Citation: | CUI Runze, WEI Chunjing, 2023. Evolution of metamorphic processes in the Neoarchean mafic granulites of the Qingyuan Terrane in northern Liaoning, North China Craton. Journal of Geomechanics, 29 (5): 736-756. DOI: 10.12090/j.issn.1006-6616.2023049 |
Multiple interpretations exist regarding the tectonic evolution model of the Neoarchean North China Craton, requiring a more in-depth study of metamorphic processes. Systematic petrographic observations, mineral chemical analysis, phase equilibrium modeling, and zircon dating were conducted on the basic granulites from Qingyuan in northern Liaoning to elucidate their metamorphic evolution processes and geological significance. The selected samples of mafic granulites were divided into the garnet-bearing domain (19DJ07-GD) and garnet-free domain (19DJ07-NGD), with the garnet-bearing region displaying a banded and inhomogeneous distribution. Both domains exhibit two generations of granulite facies assemblages. In the garnet-bearing domain, the first-generation metamorphic mineral assemblage includes garnet + clinopyroxene + orthopyroxene + hornblende + biotite + plagioclase + quartz. Notably, the first-generation plagioclase (Pl1) exhibits a complex compositional zoning, with anorthite content (xAn) increasing from the core to the mantle and then decreasing towards the rim. Similarly, the titanium component zoning in the first-generation amphibole (Amp1) follows a pattern of increasing from the core to the mantle and then decreasing towards the rim. Based on mineral assemblages and corresponding component zoning, it is inferred that the first-generation granulite facies metamorphic process followed a counterclockwise P-Tpath, involving a pre-peak P-T rise stage and a post-peak P-T drop stage. Phase equilibrium modeling constrains the peak conditions at 0.8~0.9 GPa/900~950 ℃, indicative of high-ultrahigh-temperature (HT-UHT) metamorphism conditions. Zircon dating results yielded a post-peak cooling age of 2498±6.9 Ma (MSWD=0.39). Considering the regional "dome-and-keel" tectonics, the counterclockwise P-T path, and the metamorphic timing of supracrustal rock nearly synchronous with late-stage TTG magmatic pulses, the UHT metamorphism of the supracrustal rocks is believed to be controlled by the unique Archean vertical tectonics/sagduction system. The second-generation metamorphic assemblage is characterized by locally formed coronas or symplectites of garnet + quartz ± clinopyroxene, representing high-pressure (HP) granulite facies metamorphism associated with a Paleoproterozoic orogenic event.
ANHAEUSSER C R, 2014. Archaean greenstone belts and associated granitic rocks-a review[J]. Journal of African Earth Sciences, 100: 684-732. doi: 10.1016/j.jafrearsci.2014.07.019
|
BAI X, LIU S W, YAN M, et al., 2014. Geological event series of Early Precambrian metamorphic complex in South Fushun area, Liaoning province[J]. Acta Petrologica Sinica, 30(10): 2905-2924. (in Chinese with English abstract)
|
BROWN M, 2007. Metamorphic conditions in orogenic belts: a record of secular change[J]. International Geology Review, 49(3): 193-234. doi: 10.2747/0020-6814.49.3.193
|
BROWN M, JOHNSON T, 2018. Secular change in metamorphism and the onset of global plate tectonics[J]. American Mineralogist, 103(2): 181-196. doi: 10.2138/am-2018-6166
|
CAO Y, SONG S G, NIU Y L, et al., 2011. Variation of mineral composition, fabric and oxygen fugacity from massive to foliated eclogites during exhumation of subducted ocean crust in the North Qilian suture zone, NW China[J]. Journal of Metamorphic Geology, 29(7): 699-720. doi: 10.1111/j.1525-1314.2011.00937.x
|
COLLINS W J, VAN KRANENDONK M J, TEYSSIER C, 1998. Partial convective overturn of Archaean crust in the east Pilbara Craton, Western Australia: driving mechanisms and tectonic implications[J]. Journal of Structural Geology, 20(9-10): 1405-1424. doi: 10.1016/S0191-8141(98)00073-X
|
CONDIE K C, 1981. Archean greenstone belts[M]. Amsterdam: Elsevier.
|
CORFU F, HANCHAR J M, HOSKIN P W O, et al., 2003. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. doi: 10.2113/0530469
|
DOS SANTOS T M B, MUNHÁ J M U, TASSINARI C C G, et al., 2011. P-T-fluid evolution and graphite deposition during retrograde metamorphism in Ribeira fold belt, SE Brazil: oxygen fugacity, fluid inclusions and C-O-H isotopic evidence[J]. Journal of South American Earth Sciences, 31(1): 93-109. doi: 10.1016/j.jsames.2010.02.002
|
DUAN Z Z, WEI C J, REHMAN H U, 2017. Metamorphic evolution and zircon ages of pelitic granulites in eastern Hebei, North China Craton: insights into the regional Archean P-T-t history[J]. Precambrian Research, 292: 240-257. doi: 10.1016/j.precamres.2017.02.008
|
DUAN Z Z, WEI C J, LI Z, 2019. Metamorphic P-T paths and zircon u-pb ages of Paleoproterozoic metabasic dykes in eastern Hebei and northern Liaoning: Implications for the tectonic evolution of the North China Craton[J]. Precambrian Research, 326: 124-141. doi: 10.1016/j.precamres.2017.11.001
|
FRANÇOIS C, PHILIPPOT P, REY P, et al., 2014. Burial and exhumation during Archean sagduction in the East Pilbara granite-greenstone terrane[J]. Earth and Planetary Science Letters, 396: 235-251. doi: 10.1016/j.epsl.2014.04.025
|
GENG Y S, LIU F L, YANG C H, 2006. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication[J]. Acta Geologica Sinica, 80(6): 819-833. doi: 10.1111/j.1755-6724.2006.tb00305.x
|
GREEN E C R, WHITE R W, DIENER J F A, et al., 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks[J]. Journal of Metamorphic Geology, 34(9): 845-869. doi: 10.1111/jmg.12211
|
HAWTHORNE F C, OBERTI R, HARLOW G E, et al., 2012. Nomenclature of the amphibole supergroup[J]. American Mineralogist, 97(11-12): 2031-2048. doi: 10.2138/am.2012.4276
|
HICKMAN A H, 2004. Two contrasting granite- greenstone terranes in the Pilbara Craton, Australia: evidence for vertical and horizontal tectonic regimes prior to 2900 Ma[J]. Precambrian Research, 131(3-4): 153-172. doi: 10.1016/j.precamres.2003.12.009
|
HOLLAND T, POWELL R, 2003. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation[J]. Contributions to Mineralogy and Petrology, 145(4): 492-501. doi: 10.1007/s00410-003-0464-z
|
HOLLAND T J B, POWELL R, 1998. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of Metamorphic Geology, 16(3): 309-343. doi: 10.1111/j.1525-1314.1998.00140.x
|
HOLLAND T J B, POWELL R, 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 29(3): 333-383. doi: 10.1111/j.1525-1314.2010.00923.x
|
JAYANANDA M, BANERJEE M, PANT NC, et al., 2012. 2.62 Ga high-temperature metamorphism in the central part of the Eastern Dharwar Craton: implications for late Archaean tectonothermal history[J]. Geological Journal, 47(2-3): 213-236. doi: 10.1002/gj.1308
|
KELSEY D E, POWELL R, 2011. Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: A thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system[J]. Journal of Metamorphic Geology, 29(1): 151-166. doi: 10.1111/j.1525-1314.2010.00910.x
|
KORHONEN F J, POWELL R, STOUT J H, 2012. Stability of sapphirine + quartz in the oxidized rocks of the Wilson Lake terrane, Labrador: calculated equilibria in NCKFMASHTO[J]. Journal of Metamorphic Geology, 30(1): 21-36. doi: 10.1111/j.1525-1314.2011.00954.x
|
KORHONEN F J, BROWN M, CLARK C, et al., 2013. Osumilite-melt interactions in ultrahigh temperature granulites: Phase equilibria modelling and implications for the P-T-t evolution of the Eastern Ghats Province, India[J]. Journal of Metamorphic Geology, 31(8): 881-907. doi: 10.1111/jmg.12049
|
KUSKY T M, LI J H, 2003. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 22(4): 383-397. doi: 10.1016/S1367-9120(03)00071-3
|
KUSKY T M, POLAT A, WINDLEY B F, et al., 2016. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: a record of outward growth of Precambrian continents[J]. Earth-Science Reviews, 162: 387-432. doi: 10.1016/j.earscirev.2016.09.002
|
KWAN L C J, ZHAO G C, YIN C Q, et al., 2016. Metamorphic P-T path of mafic granulites from Eastern Hebei: implications for the Neoarchean tectonics of the Eastern Block, North China Craton[J]. Gondwana Research, 37: 20-38. doi: 10.1016/j.gr.2016.05.004
|
LAMBERT I B, WYLLIE P J, 1972. Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications[J]. The Journal of Geology, 80(6): 693-708. doi: 10.1086/627795
|
LI Z, WEI C J, 2017. Two types of Neoarchean basalts from Qingyuan greenstone belt, North China Craton: petrogenesis and tectonic implications[J]. Precambrian Research, 292: 175-193. doi: 10.1016/j.precamres.2017.01.014
|
LI Z, WEI C J, CHEN B, et al., 2020. Late Neoarchean reworking of the Mesoarchean crustal remnant in northern Liaoning, North China Craton: a U-Pb-Hf-O-Nd perspective[J]. Gondwana Research, 80: 350-369. doi: 10.1016/j.gr.2019.10.020
|
LIN S F, BEAKHOUSE G P, 2013. Synchronous vertical and horizontal tectonism at late stages of Archean cratonization and genesis of Hemlo gold deposit, Superior craton, Ontario, Canada[J]. Geology, 41(3): 359-362. doi: 10.1130/G33887.1
|
LIU J, BOHLEN S R, ERNST W G, 1996. Stability of hydrous phases in subducting oceanic crust[J]. Earth and Planetary Science Letters, 143(1-4): 161-171. doi: 10.1016/0012-821X(96)00130-6
|
LIU T, WEI C J, 2018. Metamorphic evolution of Archean ultrahigh-temperature mafic granulites from the western margin of Qian'an gneiss dome, eastern Hebei Province, North China Craton: insights into the Archean tectonic regime[J]. Precambrian Research, 318: 170-187. doi: 10.1016/j.precamres.2018.10.007
|
LIU T, WEI C J, 2020. Metamorphic P-T paths and Zircon U-Pb ages of Archean ultra-high temperature paragneisses from the Qian'an gneiss dome, East Hebei terrane, North China Craton[J]. Journal of Metamorphic Geology, 38(4): 329-356. doi: 10.1111/jmg.12524
|
LIU T, WEI C J, KRÖNER A, et al., 2020. Metamorphic P-T paths for the Archean Caozhuang supracrustal sequence, eastern Hebei Province, North China Craton: implications for a sagduction regime[J]. Precambrian Research, 340: 105346. doi: 10.1016/j.precamres.2019.105346
|
LIU T, WEI C J, JOHNSON T E, et al., 2022a. Newly-discovered ultra-high temperature granulites from the East Hebei terrane, North China Craton[J]. Science Bulletin, 67(7): 670-673. doi: 10.1016/j.scib.2021.12.023
|
LIU T, LI Z, WEI C J, 2022b. Metamorphic evolution of the archean supracrustal rocks from the Qingyuan Area of the Northern Liaoning Terrane, North China Craton: constrained using phase equilibrium modeling and monazite dating[J]. Minerals, 12(9): 1079. doi: 10.3390/min12091079
|
LU H S, WEI C J, 2020. Late Neoarchean or late Paleoproterozoic high-pressure granulite facies metamorphism from the East Hebei terrane, North China Craton? [J]. Journal of Asian Earth Sciences, 190: 104195. doi: 10.1016/j.jseaes.2019.104195
|
MEZGER K, BOHLEN S R, HANSON G N, 1990. Metamorphic history of the Archean Pikwitonei granulite domain and the Cross Lake Subprovince, Superior Province, Manitoba, Canada[J]. Journal of Petrology, 31(2): 483-517. doi: 10.1093/petrology/31.2.483
|
MORIMOTO N, 1988. Nomenclature of pyroxenes[J]. Mineralogy and Petrology, 39(1): 55-76. doi: 10.1007/BF01226262
|
NEMCHIN A A, GIANNINI L M, BODORKOS S, et al., 2001. Ostwald ripening as a possible mechanism for zircon overgrowth formation during anatexis: theoretical constraints, a numerical model, and its application to pelitic migmatites of the Tickalara Metamorphics, northwestern Australia[J]. Geochimica et Cosmochimica Acta, 65(16): 2771-2788. doi: 10.1016/S0016-7037(01)00622-6
|
PENG P, WANG C, WANG X P, et al., 2015. Qingyuan high-grade granite-greenstone terrain in the eastern North China Craton: root of a Neoarchaean arc[J]. Tectonophysics, 662: 7-21. doi: 10.1016/j.tecto.2015.04.013
|
ROBERTS M P, FINGER F, 1997. Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? [J]. Geology, 25(4): 319-322. doi: 10.1130/0091-7613(1997)025<0319:DUPZAF>2.3.CO;2
|
RUBATTO D, 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 184(1-2): 123-138. doi: 10.1016/S0009-2541(01)00355-2
|
SAJEEV K, OSANAI Y, KON Y, et al., 2009. Stability of pargasite during ultrahigh-temperature metamorphism: A consequence of titanium and REE partitioning? [J]. American Mineralogist, 94(4): 535-545. doi: 10.2138/am.2009.2815
|
SEN C, DUNN T, 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites[J]. Contributions to Mineralogy and Petrology, 117(4): 394-409. doi: 10.1007/BF00307273
|
SLÁMA J, KOŠLER J, CONDON D J, et al., 2008. Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005
|
SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
|
VAVRA G, SCHMID R, GEBAUER D, 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology, 134(4): 380-404. doi: 10.1007/s004100050492
|
WAN Y S, SONG B, GENG Y S, et al., 2005a. Geochemical characteristics of Archaean basement in the Fushun-Qingyuan area, Northern Liaoning Province and its geological significance[J]. Geological Review, 51(2): 128-137. (in Chinese with English abstract)
|
WAN Y S, SONG B, YANG C, et al., 2005b. Zircon SHRIMP U-Pb geochronology of Archaean rocks from the Fushun-Qingyuan area, Liaoning Province and its geological significance[J]. Acta Geologica Sinica, 79(1): 78-87. (in Chinese with English abstract)
|
WAN Y S, DONG C Y, XIE H Q, et al., 2022. Huge growth of the late Mesoarchean-early Neoarchean (2.6~3.0 Ga) continental crust in the North China Craton: a review[J]. Journal of Geomechanics, 28(5): 866-906, doi: 10.12090/j.issn.1006-6616.20222817. (in Chinese with English abstract)
|
WANG K, LIU S W, WANG M J, et al., 2018. Formation ages, petrogenesis and geological implications of the archean granitoid rocks in the Xinbin-Weiziyu Area, northern Liaoning province[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 54(1): 61-79. (in Chinese with English abstract)
|
WANG M J, LIU S W, WANG W, et al., 2016a. Petrogenesis and tectonic implications of the Neoarchean North Liaoning tonalitic-trondhjemitic gneisses of the North China Craton, North China[J]. Journal of Asian Earth Sciences, 131: 12-39. doi: 10.1016/j.jseaes.2016.09.012
|
WANG W, LIU S W, CAWOOD P A, et al., 2016b. Late Neoarchean subduction-related crustal growth in the Northern Liaoning region of the North China Craton: evidence from ~2.55 to 2.50 Ga granitoid gneisses[J]. Precambrian Research, 281: 200-223. doi: 10.1016/j.precamres.2016.05.018
|
WARR L N, 2021. IMA-CNMNC approved mineral symbols[J]. Mineralogical Magazine, 85(3): 291-320. doi: 10.1180/mgm.2021.43
|
WATSON E B, HARRISON T M, 1984. Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches[J]. Physics of the Earth and Planetary Interiors, 35(1-3): 19-30. doi: 10.1016/0031-9201(84)90031-1
|
WEI C J, QIAN J H, ZHOU X W, 2014. Paleoproterozoic crustal evolution of the Hengshan-Wutai-Fuping region, North China craton[J]. Geoscience Frontiers, 5(4): 485-497. doi: 10.1016/j.gsf.2014.02.008
|
WEI C J, GUAN X, DONG J, 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs[J]. Acta Petrologica Sinica, 33(5): 1381-1404. (in Chinese with English abstract)
|
WHITE R W, POWELL R, HOLLAND T J B, et al., 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3[J]. Journal of Metamorphic Geology, 18(5): 497-511. doi: 10.1046/j.1525-1314.2000.00269.x
|
WHITE R W, POWELL R, HOLLAND T J B, 2007. Progress relating to calculation of partial melting equilibria for metapelites[J]. Journal of Metamorphic Geology, 25(5): 511-527. doi: 10.1111/j.1525-1314.2007.00711.x
|
WHITE R W, POWELL R, HOLLAND T J B, et al., 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems[J]. Journal of Metamorphic Geology, 32(3): 261-286. doi: 10.1111/jmg.12071
|
WHITNEY D L, EVANS B W, 2010. Abbreviations for names of rock-forming minerals[J]. American Mineralogist, 95(1): 185-187. doi: 10.2138/am.2010.3371
|
WIEDENBECK M, ALLÉ P, CORFU F, et al., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
|
WINTHER K T, NEWTON R C, 1991. Experimental melting of hydrous low-K tholeiite: evidence on the origin of Archaean cratons[J]. Bulletin of the Geological Society of Denmark, 39: 213-228. doi: 10.37570/bgsd-1991-39-10
|
WU D, WEI C J, 2021. Metamorphic evolution of two types of garnet amphibolite from the Qingyuan terrane, North China Craton: insights from phase equilibria modelling and zircon dating[J]. Precambrian Research, 355: 106091. doi: 10.1016/j.precamres.2021.106091
|
WU K K, ZHAO G C, SUN M, et al., 2013. Metamorphism of the northern Liaoning Complex: implications for the tectonic evolution of Neoarchean basement of the Eastern Block, North China Craton[J]. Geoscience Frontiers, 4(3): 305-320. doi: 10.1016/j.gsf.2012.11.005
|
WU M L, LIN S F, WAN Y S, et al., 2016. Crustal evolution of the Eastern Block in the North China Craton: constraints from zircon U-Pb geochronology and Lu-Hf isotopes of the northern Liaoning Complex[J]. Precambrian Research, 275: 35-47. doi: 10.1016/j.precamres.2015.12.013
|
WYLLIE P J, WOLF M B, 1993. Amphibolite dehydration-melting: sorting out the solidus[J]. Geological Society, London, Special Publications, 76(1): 405-416. doi: 10.1144/GSL.SP.1993.076.01.20
|
YANG C, WEI C J., 2017. Two phases of granulite facies metamorphism during Neoarchean and Paleoproterozoic in the East Hebei, North China Craton: records from mafic granulites[J]. Precambrian Research, 2017(301).
|
YAKYMCHUK C, BROWN M, 2014. Behaviour of zircon and monazite during crustal melting[J]. Journal of the Geological Society, 171(4): 465-479. doi: 10.1144/jgs2013-115
|
YAKYMCHUK C, CLARK C, WHITE R W, 2017. Phase relations, reaction sequences and petrochronology[J]. Reviews in Mineralogy and Geochemistry, 83(1): 13-53. doi: 10.2138/rmg.2017.83.2
|
YU C Y, YANG T, ZHANG J, et al., 2022. Coexisting diverse P-T-t paths during Neoarchean Sagduction: Insights from numerical modeling and applications to the eastern North China Craton[J]. Earth and Planetary Science Letters, 586: 117529. doi: 10.1016/j.epsl.2022.117529
|
YUAN L L, LIU J, ZHANG X H, et al., 2020. Late Neoarchean magmatism and crustal growth in northern Liaoning: Evidence from zircon U-Pb geochronology and petro-geochemistry of the Qingyuan trondhjemites[J]. Acta Petrologica Sinica, 36(2): 333-355. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.02.02
|
ZHAI M G, YANG R Y, LU W J, et al., 1985. Geochemistry and evolution of the Qingyuan Archaean granite-greenstone terrain, NE China[J]. Precambrian Research, 27(1-3): 37-62. doi: 10.1016/0301-9268(85)90005-1
|
ZHAI M G, BIAN A G, ZHAO T P, 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic[J]. Science in China Series D: Earth Sciences, 43(1): 219-232.
|
ZHAI M G, GUO J H, LIU W J, 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review[J]. Journal of Asian Earth Sciences, 24(5): 547-561. doi: 10.1016/j.jseaes.2004.01.018
|
ZHAI M G, SANTOSH M, 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 20(10): 6-25.
|
ZHAI M G, SANTOSH M, 2013. Metallogeny of the North China Craton: link with secular changes in the evolving Earth[J]. Gondwana Research, 24(1): 275-297. doi: 10.1016/j.gr.2013.02.007
|
ZHAI M G, 2019. Tectonic evolution of the north China craton[J]. Journal of Geomechanics, 25(5): 722-745. (in Chinese with English abstract)
|
ZHANG H C G, LIU J H, CHEN Y C, et al., 2019. Neoarchean metamorphic evolution and geochronology of the Miyun metamorphic complex, North China Craton[J]. Precambrian Research, 320: 78-92. doi: 10.1016/j.precamres.2018.10.015
|
ZHANG Y H, WEI C J, TIAN W, et al., 2013. Reinterpretation of metamorphic age of the Hengshan complex, North China Craton[J]. Chinese Science Bulletin, 58(34): 4300-4307. doi: 10.1007/s11434-013-5993-x
|
ZHANG Y Y, WEI C, CHU H, 2020. Paleoproterozoic oceanic subduction in the North China Craton: Insights from the metamorphic P-T-t paths of the Chicheng Mélange in the Hongqiyingzi Complex[J]. Precambrian Research, 342: 105671. doi: 10.1016/j.precamres.2020.105671
|
ZHANG Y Y, WEI C J, CHU H, 2021. Multi-phase metamorphism in the northern margin of the North China Craton: Records from metapelite in the Hongqiyingzi Complex[J]. Gondwana Research, 98: 289-308. doi: 10.1016/j.gr.2021.06.012
|
ZHAO G, 1995. Metamorphic P-T-t paths of the eastern Hebei, western Shandong, Fuping, Wutai and Hengshan domains, North China Craton[J]. Tectonothermal Evolution of the Basement Rocks in the North China Craton, 11-48.
|
ZHAO G C, SUN M, WILDE S A, et al., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002
|
ZHAO G C, CAWOOD P A, LI S Z, et al., 2012. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrian Research, 222-223: 55-76.
|
ZHENG J P, 2020. Internal and external factors in continental lithosphere mantle replacement in eastern China[J]. Journal of Geomechanics, 26(5): 742-758, doi: 10.12090/j.issn.1006-6616.2020.26.05.061. (in Chinese with English abstract)
|
白翔, 刘树文, 阎明, 等, 2014. 抚顺南部早前寒武纪变质岩的地质事件序列[J]. 岩石学报, 30(10): 2905-2924.
|
万渝生, 宋彪, 耿元生, 等, 2005a. 辽北抚顺—清原地区太古宙基底地球化学组成特征及其地质意义[J]. 地质论评, 51(2): 128-137. doi: 10.16509/j.georeview.2005.02.003
|
万渝生, 宋彪, 杨淳, 等, 2005b. 辽宁抚顺-清原地区太古宙岩石SHRIMP锆石U—Pb年代学及其地质意义[J]. 地质学报, 79(1): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501009.htm
|
万渝生, 董春艳, 颉颃强, 等, 2022. 华北克拉通新太古代早期—中太古代晚期(2.6~3.0 Ga)巨量陆壳增生: 综述[J]. 地质力学学报, 28(5): 866-906, doi: 10.12090/j.issn.1006-6616.20222817.
|
王康, 刘树文, 王茂江, 等, 2018. 辽北新宾-苇子峪地区太古宙花岗质岩石的形成年代、成因及其地质意义[J]. 北京大学学报(自然科学版), 54(1): 61-79. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201801007.htm
|
魏春景, 关晓, 董杰, 2017. 基性岩高温-超高温变质作用与TTG质岩成因[J]. 岩石学报, 33(5): 1381-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705002.htm
|
袁玲玲, 刘洁, 张晓晖, 等, 2020. 辽北新太古代晚期岩浆热事件与陆壳生长: 来自清原奥长花岗岩的锆石U-Pb年代学和岩石地球化学证据[J]. 岩石学报, 36(2): 333-355. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202002002.htm
|
翟明国, 2019. 华北克拉通构造演化[J]. 地质力学学报, 25(5): 722-745. doi: 10.12090/j.issn.1006-6616.2019.25.05.063
|
郑建平, 2020. 中国东部大陆岩石圈地幔置换作用的内外原因[J]. 地质力学学报, 26(5): 742-758, doi: 10.12090/j.issn.1006-6616.2020.26.05.061.
|