PIRAJNO F, SUI Y H, 2004. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China: a case study of orogenic silver-dominated deposits and related tectonic setting[J]. Mineralium Deposita. 39(5-6): 560-575. doi: 10.1007/s00126-004-0429-9
    [7]
    CHENG G G, 2013. Study on the mineralization and prognosis in western Mt. Xiong’er silver-lead-zinc deposit, Henan provice[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    [8]
    DAI C C, LIU X D, RAO Q, et al. , 2017. Authigenic chlorite compositional evolution and temperature calculation of Xujiahe formation sandstone in central Sichuan basin[J]. Geological Review, 63(3): 831-841. (in Chinese with English abstract)
    [9]
    DEER W A, HOWIE R A, ZUSSMAN J, 1962. Rock-forming minerals: sheet silicates[M]. London: Longman: 270.
    [10]
    DIWU C R, SUN Y, ZHAO Y, et al. , 2014. Geochronological, geochemical, and Nd-Hf isotopic studies of the Qinling complex, central China: implications for the evolutionary history of the North Qinling Orogenic Belt[J]. Geoscience Frontiers, 5(4): 499-513. doi: 10.1016/j.gsf.2014.04.001
    [11]
    DIWU C R, SUN Y, LIN C L, et al. , 2017. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan province, China[J]. Acta Petrologica Sinica, 23(2): 253-262. (in Chinese with English abstract)
    [12]
    DONG Y P, SAFONOVA I, WANG T, 2016. Tectonic evolution of the Qinling orogen and adjacent orogenic belts[J]. Gondwana Research, 30: 1-5. doi: 10.1016/j.gr.2015.12.001
    [13]
    DORA M L, RANDIVE K R, 2015. Chloritisation along the Thanewasna shear zone, Western Bastar Craton, Central India: its genetic linkage to Cu-Au mineralisation[J]. Ore Geology Reviews, 70: 151-172. doi: 10.1016/j.oregeorev.2015.03.018
    [14]
    DYAR M D, GUIDOTTI C V, HARPER G D, et al. , 1992. Controls on ferric iron in chlorite. geological society of America[J]. Abstracts with Programs, 24: 7.
    [15]
    FANG W X, WANG L, LU J, et al. , 2017. Chloritization facies and restoration of heat flux for tectonic-magmatic-thermal events of Sareke copper mine in the Xinjiang Uygur autonomous region, China[J]. Acta Mineralogica Sinica, 37(5): 661-675. (in Chinese with English abstract)
    [16]
    FIALIPS C I, PETIT S, DECARREAU A, et al. , 1998. Effects of temperature and PH on the kaolinite crystallinity[J]. Mineralogical Magazine, 62A (1): 452-453. doi: 10.1180/minmag.1998.62A.1.239
    [17]
    GAO J J, MAO J W, YE H S, et al. , 2010. Geology and ore-forming fluid of silver-lead-zinc lode deposit of Shagou, western Henan province[J]. Acta Petrologica Sinica, 26(3): 740-756. (in Chinese with English abstract)
    [18]
    GE X K, JU H Y, ZHAO F H, et al. , 2020. Characteristics of chlorites in the Shangdajing porphyry Mo deposit, Inner Mongolia and their metallogenic implications[J]. Geology and Exploration, 56(4): 704-713. (in Chinese with English abstract)
    [19]
    HAN J S, YAO J M, CHEN H Y, et al. , 2014. Fluid inclusion and stable isotope study of the Shagou Ag–Pb–Zn deposit, Luoning, Henan province, China: Implications for the genesis of an orogenic lode Ag–Pb–Zn system[J]. Ore Geology Reviews, 62: 199-210. doi: 10.1016/j.oregeorev.2014.03.012
    [20]
    HAN Y G, ZHANG S H, PIRAJNO F, et al. , 2009. New 40Ar–39Ar age constraints on the deformation along the Machaoying fault zone: Implications for Early Cambrian tectonism in the North China Craton[J]. Gondwana Research, 16(2): 255-263. doi: 10.1016/j.gr.2009.02.001
    [21]
    HEDENQUIST J W, ANTONIO ARRIBAS S, GONZALEZ-URIEN E, 2000. Exploration for epithermal gold deposits[M]//HAGEMANN S G, BROWN P E. Reviews in economic geology. Littleton: Society of Economic Geologists: 245-277.
    [22]
    HILLIER S, 1993. Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine Mudrocks, Orcadian basin, Scotland[J]. Clays and Clay Minerals, 41(2): 240-259. doi: 10.1346/CCMN.1993.0410211
    [23]
    HU X K, TANG L, ZHANG S T, et al. , 2020. Geochemistry, zircon U-Pb geochronology and Hf-O isotopes of the Late Mesozoic granitoids from the Xiong'ershan area, East Qinling Orogen, China: implications for petrogenesis and molybdenum metallogeny[J]. Ore Geology Reviews, 124: 103653. doi: 10.1016/j.oregeorev.2020.103653
    [24]
    INOUE A, 1995. Formation of clay minerals in hydrothermal environments[M]//VELDE B. Origin and mineralogy of clays: clays and the environment. Berlin: Springer: 268-329.
    [25]
    INOUE A, MEUNIER A, PATRIER-MAS P, et al. , 2009. Application of chemical geothermometry to low-temperature trioctahedral chlorites[J]. Clays and Clay Minerals, 57(3): 371-382. doi: 10.1346/CCMN.2009.0570309
    [26]
    JOWETT E C, 1991. Fitting iron and magnesium into the hydrothermal chlorite geothermometer[M]. GAC/MAC/SEG Joint annual meeting. Toronto: 27−29, , Program with Abstracts 16: A62.
    [27]
    KRANIDIOTIS P, MACLEAN W H, 1987. Systematics of chlorite alteration at the Phelps dodge massive sulfide deposit, Matagami, Quebec[J]. Economic Geology, 82(7): 1898-1911. doi: 10.2113/gsecongeo.82.7.1898
    [28]
    LAIRD J, 1988. Chlorites: metamorphic petrology[J]. Reviews in Mineralogy and Geochemistry, 19(1): 405-453.
    [29]
    LI H M, WANG D H, WANG X X, et al. , 2012. The Early Mesozoic syenogranite in Xiong'er Mountain area, southern margin of North China Craton: SHRIMP zircon U-Pb dating, geochemistry and its significance[J]. Acta Petrologica et Mineralogica, 31(6): 771-782. (in Chinese with English abstract)
    [30]
    LI L, 2011. Study of characters of biotite and chlorite of molybdenum deposit in Antuoling, Hebei[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    [31]
    LI L X, LI H M, XU Y X, et al. , 2015. Zircon growth and ages of migmatites in the Algoma-type BIF-hosted iron deposits in Qianxi Group from eastern Hebei province, China: timing of BIF deposition and anatexis[J]. Journal of Asian Earth Sciences, 113: 1017-1034. doi: 10.1016/j.jseaes.2015.02.007
    [32]
    LI N, SUN Y L, LI J, et al. , 2008. Molybdenite Re-Os isotope age of the Dahu Au-Mo deposit, Xiaoqinling and the Indosinian mineralization[J]. Acta Petrologica Sinica, 24(4): 810-816. (in Chinese with English abstract)
    [33]
    LI N, CHEN Y J, SANTOSH M, et al. , 2018. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance[J]. Earth-Science Reviews, 182: 141-173. doi: 10.1016/j.earscirev.2018.05.004
    [34]
    LI Z K, LI J W, CHEN L, et al. , 2010. Occurrence of silver in the Shagou Ag-Pb-Zn Deposit, Luoning County, Henan province: implications for mechanism of silver enrichment[J]. Earth Science: Journal of China University of Geosciences, 35(4): 621-636. (in Chinese with English abstract) doi: 10.3799/dqkx.2010.077
    [35]
    LI Z K, LI J W, ZHAO X F, et al. , 2013. Crustal-extension Ag-Pb-Zn veins in the Xiong’ershan District, Southern North China craton: constraints from the Shagou deposit[J]. Economic Geology, 108(7): 1703-1729. doi: 10.2113/econgeo.108.7.1703
    [36]
    LI Z K, LI J W, COOKE D R, et al. , 2016. Textures, trace elements, and Pb isotopes of sulfides from the Haopinggou vein deposit, southern North China Craton: implications for discrete Au and Ag–Pb–Zn mineralization[J]. Contributions to Mineralogy and Petrology, 171(12): 99. doi: 10.1007/s00410-016-1309-x
    [37]
    LIANG T, LU R, LUO Z H, et al. , 2015. LA-ICP-MS U-Pb age of zircons from Haopinggou Biotite granite porphyry in Xiong’er Mountain, Western Henan province, and its geologic implications[J]. Geological Review, 61(4): 901-912. (in Chinese with English abstract)
    [38]
    LIAO Z, LIU Y P, LI C Y, et al. , 2010. Characteristics of chlorites from Dulong Sn-Zn deposit and their metallogenic implications[J]. Mineral Deposits, 29(1): 169-176. (in Chinese with English abstract)
    [39]
    LIU W Y, LIU J S, HE M X, et al. , 2019. Petrogeochemistry, zircon U-Pb ages and Hf isotopic composition of Haopinggou pluton, Western Henan[J]. The Chinese Journal of Nonferrous Metals, 29(7): 1551-1566. (in Chinese with English abstract)
    [40]
    LIU Y P, ZHANG S Y, ZHANG H F, 2016. Advances on mineral genesis of chlorite: a review[J]. Advances in Geosciences, 6(3): 264-282. (in Chinese with English abstract) doi: 10.12677/AG.2016.63028
    [41]
    LOWELL J D, GUILBERT J M, 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology, 65(4): 373-408. doi: 10.2113/gsecongeo.65.4.373
    [42]
    LYU Z C, CHEN H, MI K F, et al. , 2022. The theory and method of ore prospecting prediction for exploration area: case studies of the Lala copper deposit in Sichuan, Muhu–Maerkantu manganese ore deposit in Xinjiang and Aonaodaba tin-polymetallic deposit in Inner Mongolia[J]. Journal of Geomechanics, 28(5): 842-865. (in Chinese with English abstract)
    [43]
    MAO J W, ZHENG R F, YE H S, et al. , 2006. 40Ar/39 Ar dating of fuchsite and sericite from altered rocks close to ore veins in Shagou large-size Ag-Pb-Zn deposit of Xiong’ershan area, western Henan province, and its significance[J]. Mineral Deposits, 25(4): 359-368. (in Chinese with English abstract)
    [44]
    MAO J W, YE H S, WANG R T, et al. , 2009. Mineral deposit model of Mesozoic porphyry Mo and vein-type Pb-Zn-Ag ore deposits in the eastern Qinling, Central China and its implication for prospecting[J]. Geological Bulletin of China, 28(1): 72-79. (in Chinese with English abstract)
    [45]
    MAO J W, XIE G Q, PIRAJNO F, et al. , 2010. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences, 57(1): 51-78. doi: 10.1080/08120090903416203
    [46]
    MAO J W, PIRAJNO F, COOK N, 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings—An introduction to the special issue[J]. Ore Geology Reviews, 43(1): 1-7. doi: 10.1016/j.oregeorev.2011.09.003
    [47]
    PACEY A, WILKINSON J J, COOKE D R, 2020. Chlorite and epidote mineral chemistry in porphyry ore systems: a case study of the Northparkes District, New South Wales, Australia[J]. Economic Geology, 115(4): 701-727. doi: 10.5382/econgeo.4700
    [48]
    RANDIVE K R, KORAKOPPA M M, MULEY S V, et al. , 2015. Paragenesis of Cr-rich muscovite and chlorite in green-mica quartzites of Saigaon- Palasgaon area, Western Bastar Craton, India[J]. Journal of Earth System Science, 124(1): 213-225. doi: 10.1007/s12040-014-0514-0
    [49]
    REYES A G, 1990. Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment[J]. Journal of Volcanology and Geothermal Research, 43(1-4): 279-309. doi: 10.1016/0377-0273(90)90057-M
    [50]
    SHIROZU H, 1978. Chlorite minerals[J]. Developments in Sedimentology, 26: 243-264.
    [51]
    SILLITOE R H, HEDENQUIST J W, 2005. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits[M]//SIMMONS S F, GRAHAM I. Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth. Littleton: Society of Economic Geologists: 315-343.
    [52]
    TANG K F, 2014. Characteristics, genesis, and geodynamic setting of representative gold deposits in the Xiong’ershan district, southern margin of the North China Craton[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract)
    [53]
    TIAN Y F, MAO J W. , JIAN W, et al. , 2023. Recognition of the Xiayu intermediate-sulfidation epithermal Ag-Pb-Zn-Au(-Cu) mineralization in the East Qinling polymetallic ore belt, China: constraints from geology and geochronology[J]. Ore Geology Reviews, 156: 105398. doi: 10.1016/j.oregeorev.2023.105398
    [54]
    TRUMBULL R B, HUA L, LEHRBERGER G, et al. , 1996. Granitoid-hosted gold deposits in the Anjiayingzi district of inner Mongolia, People’s Republic of China[J]. Economic Geology, 91(5): 875-895. doi: 10.2113/gsecongeo.91.5.875
    [55]
    WALSHE J L, 1986. A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems[J]. Economic Geology, 81(3): 681-703. doi: 10.2113/gsecongeo.81.3.681
    [56]
    WANG C M, DENG J, BAGAS L, et al. , 2021. Origin and classification of the Late Triassic Huaishuping gold deposit in the eastern part of the Qinling-Dabie Orogen, China: implications for gold metallogeny[J]. Mineralium Deposita, 56(4): 725-742. doi: 10.1007/s00126-020-01004-5
    [57]
    WANG J L, ZHANG H F, ZHANG J, et al. , 2020. Highly heterogeneous Pb isotope composition in the Archean continental lower crust: insights from the high-grade metamorphic suite of the Taihua Group, Southern North China Craton[J]. Precambrian Research, 350: 105927. doi: 10.1016/j.precamres.2020.105927
    [58]
    WANG X L, JIANG S Y, DAI B Z, 2010. Melting of enriched Archean subcontinental lithospheric mantle: evidence from the ca. 1760 Ma volcanic rocks of the Xiong’er Group, southern margin of the North China Craton[J]. Precambrian Research, 182(3): 204-216. doi: 10.1016/j.precamres.2010.08.007
    [59]
    WANG X X, WANG T, KE C H, et al. , 2015. Nd-Hf isotopic mapping of Late Mesozoic granitoids in the East Qinling orogen, central China: constraint on the basements of terranes and distribution of Mo mineralization[J]. Journal of Asian Earth Sciences, 103: 169-183. doi: 10.1016/j.jseaes.2014.07.002
    [60]
    WANG X Y, MAO J W, CHENG Y B, et al. , 2014. Characteristics of chlorite from the Xinliaodong Cu polymetallic deposit in eastern Guangdong province and their geological significance[J]. Acta Petrologica et Mineralogica, 33(5): 885-905. (in Chinese with English abstract)
    [61]
    WILKINSON J J, CHANG Z S, COOKE R D, et al. , 2015. The chlorite proximitor: a new tool for detecting porphyry ore deposits[J]. Journal of Geochemical Exploration, 152: 10-26. doi: 10.1016/j.gexplo.2015.01.005
    [62]
    XIAO B, CHEN H Y, HOLLINGS P, et al. , 2018a. Element transport and enrichment during propylitic alteration in Paleozoic porphyry Cu mineralization systems: insights from chlorite chemistry[J]. Ore Geology Reviews, 102: 437-448. doi: 10.1016/j.oregeorev.2018.09.020
    [63]
    XIAO B, CHEN H Y, WANG Y F, et al. , 2018b. Chlorite and epidote chemistry of the Yandong Cu deposit, NW China: metallogenic and exploration implications for Paleozoic porphyry Cu systems in the Eastern Tianshan[J]. Ore Geology Reviews, 100: 168-182. doi: 10.1016/j.oregeorev.2017.03.004
    [64]
    XIE X G, BYERLY G R, FERRELL JR R E, 1997. Iib trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry[J]. Contributions to Mineralogy and Petrology, 126(3): 275-291. doi: 10.1007/s004100050250
    [65]
    XU J H, 2021. Deposit characteristics and metallogenesis of thin vein-type hydrothermal silver-lead-zinc deposits in the Xiong’ershan district along the eastern Qinling orogenic belt[D]. Beijing: University of Chinese Academy of Sciences.
    [66]
    YANG F, XUE F, Santonsh M. , et al. , 2019. Late Mesozoic magmatism in the East Qinling Orogen, China and its tectonic implications[J]. Geoscience Frontiers, 10(5): 1803-1821 doi: 10.1016/j.gsf.2019.03.003
    [67]
    YANG X Z, YANG Z L, TAO K Y, et al. , 2002. Formation temperature of chloritein oil-bearing basalt[J]. Acta Mineralogica Sinica, 22(4): 365-370. (in Chinese with English abstract)
    [68]
    YE H S, 2006. The mesozoic tectonic evolution and Pb-Zn-Ag Metallogeny in the south margin of North China craton[J]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    [69]
    YUAN H, HAN R S, FENG Z X, et al. , 2022. Mineralization-alteration zoning law and element compositional zoning pattern in mineralized altered rocks from the Daliangzi Pb-Zn deposit, southwestern Sichuan[J]. Journal of Geomechanics, 28(3): 432-447. (in Chinese with English abstract)
    [70]
    ZANE A, WEISS Z, 1998. A procedure for classifying rock-forming chlorites based on microprobe data: una procedura per la classificazione delle cloriti sulla base di dati microchimici[J]. Rendiconti Lincei, 9(1): 51-56. doi: 10.1007/BF02904455
    [71]
    ZANE W, FYFE W S, 1995. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazi[J]. Mineralium Deposita, 30(1): 30-38.
    [72]
    ZHANG G W, GUO A L, DONG Y P, et al. , 2019. Rethinking of the Qinling orogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract)
    [73]
    ZHANG J, LIU X X, WANG Y T, et al. , 2021. Characteristics of chlorite from the Baguamiao gold deposit in Shaanxi province and its geological implication[J]. Geological Bulletin of China, 40(4): 586-603. (in Chinese with English abstract)
    [74]
    ZHANG W, ZHANG F F, WANG Y H, et al. , 2022. Chlorite chemistry, H-O-S-Pb isotopes and fluid characteristics of the Yuhai Cu-Mo Deposit in Eastern Tianshan: implications for porphyry copper mineralization and exploration[J]. Journal of Geochemical Exploration, 241: 107059. doi: 10.1016/j.gexplo.2022.107059
    [75]
    ZHANG X M, ZHANG D, BI M F, et al. , 2021. Genesis and geodynamic setting of the Nanyangtian tungsten deposit, SW China: Constraints from structural deformation, geochronology, and S–O isotope data[J]. Ore Geology Reviews, 138: 104354. doi: 10.1016/j.oregeorev.2021.104354
    [76]
    ZHANG Y H, ZHANG S H, HAN Y G, et al. , 2006. Strik-slip features of the machaoying fault zone and its evolution in the Huaxiong terrane, southern north China craton[J]. Journal of Jilin University (Earth Science Edition), 36(2): 169-176, 193. (in Chinese with English abstract)
    [77]
    ZHANG Z M, ZENG Q D, GUO Y P, et al. , 2020. Genesis of the Kangshan Au-polymetallic deposit, Xiong’ershan District, North China Craton: Constraints from fluid inclusions and C-H-O-S-Pb isotopes[J]. Ore Geology Reviews, 127: 103815. doi: 10.1016/j.oregeorev.2020.103815
    [78]
    ZHANG Z M, ZENG Q D, WANG Y B, et al. , 2023. Metallogenic age and fluid evolution of the Kangshan Au-polymetallic deposit in the southern margin of the North China Craton: constraints from monazite U-Pb age, and in-situ trace elements and S isotopes of pyrite[J]. Acta Petrologica Sinica, 39(3): 865-885. (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.03.14
    [79]
    ZHAO G C, SUN M, WILDE S A, et al. , 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002
    [80]
    ZHENG W, CHEN M H, ZHAO H J, et al. , 2013. Skarn mineral characteristics of the Tiantang Cu-Pb-Zn polymetallic deposit in Guangdong province and their geological significance[J]. Acta Petrologica et Mineralogica, 32(1): 23-40. (in Chinese with English abstract)
    [81]
    ZHOU D, ZHAO T P, ZHAO P B, et al. , 2018. Chlorite EPMA characteristic and its geological significance of the Kangshan Au-Ag-Pb-Zn deposit in west of Henan[J]. Mineral Exploration, 9(5): 803-824. (in Chinese with English abstract)
    [82]
    ZHOU J X, WANG X C, WILDE S A, et al. , 2018. New insights into the metallogeny of MVT Zn-Pb deposits: a case study from the Nayongzhi in South China, using field data, fluid compositions, and in situ S-Pb isotopes[J]. American Mineralogist, 103(1): 91-108. doi: 10.2138/am-2018-6238
    [83]
    ZOU S H, XU D R, DENG T, et al. , 2019. Geochemical variations of the Late Mesozoic granitoids in the southern margin of North China Craton: A possible link to the tectonic transformation from compression to extension[J]. Gondwana Research, 75(0): 118-133
    [84]
    陈衍景, 隋颖慧, PIRAJNO F, 2003. CMF模式的排他性依据和造山型银矿实例: 东秦岭铁炉坪银矿同位素地球化学[J]. 岩石学报, 19(3): 551-568. doi: 10.3969/j.issn.1000-0569.2003.03.022
    [85]
    程广国, 2013. 河南熊耳山西段银铅锌矿床成矿作用及找矿预测研究[D]. 北京: 中国地质大学(北京).
    [86]
    戴朝成, 刘晓东, 饶强, 等, 2017. 川中地区须家河组自生绿泥石成分演化及其形成温度计算[J]. 地质论评, 63(3): 831-841.
    [87]
    第五春荣, 孙勇, 林慈銮, 等, 2007. 豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学[J]. 岩石学报, 23(2): 253-262. doi: 10.3969/j.issn.1000-0569.2007.02.006
    [88]
    方维萱, 王磊, 鲁佳, 等, 2017. 新疆萨热克铜矿床绿泥石化蚀变相与构造-岩浆-古地热事件的热通量恢复[J]. 矿物学报, 37(5): 661-675.
    [89]
    高建京, 毛景文, 叶会寿, 等, 2010. 豫西沙沟脉状Ag-Pb-Zn矿床地质特征和成矿流体研究[J]. 岩石学报, 26(3): 740-756.
    [90]
    葛祥坤, 句海玉, 赵峰华, 等, 2020. 内蒙古上打井斑岩型钼矿床绿泥石特征及成矿意义[J]. 地质与勘探, 56(4): 704-713.
    [91]
    李亮, 2011. 河北省安妥岭辉钼矿黑云母、绿泥石特征研究[D]. 北京: 中国地质大学(北京).
    [92]
    李诺, 孙亚莉, 李晶, 等, 2008. 小秦岭大湖金钼矿床辉钼矿铼锇同位素年龄及印支期成矿事件[J]. 岩石学报, 24(4): 810-816.
    [93]
    李占轲, 李建威, 陈蕾, 等, 2010. 河南洛宁沙沟Ag-Pb-Zn矿床银的赋存状态及成矿机理[J]. 地球科学: 中国地质大学学报, 35(4): 621-636.
    [94]
    梁涛, 卢仁, 罗照华, 等, 2015. 豫西熊耳山蒿坪沟黑云母花岗斑岩的锆石LA-ICP-MSU-Pb年龄及其地质意义[J]. 地质论评, 61(4): 901-912.
    [95]
    廖震, 刘玉平, 李朝阳, 等, 2010. 都龙锡锌矿床绿泥石特征及其成矿意义[J]. 矿床地质, 29(1): 169-176. doi: 10.3969/j.issn.0258-7106.2010.01.015
    [96]
    刘燚平, 张少颖, 张华锋, 2016. 绿泥石的成因矿物学研究综述[J]. 地球科学前沿, 6(3): 264-282.
    [97]
    刘文毅, 刘继顺, 何美香, 等, 2019. 豫西蒿坪沟岩体岩石地球化学、锆石U-Pb年龄及Hf同位素组成[J]. 中国有色金属学报, 29(7): 1551-1566.
    [98]
    吕志成, 陈辉, 宓奎峰, 等, 2022. 勘查区找矿预测理论与方法及其应用案例[J]. 地质力学学报, 28(5): 842-865.
    [99]
    毛景文, 郑榕芬, 叶会寿, 等, 2006. 豫西熊耳山地区沙沟银铅锌矿床成矿的40Ar-39Ar年龄及其地质意义[J]. 矿床地质, 25(4): 359-368. doi: 10.3969/j.issn.0258-7106.2006.04.002
    [100]
    毛景文, 叶会寿, 王瑞廷, 等, 2009. 东秦岭中生代钼铅锌银多金属矿床模型及其找矿评价[J]. 地质通报, 28(1): 72-79.
    [101]
    唐克非, 2014. 华北克拉通南缘熊耳山地区金矿床时空演化、矿床成因及成矿构造背景[D]. 武汉: 中国地质大学(武汉).
    [102]
    王小雨, 毛景文, 程彦博, 等, 2014. 粤东新寮岽铜多金属矿床绿泥石特征及其地质意义[J]. 岩石矿物学杂志, 33(5): 885-905.
    [103]
    徐进鸿, 2021. 东秦岭熊耳山地区薄脉状热液型Ag-Pb-Zn矿床特征与成矿作用研究[D]. 北京: 中国科学院大学.
    [104]
    杨献忠, 杨祝良, 陶奎元, 等, 2002. 含油玄武岩中绿泥石的形成温度[J]. 矿物学报, 22(4): 365-370.
    [105]
    叶会寿, 2006. 华北陆块南缘中生代构造演化与铅锌银成矿作用[D]. 北京: 中国地质科学院.
    [106]
    袁航, 韩润生, 冯志兴, 等, 2022. 川西南大梁子铅锌矿床矿化蚀变分带规律与元素组合分带模型[J]. 地质力学学报, 28(3): 432-447.
    [107]
    张国伟, 郭安林, 董云鹏, 等, 2019. 关于秦岭造山带[J]. 地质力学学报, 25(5): 746-768.
    [108]
    张娟, 刘新星, 王义天, 等, 2021. 陕西凤太矿集区八卦庙金矿床绿泥石特征及其找矿意义[J]. 地质通报, 40(4): 586-603.
    [109]
    张元厚, 张世红, 韩以贵, 等, 2006. 华熊地块马超营断裂走滑特征及演化[J]. 吉林大学学报(地球科学版), 36(2): 169-176, 193.
    [110]
    张哲铭, 曾庆栋, 王永彬, 等, 2023. 华北克拉通南缘康山金多金属矿床成矿时代及流体演化: 来自独居石U-Pb年龄、黄铁矿微量元素和原位S同位素制约[J]. 岩石学报, 39(3): 865-885.
    [111]
    郑伟, 陈懋弘, 赵海杰, 等, 2013. 广东省天堂铜铅锌多金属矿床矽卡岩矿物学特征及其地质意义[J]. 岩石矿物学杂志, 32(1): 23-40.
    [112]
    周栋, 赵太平, 赵鹏彬, 等, 2018. 豫西康山金银铅锌矿床绿泥石电子探针成分特征及其地质意义[J]. 矿产勘查, 9(5): 803-824.
  • 加载中

Catalog

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (423) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return