YAO Hong-xin, LI Wen-sheng, WANG Gen-hou, 2013. OIL AND GAS CHARACTERISTICS OF THRUSTING-NAPPE STRUCTURE BELT IN HUOYANSHAN, XINJIANG. Journal of Geomechanics, 19 (2): 206-213.
Citation: SHAO T R,HAN K Y,JIN M,et al.,2024. Geological and evolutionary characteristics of the Gagarin Region on the far side of the Moon[J]. Journal of Geomechanics,30(3):519−534 doi: 10.12090/j.issn.1006-6616.2023035

Geological and evolutionary characteristics of the Gagarin Region on the far side of the Moon

doi: 10.12090/j.issn.1006-6616.2023035
Funds:  This research is financially supported by the Geological Survey Project of the China Geological Survey (Grant No. DD20221645), the National Natural Science Foundation of China (Grant No. 41941003), and the Special Project for Fundamental Scientific and Technological Work (Grant No. 2015FY210500).
More Information
  •   Objective  This study focuses on the Gagarin region on the far side of the Moon, aiming to reveal the geological characteristics, distribution features, and genesis of typical areas on the lunar far side. Additionally, it seeks to explore the regional geological evolution history of the Gagarin region.  Methods  The study primarily employs methods such as multi-source remote sensing data interpretation, regional geological mapping, and quantitative analysis of geological elements' quantity and distribution characteristics.  Results  (1) 656 impact craters were discovered in the study area, of which 552 have diameters greater than 20 kilometers. Approximately 71.5% of the Gagarin region is covered by ancient basins and their ejecta from the Aitken period. Based on comprehensive area and diameter data, the Aitken period is identified as the geological era with the largest proportion of large impact craters (diameter greater than 70 kilometers) and the largest average diameter. From the Aitken period to the Copernican period, the total area of impact craters in each geological era shows a decreasing trend from old to new. (2) In the study area, six parallel lunar grabens, 62 lobate scarps, one sinuous rille , 50 crater floor fractures, and 70 shallow faults were discovered. It also includes parts of the two longest inferred deep faults on the Moon, originating from the South Pole–Aitken tectonic zone and almost spanning the entire highland tectonic zone. According to Bouguer gravity anomalies and crustal thickness data, linear crustal thickness anomalies extending outward from the South Pole–Aitken basin reach the major basins on the near side of the Moon. (3) The Gagarin region is primarily located in the anorthositic highlands on the far side of the Moon. The rocks mainly consist of ferroan anorthosite (fa) suites, with some crater floors showing magnesium anorthosite (ma) suites. In the central and southern parts of the Gagarin region, low-titanium (TiO2 > 1.5 and < 4.5) and very low-titanium (TiO2 < 1.5) basalts are sparsely distributed on the floors of certain impact craters and basins. (4) For this study, we selected impact craters such as Aitken and Van der Graaf, with diameters ranging from 350 to 1400 m, for dating analysis. The results of crater size-frequency distribution dating indicate ages of 3.47 GA and 3.32 GA, respectively. (5) The quantitative statistics of impact craters and the dating results of basalt units indicate that the Aitkenian to Imbrian periods were active periods of external dynamic geological processes in the Gagarin region, while the Imbrian period was an active period of internal dynamic geological processes.   Conclusion  (1) The region’s longest and deepest faults are the result of the combined effects of the South Pole–Aitken impact event and internal and external stresses, including lunar thermal expansion. (2) The variations in the number and size of impact craters in the Gagarin region on the far side of the Moon are related to the evolution of the Earth–Moon system and the solar system. (3) Based on the quantitative statistical results of impact craters and the dating results of basalt units, this study elucidates the regional geological evolution history, and different stages of the geological processes in the Gagarin region were divided according to the active periods and stage characteristics of internal and external dynamic geological processes.   Significance  The study revealed the geological features of key areas on the far side of the moon, delving into the geological history of the Gagarin region and tentatively establishing a correlation between its geological traits and the lunar evolutionary history.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • [1]
    AMBROSE W A, WILLIAMS D A, 2011. Recent advances and current research issues in lunar stratigraphy[M]. Boulder: Geological Society of America.
    [2]
    ANDREWS-HANNA J C, 2013. The origin of the non-mare mascon gravity anomalies in lunar basins[J]. Icarus, 222(1): 159-168. doi: 10.1016/j.icarus.2012.10.031
    [3]
    CHEN J P, WANG X, WANG N, et al, 2014. The lunar geological mapping based on Chang'e data: Serenitatis-Tranquillitatis area as an example[J]. Earth Science Frontiers, 21(6): 7-18. (in Chinese with English abstract
    [4]
    Crater Analysis Techniques Working Group, 1979. Standard techniques for presentation and analysis of crater size-frequency data[J]. Icarus, 37(2): 467-474. doi: 10.1016/0019-1035(79)90009-5
    [5]
    COMPSTON W, WILLIAMS I S, 1983. U-Pb Geochronology of zircons from Lunar Breccia 73217 using a Sensitive High Resolution Ion Microprobe. Proc. XIV Lunar Planetary Science Conference[J]. Journal of Geophysical Research Atmospheres, 89.
    [6]
    DING X Z, WANG L, HAN K Y, et al, 2014. The lunar digital geological mapping based on ArcGIS: Taking the Arctic region as an example[J]. Earth Science Frontiers, 21(6): 19-30. (in Chinese with English abstract
    [7]
    DOWTY E, KEIL K, PRINZ M, 1974. Lunar pyroxene-phyric basalts: crystallization under supercooled conditions[J]. Journal of Petrology, 15(3): 419-453. doi: 10.1093/petrology/15.3.419
    [8]
    GOOSSENS S, SABAKA T J, WIECZOREK M A, et al, 2020. High-resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon's crust[J]. Journal of Geophysical Research: Planets, 125(2): e2019JE006086. doi: 10.1029/2019JE006086
    [9]
    GUO D J, LIU J Z, ZHANG L, et al, 2014. The methods of lunar geochronology study and the subdivisions of lunar geologic history[J]. Earth Science Frontiers, 21(6): 45-61. (in Chinese with English abstract
    [10]
    HAN K Y, PANG J F, DING X Z, et al, 2012. A study of digital lunar geological mapping (Sinus iridum Quadrangle) based on AreGIS[J]. Earth Science Frontiers, 19(6): 104-109. (in Chinese with English abstract
    [11]
    HARTMANN W K, NEUKUM G, 2001. Cratering chronology and the evolution of mars[J]. Space Science Reviews, 96(1-4): 165-194.
    [12]
    HARUYAMA J, OHTAKE M, MATSUNAGA T, et al, 2008. Planned radiometrically calibrated and geometrically corrected products of lunar high-resolution Terrain Camera on SELENE[J]. Advances in Space Research, 42(2): 310-316. doi: 10.1016/j.asr.2007.04.062
    [13]
    HARUYAMA J, OHTAKE M, MATSUNAGA T, et al, 2009. Long-lived volcanism on the lunar farside revealed by SELENE Terrain Camera[J]. Science, 323(5916): 905-908. doi: 10.1126/science.1163382
    [14]
    HIESINGER H, 2003. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum[J]. Journal of Geophysical Research: Planets, 108(E7): 5065.
    [15]
    HIESINGER H, JAUMANN R, NEUKUM G, et al, 2000. Ages of mare basalts on the lunar nearside[J]. Journal of Geophysical Research: Planets, 105(E12): 29239-29275. doi: 10.1029/2000JE001244
    [16]
    HIESINGER H, HEAD III J W, WOLF U, et al, 2010. Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside Maria based on crater size-frequency distribution measurements[J]. Journal of Geophysical Research: Planets, 115(E3): E03003.
    [17]
    JI J Z, GUO D J, LIU J Z, et al, 2022. The 1: 2, 500, 000-scale geologic map of the global Moon[J]. Science Bulletin, 67(15): 1544-1548. (in Chinese with English abstract doi: 10.1016/j.scib.2022.05.021
    [18]
    JOLLIFF B L, GILLIS J J, HASKIN L A, et al, 2000. Major lunar crustal terranes: Surface expressions and crust-mantle origins[J]. Journal of Geophysical Research: Planets, 105(E2): 4197-4216. doi: 10.1029/1999JE001103
    [19]
    KONOPLIV A S, PARK R S, YUAN D N, et al, 2013. The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission[J]. Journal of Geophysical Research: Planets, 118(7): 1415-1434. doi: 10.1002/jgre.20097
    [20]
    LING Z C, ZHANG J, WU Z C, et al , 2013. The compositional distribution and rock types of the Aristarchus region on the moon[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 43(11): 1403-1410. (in Chinese with English abstract
    [21]
    The lunar rock types as determined by Chang'E-1 IIM data: A case study of Mare Imbrium-Mare Frigoris region (LQ-4)[J]. Earth Science Frontiers, 21(6): 107-120. (in Chinese with English abstract
    [22]
    LIU J Z, GUO D J, JI J Z, et al, 2015. Lunar tectonic framework and its evolution inhomogeneity[J]. Journal of Deep Space Exploration, 2(1): 75-79. (in Chinese with English abstract
    [23]
    LU T Q, 2017. Research on distribution characteristics of lunar fault and wrinkle ridge[D]. Changchun: Jilin University. (in Chinese with English abstract
    [24]
    LU T Q, CHEN S B, ZHU K, 2019. Global identification and spatial distribution of lunar subsurface faults from GRAIL gravity data. Chinese Journal of Geophysics, 62(8): 2835-2844. (in Chinese with English abstract
    [25]
    LU T Q, 2020. Study on remote sensing recognition and evolution of lunar tectonics[D]. Changchun: Jilin University. (in Chinese with English abstract
    [26]
    LUCEY P G, BLEWETT D T, JOLLIFF B L, 2000a. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-Visible images[J]. Journal of Geophysical Research: Planets, 105(E8): 20297-20305. doi: 10.1029/1999JE001117
    [27]
    LUCEY P G, BLEWETT D T, TAYLOR G J, et al, 2000b. Imaging of lunar surface maturity[J]. Journal of Geophysical Research: Planets, 105(E8): 20377-20386. doi: 10.1029/1999JE001110
    [28]
    LUO L, LIU J Z, ZHANG L, et al, 2017. Research on the classification system of lunar lineaments[J]. Acta Petrologica Sinica, 33(10): 3285-3301. (in Chinese with English abstract
    [29]
    NEUKUM G, IVANOV B A, HARTMANN W K, 2001. Cratering records in the inner solar system in relation to the lunar reference system[C]//Chronology and evolution of mars. Bern: Springer: 55-86.
    [30]
    OHTAKE M, MATSUNAGA T, HARUYAMA J, et al, 2009. The global distribution of pure anorthosite on the Moon[J]. Nature, 461(7261): 236-240. doi: 10.1038/nature08317
    [31]
    OUYANG Z Y, 2005. Introduction to lunar science[M]. Beijing: China Astronautic Publishing House: 1-362. (in Chinese)
    [32]
    OUYANG Z Y, LIU J Z, 2014. The origin and evolution of the Moon and its geological mapping[J]. Earth Science Frontiers, 21(6): 1-6. (in Chinese with English abstract
    [33]
    PALME H, SPETTEL B, JOCHUM K P, et al,1991. Lunar highland meteorites and the composition of the lunar crust[J]. Geochimica Et Cosmochimica Acta,55:3105-3122
    [34]
    PASCKERT J H, HIESINGER H, VAN DER BOGERT C H, 2018. Lunar farside volcanism in and around the South Pole–Aitken basin[J]. Icarus, 299: 538-562. doi: 10.1016/j.icarus.2017.07.023
    [35]
    ROBINSON M S, BRYLOW S M, TSCHIMMEL M, et al, 2010. Lunar reconnaissance orbiter camera (LROC) instrument overview[J]. Space Science Reviews, 150(1-4): 81-124. doi: 10.1007/s11214-010-9634-2
    [36]
    STÖFFLER D, RYDER G, IVANOV B A, et al, 2006. Cratering history and lunar chronology[J]. Reviews in Mineralogy and Geochemistry, 60(1): 519-596. doi: 10.2138/rmg.2006.60.05
    [37]
    TIAN F F, CHEN S B, CAO Y J, et al, 2018. Analysis of Rain Sea Terrain and Impact Crater Characteristics Based on Roughness[J]. World Geology, 37(01): 302-308. (in Chinese with English abstract
    [38]
    WANG J, CHENG W M, ZHOU C H, 2015. A global inventory of lunar craters: identification, classification, and distribution[J]. Progress in Geography, 34(3): 330-339. (in Chinese with English abstract
    [39]
    WANG L, 2015. The study on the compilation of digital geological map in the north region of the moon[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
    [40]
    WANG L, DING X Z, HAN K Y, et al, 2015a. The compilation of the lunar digital geological map and a discussion on the tectonic evolution of the moon[J]. Geology in China, 42(1): 331-341. (in Chinese with English abstract
    [41]
    WANG L, DING X Z, HAN T L, et al, 2015b. The digital geological mapping and geological and geomorphic features of Tycho Crater of the Moon[J]. Earth Science Frontiers, 22(2): 251-262. (in Chinese with English abstract
    [42]
    WANG Q L, LIU J Z, GUO D J, et al, 2018. Determination of multi-ring structure and analysis on the deep structure of the Lunar Mare Imbrium Basin[J]. Earth Science Frontiers, 25(1): 297-313. (in Chinese with English abstract
    [43]
    WARREN P H, 1985. The magma ocean concept and Lunar evolution[J]. Annual Review of Earth and Planetary Sciences, 13: 201-240. doi: 10.1146/annurev.ea.13.050185.001221
    [44]
    Wilhelms D. E. , MCCAULEY J F, TRASK N J, 1987. The geologic history of the moon[R]. Washington: USGS Numbered Series.
    [45]
    Wieczorek M. A. , Jolliff B. L. andKhan A. 2006. The Constitution and Structure of the Lunar Interior[J]. Reviews in Mineralogy & Geochemistry, 60(1): 221-364.
    [46]
    Wieczorek M A, NEUMANN G A, Nimmo F, et al,2013. The Crust of the Moon as Seen by GRAIL[J]. Science,339:671-675
    [47]
    XU K J, WANG L, HAN K Y, et al, 2020. Design and implementation of symbol library of lunar geological map at 1: 2.5 M[J]. Earth Science, 45(7): 2650-2661. (in Chinese with English abstract
    [48]
    XU X Q, HUI H J, CHEN W, et al, 2020. Formation of lunar highlands anorthosites[J]. Earth and Planetary Science Letters, 536: 116138. doi: 10.1016/j.jpgl.2020.116138
    [49]
    YAO M J, CHEN J P, WANG X, et al, 2016. The grading and evolution analysis of lunar crater based on optimum partition and grading method[J]. Acta Petrologica Sinica, 32(1): 119-126. (in Chinese with English abstract
    [50]
    YUE Z Y, DI K C, LIU J Z, 2021. Principle and application of planetary surface dating method based on crater size-frequency distribution measurements[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1130-1142. (in Chinese with English abstract
    [51]
    陈建平,王翔,王楠,等,2014. 基于嫦娥数据澄海—静海幅地质图编研[J]. 地学前缘,21(6):7-18.
    [52]
    丁孝忠,王梁,韩坤英,等,2014. 基于ArcGIS的月球数字地质填图:以月球北极地区为例[J]. 地学前缘,21(6):19-30.
    [53]
    郭弟均,刘建忠,张莉,等,2014. 月球地质年代学研究方法及月面历史划分[J]. 地学前缘,21(6):45-61.
    [54]
    韩坤英,庞健峰,丁孝忠,等,2012. 基于ArcGIS的月球虹湾地区数字地质图编制研究[J]. 地学前缘,19(6):104-109.
    [55]
    籍进柱,郭弟均,刘建忠,等,2022. 1:250万月球全月地质图(英文)[J]. 科学通报,67(15):1544-1548.
    [56]
    凌宗成,张江,武中臣,等,2013. 月球Aristarchus地区的物质成分与岩石类型分布[J]. 中国科学:物理学 力学 天文学,43(11):1403-1410.
    [57]
    凌宗成,刘建忠,张江,等,2014. 基于“嫦娥一号”干涉成像光谱仪数据的月球岩石类型填图:以月球雨海—冷海地区(LQ-4)为例[J]. 地学前缘,21(6):107-120.
    [58]
    刘建忠,郭弟均,籍进柱,等,2015. 月球的构造格架及其演化差异[J]. 深空探测学报,2(1):75-79.
    [59]
    陆天启,2017. 月球断裂和皱脊构造分布特征研究[D]. 长春:吉林大学.
    [60]
    陆天启,陈圣波,朱凯,2019. 基于GRAIL重力数据的月球深部断裂识别和空间分布研究[J]. 地球物理学报,62(8):2835-2844.
    [61]
    陆天启,2020. 月球构造遥感识别及其演化研究[D]. 长春:吉林大学.
    [62]
    罗林,刘建忠,张莉,等,2017. 月球线性构造分类体系研究[J]. 岩石学报,33(10):3285-3301.
    [63]
    欧阳自远,2005. 月球科学概论[M]. 北京:中国宇航出版社:1-362
    [64]
    欧阳自远,刘建忠,2014. 月球形成演化与月球地质图编研[J]. 地学前缘,21(6):1-6.
    [65]
    田粉粉,陈圣波,曹一晶,等,2018. 基于粗糙度的雨海地形及撞击坑特征分析[J]. 世界地质,37(01):302-308.
    [66]
    王娇,程维明,周成虎,2015. 全月球撞击坑识别、分类及空间分布[J]. 地理科学进展,34(3):330-339.
    [67]
    王梁,丁孝忠,韩坤英,等,2015a. 月球数字地质图的编制与研究[J]. 中国地质,42(1):331-341.
    [68]
    王梁,丁孝忠,韩同林,等,2015b. 月球第谷撞击坑区域数字地质填图及地质地貌特征[J]. 地学前缘,22(2):251-262.
    [69]
    王庆龙,刘建忠,郭弟均,等,2018. 月球雨海盆地多环结构的厘定及其深部构造研究[J]. 地学前缘,25(1):297-313.
    [70]
    许可娟,王梁,韩坤英,等,2020. 1:250万月球地质图符号库的设计与实现[J]. 地球科学,45(7):2650-2661.
    [71]
    姚美娟,陈建平,王翔,等,2016. 基于最优分割分级法的月球撞击坑分级及其演化分析[J]. 岩石学报,32(1):119-126.
    [72]
    岳宗玉,邸凯昌,刘建忠,2021. 行星表面撞击坑统计定年原理及应用[J]. 矿物岩石地球化学通报,40(5):1130-1142.
  • Relative Articles

    XIN Peng, WANG Tao, LIU Jiamei, LIU Feng, DU Jianjun, ZHAO Jianlei. 2022: The geological structure and sliding mode of the slopes in the Yigong landslide source area, Tibet. Journal of Geomechanics, 28(6): 1012-1023. doi: 10.12090/j.issn.1006-6616.2022072
    CHENG Sanyou, WANG Xi, LI Yongjun, WANG Ran. 2022: Comparative study of multi-source remote sensing data for regional geologic mapping at 1: 50, 000 scale in the Hala'alate Mountains, west Junggar. Journal of Geomechanics, 28(1): 143-154. doi: 10.12090/j.issn.1006-6616.2021035
    AN Zhihong, CHENG Yushu, WANG Baocun, SUN Xiyong, WANG Yajuan. 2017: A STUDY ON THE INTEGRATION OF REMOTE SENSING MONITORING AND REGULATION MODEL IN RESTORATION AND TREATMENT OF MINE GEOLOGICAL ENVIRONMENT IN LIAOYUAN. Journal of Geomechanics, 23(4): 631-637.
    CHENG Yang, LÜ Yong, TU Jie-nan, TONG Li-qiang. 2016: APPLICATION OF REMOTE SENSING TECHNOLOGY IN THE 1: 50000 REGIONAL GEOLOGICAL SURVEY IN KARST AREA: A CASE STUDY OF NORTHWEST GUIZHOU. Journal of Geomechanics, 22(4): 921-932.
    MA Xiao-xue, WU Zhong-hai, LI Jia-cun, ZHOU Chun-jing, LI Kai, WANG Ji-long. 2016: REMOTE SENSING EVIDENCE OF THE SOUTH SEGMENT OF LONGMENSHAN FAULT ZONE EXTENDING TO SOUTHWEST AND ITS SEISMIC GEOLOGICAL SIGNIFICANCE. Journal of Geomechanics, 22(3): 548-567.
    HE Peng, TENG Xue-jian, LIU Yang, TENG Fei, GUO Shuo, WANG Wen-long, TIAN Jian, DUAN Xiao-long. 2016: APPLICATION OF REMOTE SENSING INTERPRETATION FOR 1: 50000 GEOLOGIC MAPPING IN LANGSHAN GOBI DESERT AREA, INNER MONGOLIA. Journal of Geomechanics, 22(4): 882-892.
    SHAN Ke-qiang, PAN Ming, LIN Yu. 2016: APPLICATION OF UNMANNED AIR VEHICLE (UAV) REMOTE SENSING DATA IN THE RECOGNITION OF STRATIGRAPHIC UNITS: A CASE STUDY OF 1: 50000 PILOT GEOLOGICAL MAPPING OF KARST AREA IN SOUTHWESTERN CHINA. Journal of Geomechanics, 22(4): 933-942.
    YANG Xiao-dong, WU Zhong-hai, ZHANG Hai-jun. 2016: GEOLOGICAL EVOLUTION, NEOTECTONICS AND GENETIC MECHANISM OF THE POYANG LAKE BASIN. Journal of Geomechanics, 22(3): 667-684.
    WEN Jing, WANG Da-ming, FANG Hong-bin, HU Yu-xin, XU Ning, LIN Jing-dun. 2015: THE TECHNOLOGY OF REMOTE SENSING TRIAL PROCESSING SYSTEM FOR GEOLOGICAL EXPLORATION AND ITS IMPLEMENTATION. Journal of Geomechanics, 21(2): 151-162.
    WANG Da-ming, XIAO Zheng-hao. 2015: RESEARCH ON THE PROCESSING OF PRODUCING MINERAL AND GEOLOGICAL INFORMATION BASED ON REMOTE SENSING PROCESSING SYSTEM FOR GEOLOGICAL EXPLORATION. Journal of Geomechanics, 21(2): 199-208.
    ZHANG Chun-yu, ZHAO Yue, WANG Luo. 2014: GEOLOGICAL EVOLUTION AND HYDROCARBON RESOURCES POTENTIAL IN NORTH SLOPE, ALASKA. Journal of Geomechanics, 20(4): 392-403.
    MENG Yue-yue, WANG Da-ming, FANG Hong-bin, LU Xue-jun, LI Liu-ke. 2012: DESIGN OF THE FIELD REMOTE SENSING VERIFICATION SYSTEM FOR GEOLOGICAL MINERAL RESOURCES BASED ON HANDHELD BEIDOU-1/GPS DUAL-MODE TERMINAL. Journal of Geomechanics, 18(3): 235-241.
    ZHAO Zhao, HU Dao-gong, ZHANG Xu-jiao, LI Bo, ZHOU Yi-qun, SONG Wan-jiao. 2012: APPLICATION OF GEOLOGICAL REMOTE SENSING ANOMALY VERIFICATION AND NEAR-INFRARED MINERAL ANALYZER IN THE DONGDATAN COPPERMINE IN EAST KUNLUN. Journal of Geomechanics, 18(3): 339-346.
    HE Kai-tao, LI Zhi-zhong, WANG Da-ming. 2012: OVERVIEW ON THE DESIGN OF THE SERVICE AND MANAGEMENT SYSTEM FOR FIELD GEOLOGICAL SURVEY BASED ON THE REMOTE SENSING AND BEIDOU SATELLITES. Journal of Geomechanics, 18(3): 203-212.
    WANG Wen-zhi, BAI Yun-peng, WANG Lei, GAO Zhen-yu, YANG Zhi. 2012: DESIGN AND IMPLEMENTATION OF REMOTE SENSING DATA SERVICE SYSTEM FOR GEOLOGICAL SURVEY. Journal of Geomechanics, 18(3): 296-305.
    XUE La-mei, ZHAO Xi-tao, ZHANG Yao-ling, GAO Wan-li. 2010: APPLICATION OF REMOTE SENSING TECHNIQUE IN THE MAPPING OF CENOZOIC GEOLOGY OF THE EAST KUNLUN MOUNTAINS. Journal of Geomechanics, 16(1): 70-77.
    MA Ying-sheng, ZENG Qing-li, ZHANG Xing. 2002: PHOTOELASTIC EXPERIMENTAL MODELLING OF EVOLUTION OF CENOZOIC TECTONIC STRESS FIELD AND ANALYSIS OF PETROLEUM GEOLOGICAL CONDITION IN HUANGHUA DEPRESSON. Journal of Geomechanics, 8(3): 219-228.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.8 %FULLTEXT: 12.8 %META: 78.7 %META: 78.7 %PDF: 8.4 %PDF: 8.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %其他: 0.2 %其他: 0.2 %Central District: 0.1 %Central District: 0.1 %China: 0.7 %China: 0.7 %Seattle: 0.2 %Seattle: 0.2 %三明: 0.1 %三明: 0.1 %上海: 1.3 %上海: 1.3 %中卫: 1.2 %中卫: 1.2 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %保定: 0.1 %保定: 0.1 %保山: 0.2 %保山: 0.2 %兰州: 0.2 %兰州: 0.2 %内江: 0.7 %内江: 0.7 %北京: 19.1 %北京: 19.1 %南京: 0.5 %南京: 0.5 %南通: 0.1 %南通: 0.1 %南阳: 0.1 %南阳: 0.1 %厦门: 0.1 %厦门: 0.1 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %圣地亚哥: 0.1 %圣地亚哥: 0.1 %大同: 17.5 %大同: 17.5 %天津: 0.8 %天津: 0.8 %太原: 0.1 %太原: 0.1 %娄底: 0.1 %娄底: 0.1 %安康: 0.1 %安康: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.1 %宣城: 0.1 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.3 %广州: 0.3 %开封: 0.2 %开封: 0.2 %张家口: 2.3 %张家口: 2.3 %徐州: 0.2 %徐州: 0.2 %德州: 0.1 %德州: 0.1 %忻州: 0.2 %忻州: 0.2 %意法半: 0.3 %意法半: 0.3 %成都: 0.7 %成都: 0.7 %扬州: 0.8 %扬州: 0.8 %无锡: 0.1 %无锡: 0.1 %日照: 0.1 %日照: 0.1 %昆明: 0.9 %昆明: 0.9 %昌吉: 0.1 %昌吉: 0.1 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.1 %杭州: 0.1 %枣庄: 0.1 %枣庄: 0.1 %梅州: 0.1 %梅州: 0.1 %森尼韦尔: 0.1 %森尼韦尔: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.1 %济南: 0.1 %深圳: 1.0 %深圳: 1.0 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湛江: 0.3 %湛江: 0.3 %漯河: 0.4 %漯河: 0.4 %潍坊: 0.1 %潍坊: 0.1 %琼海: 0.1 %琼海: 0.1 %百色: 0.1 %百色: 0.1 %石嘴山: 0.1 %石嘴山: 0.1 %石家庄: 1.1 %石家庄: 1.1 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %纳什维尔: 0.1 %纳什维尔: 0.1 %纽约: 0.6 %纽约: 0.6 %芒廷维尤: 17.3 %芒廷维尤: 17.3 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.1 %苏州: 0.1 %莆田: 0.1 %莆田: 0.1 %西宁: 10.6 %西宁: 10.6 %西安: 0.4 %西安: 0.4 %诺沃克: 4.1 %诺沃克: 4.1 %贵阳: 0.4 %贵阳: 0.4 %达州: 0.3 %达州: 0.3 %运城: 0.8 %运城: 0.8 %连云港: 0.1 %连云港: 0.1 %通辽: 0.1 %通辽: 0.1 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %长沙: 1.1 %长沙: 1.1 %阳泉: 0.2 %阳泉: 0.2 %阿克苏: 0.1 %阿克苏: 0.1 %青岛: 0.3 %青岛: 0.3 %香港: 0.3 %香港: 0.3 %黔东南: 0.1 %黔东南: 0.1 %其他其他Central DistrictChinaSeattle三明上海中卫乌鲁木齐保定保山兰州内江北京南京南通南阳厦门合肥呼和浩特嘉兴圣地亚哥大同天津太原娄底安康宜昌宣城常德平顶山广州开封张家口徐州德州忻州意法半成都扬州无锡日照昆明昌吉晋城朝阳杭州枣庄梅州森尼韦尔武汉沈阳洛阳济南深圳温州湖州湛江漯河潍坊琼海百色石嘴山石家庄福州秦皇岛纳什维尔纽约芒廷维尤芝加哥苏州莆田西宁西安诺沃克贵阳达州运城连云港通辽邢台邯郸郑州重庆长沙阳泉阿克苏青岛香港黔东南

Catalog

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (841) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return