Citation: | SHAO T R,HAN K Y,JIN M,et al.,2024. Geological and evolutionary characteristics of the Gagarin Region on the far side of the Moon[J]. Journal of Geomechanics,30(3):519−534 doi: 10.12090/j.issn.1006-6616.2023035 |
[1] |
AMBROSE W A, WILLIAMS D A, 2011. Recent advances and current research issues in lunar stratigraphy[M]. Boulder: Geological Society of America.
|
[2] |
ANDREWS-HANNA J C, 2013. The origin of the non-mare mascon gravity anomalies in lunar basins[J]. Icarus, 222(1): 159-168. doi: 10.1016/j.icarus.2012.10.031
|
[3] |
CHEN J P, WANG X, WANG N, et al, 2014. The lunar geological mapping based on Chang'e data: Serenitatis-Tranquillitatis area as an example[J]. Earth Science Frontiers, 21(6): 7-18. (in Chinese with English abstract
|
[4] |
Crater Analysis Techniques Working Group, 1979. Standard techniques for presentation and analysis of crater size-frequency data[J]. Icarus, 37(2): 467-474. doi: 10.1016/0019-1035(79)90009-5
|
[5] |
COMPSTON W, WILLIAMS I S, 1983. U-Pb Geochronology of zircons from Lunar Breccia 73217 using a Sensitive High Resolution Ion Microprobe. Proc. XIV Lunar Planetary Science Conference[J]. Journal of Geophysical Research Atmospheres, 89.
|
[6] |
DING X Z, WANG L, HAN K Y, et al, 2014. The lunar digital geological mapping based on ArcGIS: Taking the Arctic region as an example[J]. Earth Science Frontiers, 21(6): 19-30. (in Chinese with English abstract
|
[7] |
DOWTY E, KEIL K, PRINZ M, 1974. Lunar pyroxene-phyric basalts: crystallization under supercooled conditions[J]. Journal of Petrology, 15(3): 419-453. doi: 10.1093/petrology/15.3.419
|
[8] |
GOOSSENS S, SABAKA T J, WIECZOREK M A, et al, 2020. High-resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon's crust[J]. Journal of Geophysical Research: Planets, 125(2): e2019JE006086. doi: 10.1029/2019JE006086
|
[9] |
GUO D J, LIU J Z, ZHANG L, et al, 2014. The methods of lunar geochronology study and the subdivisions of lunar geologic history[J]. Earth Science Frontiers, 21(6): 45-61. (in Chinese with English abstract
|
[10] |
HAN K Y, PANG J F, DING X Z, et al, 2012. A study of digital lunar geological mapping (Sinus iridum Quadrangle) based on AreGIS[J]. Earth Science Frontiers, 19(6): 104-109. (in Chinese with English abstract
|
[11] |
HARTMANN W K, NEUKUM G, 2001. Cratering chronology and the evolution of mars[J]. Space Science Reviews, 96(1-4): 165-194.
|
[12] |
HARUYAMA J, OHTAKE M, MATSUNAGA T, et al, 2008. Planned radiometrically calibrated and geometrically corrected products of lunar high-resolution Terrain Camera on SELENE[J]. Advances in Space Research, 42(2): 310-316. doi: 10.1016/j.asr.2007.04.062
|
[13] |
HARUYAMA J, OHTAKE M, MATSUNAGA T, et al, 2009. Long-lived volcanism on the lunar farside revealed by SELENE Terrain Camera[J]. Science, 323(5916): 905-908. doi: 10.1126/science.1163382
|
[14] |
HIESINGER H, 2003. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum[J]. Journal of Geophysical Research: Planets, 108(E7): 5065.
|
[15] |
HIESINGER H, JAUMANN R, NEUKUM G, et al, 2000. Ages of mare basalts on the lunar nearside[J]. Journal of Geophysical Research: Planets, 105(E12): 29239-29275. doi: 10.1029/2000JE001244
|
[16] |
HIESINGER H, HEAD III J W, WOLF U, et al, 2010. Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside Maria based on crater size-frequency distribution measurements[J]. Journal of Geophysical Research: Planets, 115(E3): E03003.
|
[17] |
JI J Z, GUO D J, LIU J Z, et al, 2022. The 1: 2, 500, 000-scale geologic map of the global Moon[J]. Science Bulletin, 67(15): 1544-1548. (in Chinese with English abstract doi: 10.1016/j.scib.2022.05.021
|
[18] |
JOLLIFF B L, GILLIS J J, HASKIN L A, et al, 2000. Major lunar crustal terranes: Surface expressions and crust-mantle origins[J]. Journal of Geophysical Research: Planets, 105(E2): 4197-4216. doi: 10.1029/1999JE001103
|
[19] |
KONOPLIV A S, PARK R S, YUAN D N, et al, 2013. The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission[J]. Journal of Geophysical Research: Planets, 118(7): 1415-1434. doi: 10.1002/jgre.20097
|
[20] |
LING Z C, ZHANG J, WU Z C, et al , 2013. The compositional distribution and rock types of the Aristarchus region on the moon[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 43(11): 1403-1410. (in Chinese with English abstract
|
[21] |
The lunar rock types as determined by Chang'E-1 IIM data: A case study of Mare Imbrium-Mare Frigoris region (LQ-4)[J]. Earth Science Frontiers, 21(6): 107-120. (in Chinese with English abstract
|
[22] |
LIU J Z, GUO D J, JI J Z, et al, 2015. Lunar tectonic framework and its evolution inhomogeneity[J]. Journal of Deep Space Exploration, 2(1): 75-79. (in Chinese with English abstract
|
[23] |
LU T Q, 2017. Research on distribution characteristics of lunar fault and wrinkle ridge[D]. Changchun: Jilin University. (in Chinese with English abstract
|
[24] |
LU T Q, CHEN S B, ZHU K, 2019. Global identification and spatial distribution of lunar subsurface faults from GRAIL gravity data. Chinese Journal of Geophysics, 62(8): 2835-2844. (in Chinese with English abstract
|
[25] |
LU T Q, 2020. Study on remote sensing recognition and evolution of lunar tectonics[D]. Changchun: Jilin University. (in Chinese with English abstract
|
[26] |
LUCEY P G, BLEWETT D T, JOLLIFF B L, 2000a. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-Visible images[J]. Journal of Geophysical Research: Planets, 105(E8): 20297-20305. doi: 10.1029/1999JE001117
|
[27] |
LUCEY P G, BLEWETT D T, TAYLOR G J, et al, 2000b. Imaging of lunar surface maturity[J]. Journal of Geophysical Research: Planets, 105(E8): 20377-20386. doi: 10.1029/1999JE001110
|
[28] |
LUO L, LIU J Z, ZHANG L, et al, 2017. Research on the classification system of lunar lineaments[J]. Acta Petrologica Sinica, 33(10): 3285-3301. (in Chinese with English abstract
|
[29] |
NEUKUM G, IVANOV B A, HARTMANN W K, 2001. Cratering records in the inner solar system in relation to the lunar reference system[C]//Chronology and evolution of mars. Bern: Springer: 55-86.
|
[30] |
OHTAKE M, MATSUNAGA T, HARUYAMA J, et al, 2009. The global distribution of pure anorthosite on the Moon[J]. Nature, 461(7261): 236-240. doi: 10.1038/nature08317
|
[31] |
OUYANG Z Y, 2005. Introduction to lunar science[M]. Beijing: China Astronautic Publishing House: 1-362. (in Chinese)
|
[32] |
OUYANG Z Y, LIU J Z, 2014. The origin and evolution of the Moon and its geological mapping[J]. Earth Science Frontiers, 21(6): 1-6. (in Chinese with English abstract
|
[33] |
PALME H, SPETTEL B, JOCHUM K P, et al,1991. Lunar highland meteorites and the composition of the lunar crust[J]. Geochimica Et Cosmochimica Acta,55:3105-3122
|
[34] |
PASCKERT J H, HIESINGER H, VAN DER BOGERT C H, 2018. Lunar farside volcanism in and around the South Pole–Aitken basin[J]. Icarus, 299: 538-562. doi: 10.1016/j.icarus.2017.07.023
|
[35] |
ROBINSON M S, BRYLOW S M, TSCHIMMEL M, et al, 2010. Lunar reconnaissance orbiter camera (LROC) instrument overview[J]. Space Science Reviews, 150(1-4): 81-124. doi: 10.1007/s11214-010-9634-2
|
[36] |
STÖFFLER D, RYDER G, IVANOV B A, et al, 2006. Cratering history and lunar chronology[J]. Reviews in Mineralogy and Geochemistry, 60(1): 519-596. doi: 10.2138/rmg.2006.60.05
|
[37] |
TIAN F F, CHEN S B, CAO Y J, et al, 2018. Analysis of Rain Sea Terrain and Impact Crater Characteristics Based on Roughness[J]. World Geology, 37(01): 302-308. (in Chinese with English abstract
|
[38] |
WANG J, CHENG W M, ZHOU C H, 2015. A global inventory of lunar craters: identification, classification, and distribution[J]. Progress in Geography, 34(3): 330-339. (in Chinese with English abstract
|
[39] |
WANG L, 2015. The study on the compilation of digital geological map in the north region of the moon[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
|
[40] |
WANG L, DING X Z, HAN K Y, et al, 2015a. The compilation of the lunar digital geological map and a discussion on the tectonic evolution of the moon[J]. Geology in China, 42(1): 331-341. (in Chinese with English abstract
|
[41] |
WANG L, DING X Z, HAN T L, et al, 2015b. The digital geological mapping and geological and geomorphic features of Tycho Crater of the Moon[J]. Earth Science Frontiers, 22(2): 251-262. (in Chinese with English abstract
|
[42] |
WANG Q L, LIU J Z, GUO D J, et al, 2018. Determination of multi-ring structure and analysis on the deep structure of the Lunar Mare Imbrium Basin[J]. Earth Science Frontiers, 25(1): 297-313. (in Chinese with English abstract
|
[43] |
WARREN P H, 1985. The magma ocean concept and Lunar evolution[J]. Annual Review of Earth and Planetary Sciences, 13: 201-240. doi: 10.1146/annurev.ea.13.050185.001221
|
[44] |
Wilhelms D. E. , MCCAULEY J F, TRASK N J, 1987. The geologic history of the moon[R]. Washington: USGS Numbered Series.
|
[45] |
Wieczorek M. A. , Jolliff B. L. andKhan A. 2006. The Constitution and Structure of the Lunar Interior[J]. Reviews in Mineralogy & Geochemistry, 60(1): 221-364.
|
[46] |
Wieczorek M A, NEUMANN G A, Nimmo F, et al,2013. The Crust of the Moon as Seen by GRAIL[J]. Science,339:671-675
|
[47] |
XU K J, WANG L, HAN K Y, et al, 2020. Design and implementation of symbol library of lunar geological map at 1: 2.5 M[J]. Earth Science, 45(7): 2650-2661. (in Chinese with English abstract
|
[48] |
XU X Q, HUI H J, CHEN W, et al, 2020. Formation of lunar highlands anorthosites[J]. Earth and Planetary Science Letters, 536: 116138. doi: 10.1016/j.jpgl.2020.116138
|
[49] |
YAO M J, CHEN J P, WANG X, et al, 2016. The grading and evolution analysis of lunar crater based on optimum partition and grading method[J]. Acta Petrologica Sinica, 32(1): 119-126. (in Chinese with English abstract
|
[50] |
YUE Z Y, DI K C, LIU J Z, 2021. Principle and application of planetary surface dating method based on crater size-frequency distribution measurements[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1130-1142. (in Chinese with English abstract
|
[51] |
陈建平,王翔,王楠,等,2014. 基于嫦娥数据澄海—静海幅地质图编研[J]. 地学前缘,21(6):7-18.
|
[52] |
丁孝忠,王梁,韩坤英,等,2014. 基于ArcGIS的月球数字地质填图:以月球北极地区为例[J]. 地学前缘,21(6):19-30.
|
[53] |
郭弟均,刘建忠,张莉,等,2014. 月球地质年代学研究方法及月面历史划分[J]. 地学前缘,21(6):45-61.
|
[54] |
韩坤英,庞健峰,丁孝忠,等,2012. 基于ArcGIS的月球虹湾地区数字地质图编制研究[J]. 地学前缘,19(6):104-109.
|
[55] |
籍进柱,郭弟均,刘建忠,等,2022. 1:250万月球全月地质图(英文)[J]. 科学通报,67(15):1544-1548.
|
[56] |
凌宗成,张江,武中臣,等,2013. 月球Aristarchus地区的物质成分与岩石类型分布[J]. 中国科学:物理学 力学 天文学,43(11):1403-1410.
|
[57] |
凌宗成,刘建忠,张江,等,2014. 基于“嫦娥一号”干涉成像光谱仪数据的月球岩石类型填图:以月球雨海—冷海地区(LQ-4)为例[J]. 地学前缘,21(6):107-120.
|
[58] |
刘建忠,郭弟均,籍进柱,等,2015. 月球的构造格架及其演化差异[J]. 深空探测学报,2(1):75-79.
|
[59] |
陆天启,2017. 月球断裂和皱脊构造分布特征研究[D]. 长春:吉林大学.
|
[60] |
陆天启,陈圣波,朱凯,2019. 基于GRAIL重力数据的月球深部断裂识别和空间分布研究[J]. 地球物理学报,62(8):2835-2844.
|
[61] |
陆天启,2020. 月球构造遥感识别及其演化研究[D]. 长春:吉林大学.
|
[62] |
罗林,刘建忠,张莉,等,2017. 月球线性构造分类体系研究[J]. 岩石学报,33(10):3285-3301.
|
[63] |
欧阳自远,2005. 月球科学概论[M]. 北京:中国宇航出版社:1-362
|
[64] |
欧阳自远,刘建忠,2014. 月球形成演化与月球地质图编研[J]. 地学前缘,21(6):1-6.
|
[65] |
田粉粉,陈圣波,曹一晶,等,2018. 基于粗糙度的雨海地形及撞击坑特征分析[J]. 世界地质,37(01):302-308.
|
[66] |
王娇,程维明,周成虎,2015. 全月球撞击坑识别、分类及空间分布[J]. 地理科学进展,34(3):330-339.
|
[67] |
王梁,丁孝忠,韩坤英,等,2015a. 月球数字地质图的编制与研究[J]. 中国地质,42(1):331-341.
|
[68] |
王梁,丁孝忠,韩同林,等,2015b. 月球第谷撞击坑区域数字地质填图及地质地貌特征[J]. 地学前缘,22(2):251-262.
|
[69] |
王庆龙,刘建忠,郭弟均,等,2018. 月球雨海盆地多环结构的厘定及其深部构造研究[J]. 地学前缘,25(1):297-313.
|
[70] |
许可娟,王梁,韩坤英,等,2020. 1:250万月球地质图符号库的设计与实现[J]. 地球科学,45(7):2650-2661.
|
[71] |
姚美娟,陈建平,王翔,等,2016. 基于最优分割分级法的月球撞击坑分级及其演化分析[J]. 岩石学报,32(1):119-126.
|
[72] |
岳宗玉,邸凯昌,刘建忠,2021. 行星表面撞击坑统计定年原理及应用[J]. 矿物岩石地球化学通报,40(5):1130-1142.
|