ZENG Pu-sheng, ZENG Pu-sheng, MA Jing, et al., 2015. BLUESCHIST BELT IN CHINA AND ITS TECTONIC SIGNIFICANCE. Journal of Geomechanics, 21 (3): 426-437.
Citation: MIN Zhuang, CHEN Zhengle, PAN Jiayong, et al., 2022. Research on fluid inclusions of the Jiadi gold deposit in southwestern Guizhou. Journal of Geomechanics, 28 (3): 448-463. DOI: 10.12090/j.issn.1006-6616.2021170

Research on fluid inclusions of the Jiadi gold deposit in southwestern Guizhou

doi: 10.12090/j.issn.1006-6616.2021170
Funds:

the Science and Technology Project of Guizhou Province 2021-408

Geological Survey Projects of the China Geological Survey DD20190161

Geological Survey Projects of the China Geological Survey DD20221660-3

Guizhou Carlin-type Gold Deposit Metallogenic and Prospecting Scientific and Technological Innovation Talent Team Construction Project CXTD2021-007

China Uranium Industry Corporation-East China University of Technology Joint Innovation Fund Project NRE2021-01

Open Fund Project of State Key Laboratory of Nuclear Resources and Environment of East China University of Technology 2020NRE04

More Information
  • The Jiadi gold deposit, located in southwestern Guizhou Province, is a newly discovered large-scale basalt-hosted and fine-grained disseminated gold deposit. This article focuses on the characteristics of ore-forming fluid in order to discuss the ore-forming mechanism by the fluid inclusion analyses from different mineralization stages of the deposit. Based on the field observations and laboratory analyses, the hydrothermal ore-forming processes of the deposit can be divided into three stages: the pyritization forming-stage (1st stage), the smoky-gray quartz forming-stage (2nd stage) and the sulfide forming-stage (3rd stage), among which the smoky-gray quartz forming-stage is the primary stage. The fluid inclusions are mainly composed of NaCl-H2O and CO2-NaCl-H2O type, and CO2-rich inclusions are frequently observed in the first stage minerals, with homogenization temperature (Th) ranging from 211 to 231℃, and salinity (wt) from 2.10 to 7.60 (%NaCl equiv). There are a lot of NaCl-H2O and CO2-NaCl-H2O type of inclusions in the second stage, with the homogenization temperature (Th) changing from 182 to 218℃, and the salinity (wt) from 1.40 to 5.90 (%NaCl equiv). The homogenization temperature (Th) of the third stage is generally lower than 183℃, with the salinity (wt) varying from 0.90 to 5.30 (%NaCl equiv). The results of laser Raman spectroscopy show that the inclusions generally contain CO2, CH4, N2, SO2 and other gas-phase components. As the homogeneous temperature, salinity and density of the ore-forming fluid continue to decrease, the component types in the inclusions tend to reduce. By calculating the ρ, P, pH, Eh, and ƒO2, the ore-forming environment is characterized by low to moderate temperatures, low salinity, low density, near neutrality, relative reducibility and low oxygen fugacity. The change in fluid inclusion assemblage (FIA) indicates that the mineralization occurred as the fluid CO2 content continued to decrease. The fluid mixing in the main ore-forming stage and the regional extensional structure caused strong fluid boiling, and a large number of metal components (pyrite, natural gold, etc.) were rapidly precipitated to form gold ore bodies.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • 蓝片岩是一种含钠质角闪石(即蓝闪石和青铝闪石)的片岩,蓝片岩带(blue schist belt)又称蓝闪石片岩带(glaucophane schist belt),是由含蓝闪石、硬柱石、硬玉、硬绿泥石等矿物组成的片岩的区域变质岩带。蓝片岩一般是低温高压条件下的变质产物,其高压条件有埋深、构造深埋(推覆体叠置引起)或者超液压(快速加热产生的液体超压或缓冲高压釜效应引起),压力范围0.5×109~1.0×109 Pa,温度范围在250~400 ℃[1];它在造山带中呈带状出露,位于双变质带中近消减带的一侧,因此它的空间分布和地质时代成为鉴别古消减带的重要标志。

    在造山带变质作用时,低温高压与超高压变质带常常伴生低压高温变质岩而组成双变质带。双变质带(paired metamorphic belts)指压力类型或变质相系不同、走向大致平行的2个变质岩带,最早由日本地质学家都城秋穗[2]提出,认为环太平洋区域和世界许多变质岩地区常由大陆侧的高温低压带和大洋侧(有时也可能出现在陆内一侧)的高压低温带组成双变质带,它们的形成时期相同。一直以来人们习惯把蓝片岩带当作板块缝合线的主要标志之一。随着研究的深入,地质学家通过对高压变质作用的进一步探讨后认识到,陆-陆碰撞、岩片的构造叠置与高压变质作用的关系非常明显,高压变质作用也不再仅仅只是板块俯冲的单一模式了[3]

    中国的块体增生主要有两大类:一种是B型俯冲形成的高压变质带,即洋盆消减俯冲与板块缝合带相重合;另一种为B+A型,先是洋壳俯冲,后又经陆-陆碰撞,即早期为B型俯冲形成高压变质带,后期在特定具体条件的地方产生向陆内俯冲的A型俯冲形成加厚乃至双倍地壳,通常形成高压—超高压变质带,如阿尔金、秦岭大别与苏北、南迦巴瓦等高压变质带。中国蓝片岩带大多属B型俯冲消减类型,有的地区有待进一步证实,如我国新疆阿克苏蓝片岩带原认为是A型俯冲,但其真正成因可能是元古代古洋盆的残余,是由于南天山洋向北俯冲消减而成。

    地球构造演化通常从边缘裂谷开始俯冲,当板块扩张到一定规模时,其洋壳开始产生俯冲消减,在俯冲消减过程中常常以双变质带的形式表现出来[4],即靠近海沟一侧因深俯冲而形成高压低温变质带,而靠近岛弧一侧则常常因岛弧火山岩发育而成为低压高温变质带。本文主要研究高压低温一侧。

    关于我国蓝片岩前人已经做过研究[3, 5~13],但在不少地区研究程度不够,尤其是在近年来基础地质研究取得重要进展的西南三江(金沙江,澜沧江,怒江)地区,关于高压俯冲蓝片岩带的研究显得零碎而薄弱。本文在前人研究的基础上对我国蓝片岩带进行了归纳与总结,选取不同时代典型蓝片岩带论述其特征(分布区域、大体规模、原岩特征、形成时代及矿物组合),并对其地质成因进行分析。

    Miyashiro[2]、Turner等[14]、Fyfe等[15]和Ernst[16]一致认为蓝闪石片岩的形成温度大致相当于绿片岩相,有的可能低于绿片岩相,其温压条件为250~550 ℃,0.6~1.2 GPa。

    Eskola最早对蓝闪片岩相(Glaucophane schist facies)进行了划分[13],此后Bailey[17]、Turner[18]、Winkler等[19]、Liou J G等[20]也将蓝片岩相划分为不同的相带(见表 1)。本文采用董申保[5~6]的分类方案,即将中国的蓝片岩相划分为蓝闪石-硬柱石片岩相和蓝闪绿片岩相2个不同类型的变质亚相,该分类方案是其在主编中国第一代1:4000000变质地质图时根据我国具体情况提出的,具有科学性及合理性。

    表  1  几种蓝片岩相划分方案对比[3]
    Table  1.  Contrast of several dividing schemes of blueschist facies
    Bailey[16]Turner[18]Winkler[19]董申保[5~6]Liou等[20]
    蓝片岩相Law-Ab-Chl相Law带(很低级)蓝闪
    石片
    岩相
    蓝闪石-硬柱石
    片岩相
    蓝片岩相Law带
    蓝片岩相Gln+Law
    Gln+Omp
    或Gln+Jd+Q
    Law+Gln带(很低级)Pmp带
    Jd+Q(很低级)Ep带
    绿片岩相绿片岩相Gln+Czo带(低级)蓝闪绿片岩相
    注:矿物代号见正文后说明
    下载: 导出CSV 
    | 显示表格

    蓝闪石-硬柱石片岩相(后文也称蓝闪片岩相)属于亚绿片岩相的高压相,温度一般为250~350 ℃,压力大于0.8 GPa,常常与浊沸石相、绿纤石-葡萄石相共生,出现的典型高压矿物有Jd、Law等,高温的Zo、Mus或Act组合则一般不会出现。

    而蓝闪绿片岩相属于绿片岩相范畴,温度一般为350~450 ℃,压力0.5~0.8 GPa,它常与绿片岩相岩石共生,其特征与绿片岩相基本一致,但属于高压相。常见的稳定矿物组合有Gln-Ep-Chl-Mus,有的含Act和Gt。蓝闪石类则主要是Cro、Mri。

    蓝片岩带划分的基本依据有:变质相和相系、温度-压力梯度、原岩建造、大地构造位置以及其他(如结晶基底和同期花岗岩存在与否等标志)[11]。本文主要依据蓝片岩的变质时代及所在地质构造的位置,以蓝片岩带所处地理位置命名。按变质时代分为新元古代(晋宁期)、古生代(加里东—海西期)、中生代(印支—燕山期)、新生代(喜马拉雅期),在沈其韩等[11]岩带划分基础上有所修改,并增加了金沙江-哀牢山蓝片岩带和南迦巴瓦榴辉岩蓝片岩带,最终划分为20个岩带(见图 1表 2)。

    图  1  中国蓝片岩带分布简图(据Liou等[12];沈其韩等[11];李才等[21];魏永峰等[22],重新修编)
    1—扬子缝合带;2—兴凯(泛非)缝合带;3—加里东缝合带;4—华力西缝合带;5—印支缝合带;6—燕山缝合带;7—喜马拉雅缝合带;8—断裂;9—主要地质界线;10—榴辉岩;11—地体及编号:QL—祁连地体;QDM—柴达木地体;QT—羌塘地体;HL—喜马拉雅地体;WQ—西秦岭造山带;12—蓝片岩带及其编号:(1) 新疆唐巴勒-艾比湖蓝片岩带;(2) 新疆西南天山蓝片岩与超高压榴辉岩带的复合带;(3) 新疆南天山库米什蓝片岩带;(4) 新疆阿克苏蓝片岩带;(5) 内蒙古温都尔庙蓝片岩带;(6) 贺根山-苏尼特左旗蓝片岩带;(7) 北阿尔金蓝片岩带;(8) 祁连山蓝片岩带;(9) 西秦岭蓝片岩带;(10) 东秦岭-桐柏-大别蓝片岩带;(11) 苏北蓝片岩带;(12) 黑龙江牡丹江-依兰-萝北蓝片岩带;(13) 甘孜-理塘结合带;(14) 金沙江-哀牢山蓝片岩带;(15) 西藏羌塘龙木措-双湖蓝片岩带;(16) 滇西南澜沧江南段蓝片岩带;(17) 西藏雅鲁藏布江蓝片岩带;(18) 南迦巴瓦榴辉岩蓝片岩带;(19) 赣东北德兴-弋阳蓝片岩带;(20) 台湾玉里蓝片岩带
    Figure  1.  Simplified map of distribution of major blueschist zone in China
    表  2  中国蓝片岩时空分布特征
    Table  2.  Features of temporal-spatial distribution of blueschists in China
    高压变质带蓝片岩带位置及编号原岩
    类型
    典型高压
    变质矿物
    蓝片岩相平衡
    矿物共生组合
    变质相年代/Ma资料来源
    元古代
    天山褶皱带新疆阿克苏(4)1Cro、BarB1100Liou等[23]
    江南隆起
    西缘
    江西德兴
    (赣东北德兴-弋阳)(19)
    3Cro、JdA864.5±19
    867.5±13.5
    苏良树等[24]
    路台北缘
    高压变质带
    古生代(加里东—海西期)
    新疆南天山库米什(3)1Gln、CroⅡ,ⅢA350高俊等[25]
    新疆西天山特克斯(2)1Gln、Cro、LawⅠ,Ⅲ,Ⅳ早:A
    晚:B
    408
    345
    高俊等[26]
    北阿尔金(7)3Gln、Law、Phe、B490~515张建新等[27]
    内蒙古温都尔庙(5)2Gln、Law、AragⅠ,Ⅲ,ⅤA426±15王秉方[28]
    贺根山-苏尼特左旗(6)1Gln、CroⅡ,ⅢB400包志伟等[29]
    新疆唐巴勒-艾比湖(1)2Gln、CroⅡ,ⅢB450~475张立飞[30]
    华中高压
    变质带
    祁连山(8)1Gln、Cro、
    Jd、Arag
    Ⅰ,Ⅱ,
    Ⅲ,Ⅴ
    早:B
    中:A
    晚:B
    406~454
    420~490
    415±7
    吴汉泉[31]
    宋述光[32]
    林宜慧等[33]
    中生代(印支—燕山期)
    西秦岭(9)2Gln、Cro、PieⅡ,Ⅳ,Ⅴ早:A
    晚:B
    东秦岭-桐柏-大别(10)3Cro、Pie、Na-AugⅡ,Ⅳ,ⅤB220葛宁洁等[34]
    黑龙江牡丹江-依兰-
    萝北(12)
    1GlnA210~250Zhou等[35]
    苏北(江苏北部)(11)1Cro、Jd、PieⅢⅣⅤA258许志琴[36]
    印度-喜马
    拉雅高压带
    甘孜-理塘(13)
    金沙江-哀牢山
    (墨江)(14)
    2Cro、Mri、GlnA240~210Liou等[23]
    莫宣学等[37]
    顾徳林等[38]
    沙绍礼[39]
    班公湖(西藏羌塘)(15)
    怒江、滇西澜沧江-昌宁-
    孟连(16)
    3Gln、Cro、
    Na-Aug、Law
    Ⅰ,Ⅱ,Ⅲ409~519
    193~260
    周维全等[40]
    彭兴阶[41]
    罗万林等[42]
    瞿明国[43]
    赵靖等[44]
    新生代(喜马拉雅期)
    雅鲁藏布江(17)2Gln、Jd、Law、
    Arag
    Ⅰ,ⅡB59李才等[21]
    南迦巴瓦(18)2GtB50张泽明等[45]
    环太平洋
    高压带
    台湾玉理(20)2Gln、CroⅡ,ⅣB9~14Liou等[23]
    原岩类型:1—基性火山岩、硅质岩;2—基性火山岩、硅质岩伴超基性岩;3—细碧角斑岩(中基性火山岩、碎屑岩)
    矿物共生组合:Ⅰ—Gln+Law+Chl+Jd+Ep±Arag;Ⅱ—Gln+Ep+Chl+Ab+Q;Ⅲ—Cro+Ep+Chl+Q±Act;Ⅳ—Cro+Ep+Chl+Q+Gt±Pie;Ⅴ—Omp+Gt+Gln;
    变质相:A—蓝闪-硬柱石片岩相;B—蓝闪绿片岩相
    下载: 导出CSV 
    | 显示表格

    新元古代(晋宁期)  蓝片岩带主要有新疆阿克苏蓝片岩带,江西德兴蓝片岩带(即赣东北德兴-弋阳蓝片岩带)。

    古生代(加里东—海西期)  蓝片岩带主要有北阿尔金蓝片岩带,祁连山蓝片岩带,内蒙古温都尔庙蓝片岩带,新疆西南天山蓝片岩与超高压变质岩复合带,新疆唐巴勒-艾比湖蓝片岩带,新疆西南天山库采什蓝片岩带,贺根山-苏尼特左旗蓝片岩带。

    中生代(印支—燕山期)  蓝片岩带主要有东秦岭-桐柏-大别蓝片岩带,西秦岭蓝片岩带,苏北蓝片岩带(不包括张八岭蓝片岩),西藏羌塘-龙木措-双湖蓝片岩带,黑龙江牡丹江依兰-萝北(嘉荫)蓝片岩带,甘孜-理塘-墨江蓝片岩带,滇西南澜沧江南段蓝片岩带。

    新生代(喜马拉雅期)  蓝片岩带主要有西藏雅鲁藏布江蓝片岩带,喜马拉雅东构造结南迦巴瓦榴辉岩蓝片岩带,以及台湾东部瑞穗-玉里蓝片岩带。

    图 1表 2总结了中国蓝片岩的分布、产状、特征高压矿物及原岩类型,从中可以看出,中国的蓝片岩带无论是在空间上还是在时间上分布都相当广泛,且有规律地沿着不同地质时期形成的几条板块拼合的造山带分布。

    空间上,我国目前发现的蓝片岩大多集中分布于几条与板块构造格局关系密切的主要造山带,且位于不同克拉通边缘造山带缝合带,呈不连续狭长带状展布(见图 1)。当然也不完全如此,如新疆阿克苏、东秦岭-桐柏-大别、西秦岭和苏北蓝片岩带就属例外,它们通常受后期陆内俯冲影响,叠加而形成超高压变质带。蓝片岩的这种空间分布特征大体勾绘出了我国各时代板块的综合轮廓[13]

    时代上,中国蓝片岩的形成时代相对比较齐全。目前发现的最老蓝片岩带为新元古代的新疆阿克苏和江西德兴(图 1中赣东北德兴-弋阳)蓝片岩带,此后从加里东期、海西期、印支期、燕山期直到喜马拉雅期均有分布。古生代加里东—海西期蓝片岩带数量仅次于中生代,这在国外很多地方都很少见。蓝片岩的这种时代演化特征一方面反映了我国大陆的增长模式,另一方面也反映了我国板块构造演化的基本历程[13]

    下面将按时间顺序以不同时期典型蓝片岩带为例论述其特征(分布区域、大体规模、原岩特征、形成时代及矿物组合),并结合前人资料对蓝闪石片岩带的地质成因进行分析。

    该蓝闪石片岩带分布于塔里木克拉通北缘的阿克苏群,是世界上已被确定的元古代高压变质带中的一个。阿克苏群上部被未变质的震旦系紫色粗砂岩地层不整合覆盖,蓝片岩年龄至少为800 Ma;Liou等[23]报道的蓝片岩Sm-Nd年龄为1100 Ma,由此可确定该蓝片岩形成于晚元古代,并经历后期的陆-陆俯冲影响。

    新疆阿克苏蓝片岩带(4) 主要高压变质矿物为Cro、Win、Phe等,主要矿物共生组合有Cro+Ep+Chl+Act+Ab+Q+Phe+Stip和Cro/Win+Ep+Phe+Ab+Q。

    早期地球不具备对流循环的板块构造基质,因而不会形成缝合带和高压变质带,直到距今2500 Ma之后,才有初步的俯冲和陆壳的形成[46~47]。元古代形成的蓝片岩带也多数因为地壳再循环或构造抬升剥蚀而难以观察到。中国新疆阿克苏蓝片岩带是保留较好的元古代蓝片岩带之一。沈其韩等[11]认为该带为典型的A型俯冲带。但笔者认为,陆内局部俯冲形成A型俯冲蓝片岩的动力学机制难以实现,它可能是晚元古代狭带纪(Stenian)时期(距今1100 Ma)[23]南天山洋向北俯冲消减的结果,并经历了后期陆-陆俯冲的叠加影响。阿克苏蓝片岩带的形成机制有待进一步深入研究。

    古生代蓝片岩带主要分布于天山-蒙古造山带内的古亚洲缝合带,如新疆西天山特克斯(2)、新疆南天山库米什(3)、北阿尔金(7)、祁连山(8)、内蒙古温都尔庙(5)、贺根山-苏尼特左旗(6)、黑龙江牡丹江(12) 等,形成年龄多在500~350 Ma之间,可能均与古亚洲洋向北的俯冲消减有关。以华北地台南部的祁连山蓝片岩带和华北地台北部的温都尔庙蓝片岩带为例简述如下。

    2.2.1   祁连山蓝片岩带(8)

    该蓝片岩带西起甘肃南部石居里,东至青海景阳岭,长超过200 km,宽2 km左右,处于阿拉善地块和中祁连地块之间、秦-祁-昆褶皱系中段北部,带中的蓝片岩主要产自中寒武统变质火山岩,上部是未变质的中泥盆统盖层(雪山群),形成年龄在490~406 Ma之间,可能是早古生代祁连洋盆向华北地台增生消减的结果[27, 31~33]

    该蓝片岩带的主要高压矿物:Gln、Cro、Phe、Jd、Arag等;主要岩石类型:蓝闪绿帘绿泥片岩、蓝闪多硅白云石英片岩、含石榴多硅白云蓝闪片岩、含硬玉青铝闪石岩、黑硬绿泥石蓝闪片岩、含文石大理岩和C类榴辉岩等[38];高压变质矿物组合:Cro+Phe+Ab+Q+Gt、Gln/Cro+Chl+Phe+Q±Ep±Law、Cro+Gt+Ep+Phe+Q±Stip±Zo、Gln+Gt+Na+Aug±Ep±Phe以及Cro+Jd+Phe+Ab+Q(±表示矿物可以有也可以没有)。

    祁连山蓝片岩形成于早古生代,相当于加里东期变质作用产物,与高压带相伴生的有蛇绿岩套及混杂堆积,这是典型的板块缝合线特征,早古生代洋壳蛇绿岩套发育完整,使之成为除青藏高原之外研究古洋壳的一个极好地区,高压变质作用也使这里成为中国翡翠的远景区之一[38]

    2.2.2   内蒙古温都尔庙蓝片岩带(5)

    内蒙古温都尔庙蓝片岩带位于华北克拉通北缘温都尔庙东变质带北部,沿锡林浩特—苏尼特右旗呈东西向线状展布。该带中的蓝片岩产于震旦系及寒武系,属早加里东期绿片岩相变质作用[6]。蓝片岩主要赋存于古生代温都尔庙群桑达来音组及哈尔哈达组细碧角斑岩建造和硅铁建造之中,与蛇纹岩化纯橄榄岩、辉橄岩和斜长岩组成的蛇绿岩套紧密伴生。岩带在温都尔庙地区出露可达58 km[10]

    温都尔庙蓝片岩带属蓝闪石绿片岩相系,由蓝闪石绿片岩相和绿片岩相(绿泥石级)组成。钠质角闪石为青铝闪石-镁钠闪石,并与硬柱石、黑硬绿泥石、红帘石、多硅白云母及钙质角闪石共生。

    主要变质矿物组合有:Cro+Ep+Chl+Ab+Stip、Law+Ep+Chl+Ab、Cro+Stip+Phe+Ab+Q以及Gln+Cc+Arag。

    王秉方[28]测得蓝片岩中蓝闪石的同位素年龄为426±15 Ma,Yan等[47]测得蓝片岩中蓝闪石的40Ar/39Ar年龄为445.5±15 Ma。高长林等[48]测得温都尔庙蓝片岩的变质年龄为489~435±61 Ma,同时该蓝片岩带南侧白乃庙一带发育的高温低压变质岩中角闪石的K-Ar年龄为458.1~434 Ma,因此推测这二者是奥陶纪—志留纪古蒙古洋板块向华北板块俯冲消减所形成的蓝片岩带,对此推论还需作进一步研究论证。

    中生代蓝片岩带主要分布于扬子地台北缘的东秦岭-桐柏-大别带、被郯庐断裂带错切的苏北带、扬子地台西缘的甘孜-理塘带和金沙江-哀牢山(墨江)带、班公湖-怒江-澜沧江带,是扬子北缘的秦岭洋(古特提斯洋的北支)、甘孜-理塘洋—金沙江洋(古特提斯洋的中支)、班公湖-怒江洋—昌宁孟连洋(古特提斯洋的南支)等“西南三江”多岛洋(archipelagic ocean)向北增生过程中,各个洋盆向南或向北俯冲闭合的结果。本文以滇藏高压变质带中的甘孜-理塘蓝片岩带(14) 为例进行分析。

    甘孜-理塘缝合带地理位置特殊,位于川西青藏高原东部松潘-甘孜造山带与义敦岛弧相交处,是古特提斯洋东北支的甘孜-理塘洋向西俯冲消减导致扬子陆块与中咱陆块-义敦岛弧带拼接的碰撞缝合带。

    甘孜-理塘高压变质带主要出露于理塘的尔拉寺后山、木里县的依吉、大理周城—太和一带,蓝闪石年龄为240 Ma[38],其高压岩石类型为蓝闪钠长绿泥片岩、蓝闪阳起绿泥片岩、多硅白云母片岩等。依吉以南,沿冲江河河谷,经忠义—白汉场一带的金沙江河谷沿岸,再向南至洱源县城西、大理周城—太和一带,断续有流纹岩与玄武岩构成的双峰式火山岩组合,是甘孜-理塘洋盆早期开启的标志。大理周城、太和一带参与的基性岩中发现有镁钠闪石。

    该蓝片岩带的矿物组合为Cro+Ep+Chl+Ab+ Gln+Q、Mri+ Phe+Ab+Q、Mri+Phe+Bt+Q。

    甘孜-理塘缝合带西侧的造山带燕山晚期后进入陆内汇聚阶段,地壳进一步压缩加厚导致陆壳重熔,在岛弧背景上引起中酸性岩浆侵入形成了大规模的雀儿山花岗岩带[49]

    新生代喜马拉雅期之后,在印度板块与欧亚板块互相碰撞引发强烈的陆内构造作用下,南部的三江口以南出现强烈逆冲推覆,形成规模较大的逆冲推覆体。逆冲推覆后的走滑-伸展可形成一系列的拉分盆地,包括洱源盆地、洱海盆地等,伸展的东部边界洱海-红河断裂向北与丽江-木里断裂相连,可能代表了甘孜-理塘缝合带未推覆前的大致东部边界。

    2.4.1   雅鲁藏布江蓝片岩带(18)

    雅鲁藏布江蓝片岩带位于雅鲁藏布江沿岸,长约1600 km,呈近东西向不连续带状展布。主要变质岩石为蓝闪片岩、含蓝闪绿泥多硅白云片岩、含硬柱石变辉长岩、含文石大理岩等;原岩为中基性火山岩、枕状熔岩、泥质岩、硅质岩并伴有超基性岩,高压变质作用的温度为350~500 ℃,压力为0.7~0.9 GPa[38]。变质地层是一套晚侏罗世—白垩纪杂色硅质岩,夹火山岩系及少量晚三叠世类复理石沉积。主要高压变质矿物有Gln、Cro、Bar、Law、Jd、Arag等[11];主要矿物共生组合:Stip+Chl+Ep±Arag,Gln+Stip+Chl+Srt+Q,Gln+Chl+Art±Ab。

    雅鲁藏布江蓝片岩带是印度板块与欧亚板块俯冲碰撞而形成的,从变质相空间分布上看,北带为蓝闪质岩带,南带为黑硬绿泥石带,疑似具有从南往北温度降低、压力升高的趋势,这种变质作用的极性提示了印度板块向北的俯冲作用以及古俯冲带的大致位置[11]。Liou等[12]沿印度缝合带曾获得80±5 Ma的年龄,李才等[21]在雅鲁藏布江缝合带南侧卡堆蓝片岩中的蓝闪石(青铝闪石)获得了59.29±0.83 Ma的Ar-Ar加权平均年龄,该年龄与利用海相最高沉积层位、地层古生物、古地磁等研究方法获得的结论吻合,可见印度河-雅鲁藏布江缝合带闭合时间应在距今59 Ma左右,也是洋壳消亡和印度与亚洲板块碰撞的时间约束[11]

    2.4.2   南迦巴瓦榴辉岩蓝片岩带(19)

    张泽明等[45]在东喜马拉雅构造结即南迦巴瓦岩群中发现了呈透镜状产于麻粒岩相变质的泥质片岩和长英质片麻岩中的石榴辉石岩,主要由富铁铝榴石的石榴石和透辉石组成,含少量的石英、榍石和金红石,不含角闪石和斜长石。石榴辉石岩是榴辉岩相高压变质作用的产物,原岩相当于基性—超基性层状侵入体中的辉长岩,在快速抬升过程中叠加了麻粒岩相和角闪岩相退变质作用。

    丁林等[50]根据南迦巴瓦峰高压麻粒岩岩相学特征识别该地区有3期变质矿物组合:Mus+Bt+Pl+Q、Gt+Ky+Per+Anti-Per+Rt+Q及Gt+Sil+Crd+Spl+Ilm±Opx。而石榴辉石岩峰期变质作用的温度和压力条件分别为800~900 ℃和2.6~2.8 GPa,变质时代可能为距今50 Ma[46]。具有A型俯冲+B型俯冲叠加的特点,与大别-苏鲁高压—超高压变质带类似。

    我国蓝片岩带按变质时代和蓝闪石产地可初步划分为4个时期20个岩带,每个时期的蓝片岩带均与中国地体增生过程中洋盆的消减俯冲有关,并在特定地段受后期的超高压俯冲叠加影响。元古代的德兴-弋阳带是华南洋盆向扬子板块下俯冲消减的产物;古生代华北地台南缘和北缘的蓝片岩带则分别是祁连洋和古亚洲洋闭合俯冲的产物;中生代古特提斯洋盆北、中、南支的消减俯冲,分别形成了北支东秦岭-大别-苏北(叠加过后期的超高压俯冲、折返)、中支金沙江-哀牢山(含甘孜-理塘带分支)、南支班公湖-怒江—昌宁-孟连三大蓝片岩带;新生代的雅鲁藏布江带则是印度板块向欧亚大陆下俯冲消减的产物(南迦巴瓦-密支那带叠加了超高压俯冲)。

    我国蓝片岩生成方式复杂,但大体均与俯冲消减作用有关,且大多属B型俯冲消减;部分地段叠加了A型俯冲的高压—超高压变质带(如阿尔金带、大别-苏北带、南迦巴瓦-密支那带等)。新疆阿克苏蓝片岩带可能以A型俯冲为主,有待深入研究。

    Ab—钠长石;Act—阳起石;Arag—文石;Anti-Per—反纹长石;Bar—冻蓝闪石;Bt—黑云母;Cc—方解石;Chl—绿泥石;Cro—青铝闪石;Crd—堇青石;Czo—黑黝帘石;Ep—绿帘石;Gt—石榴石;Gln—蓝闪石;Ilm—黑金红石;Jd—硬玉;Ky—蓝晶石;Law—硬柱石;Mri—镁钠闪石;Mus—白云母;Na-Aug—钠质辉石;Omp—绿辉石;Opx—斜方辉石;Per—条纹长石;Pie—红帘石;Phe—多硅白云母;Pl—斜长石;Pmp—绿纤石;Q—石英;Rt—金红石;Sil—矽线石;Stip—黒硬绿泥石;Srt—绢云母;Spl—尖晶石;Win—透蓝闪石;Ze—沸石;Zo—黝帘石。

  • CHEN B J, WEN C Q, HUO Y, et al., 2010. Study on fluid inclusion of the Shuiyindong gold deposit, Southwestern Guizhou[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 29(1): 45-51. (in Chinese with English abstract)
    CHEN M H, MAO J W, QU W J, et al., 2007. Re-Os dating of arsenian pyrites from the Lannigou gold deposit, Zhenfeng, Guizhou Province, and its geological significances[J]. Geological Review, 53(3): 371-382. (in Chinese with English abstract)
    DU F, 2017. Characteristics and significance of fluid inclusions from breccia ore of Getang gold deposit in Anlong, Guizhou Province[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    FAN H R, XIE Y H, WANG Y L, 1997. Fluid inclusion evidences in the processes and environments of gold deposition[J]. Journal of Precious Metallic Geology, 6(3): 204-213. (in Chinese with English abstract)
    FAN H R, HU F F, YANG J H, et al., 2005. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong Province[J]. Acta Petrologica Sinica, 21(5): 1317-1328. (in Chinese with English abstract)
    GUO J H, 2002. Mineralizing process of micrograin-type gold deposits in Southeastern Yunnan and Northwestern Guangxi[J]. Mineral Deposits, 21(S1): 121-124. (in Chinese with English abstract)
    HAN X, 2012. The study on geologic-geochemical characteristics and causes discusses of the Lannigou Carlin-type gold deposits in Guizhou[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    HE J P, YUAN S F, WANG X Y, et al., 2018. Geochemical Characteristics of the Lianhuashan anticline in the Southwest Guizhou dense area of mineral deposits[J]. Acta Geologica Sichuan, 38(3): 384-387, 397. (in Chinese with English abstract)
    HU C W, MOU Y Z, 2015. Analysis of Geological features ofmineralization and prospecting potential of the Jiadi gold deposit in Panxian, Guizhou Province[J]. Nonferrous Metals Abstract, 30(3): 42-44. (in Chinese with English abstract)
    HU R Z, SU W C, BI X W, et al., 1995. A possible evolution way of ore-Formting hydrothermal fluid for the Carlin-type gold deposits in the Yunnan-Guizhou-Guangxi triangle area[J]. Acta Mineralogica Sinica, 15(2): 144-149. (in Chinese with English abstract)
    HU Y Z, LIU W H, WANG J J, et al., 2017. Basin-scale structure control of Carlin-style gold deposits in central Southwestern Guizhou, China: insights from seismic reflection profiles and gravity data[J]. Ore Geology Reviews, 91: 444-462. doi: 10.1016/j.oregeorev.2017.09.011
    HUA R M, CHEN P R, ZHANG W L, et al., 2005. Three major metallogenic events in Mesozoic in South China[J]. Mineral Deposits, 24(2): 99-107. (in Chinese with English abstract)
    HUANG X Q, CHEN Z L, WANG P A, et al., 2008. Fluid inclusion study of the Shazhou uranium orefield in the Xiangshan deposiţJiangxi[J]. Journal of Geomechanics, 14(2): 176-185. (in Chinese with English abstract)
    LARGE S J E, BAKKER E Y N, WEIS P, et al., 2016. Trace elements in fluid inclusions of sediment-hosted gold deposits indicate a magmatic-hydrothermal origin of the Carlin ore trend[J]. Geology, 44(12): 1015-1018. doi: 10.1130/G38351.1
    LEHRMANN D J, PAYNE J L, PEI D H, et al., 2007. Record of the end-Permian extinction and Triassic biotic recovery in the Chongzuo-Pingguo platform, southern Nanpanjiang basin, Guangxi, south China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 200-217. doi: 10.1016/j.palaeo.2006.11.044
    LI J H, 2021. The study of ore-forming processes of the Jiadi and Damaidi basalt-hosted gold deposits, Southwestern Guizhou Province, China[D]. Guiyang: Guizhou University. (in Chinese with English abstract)
    LIU B, DUAN G X, 1987. The density and isochoric formulae for NaCl-H2O fluid inclusions (salinity≤25 WT%) and their applications[J]. Acta Mineralogica Sinica, 7(4): 345-352. (in Chinese with English abstract)
    LIU B, 2011. Calculation of pH and Eh for aqueous inclusions as simple system[J]. Acta Petrologica Sinica, 27(5): 1533-1542. (in Chinese with English abstract)
    LIU J M, LIU J J, 1997. Basin fluid genetic model of sediment-hosted microdisseminated gold deposits in the gold-triangle area between Guizhou, Guangxi and Yunnan[J]. Acta Mineralogica Sinica, 17(4): 448-456. (in Chinese with English abstract)
    LIU J Z, DENG Y M, LIU C Q, et al., 2006. Metallogenic conditions and model of the superlarge Shuiyindong stratabound gold deposit in Zhenfeng County, Guizhou Province[J]. Geology in China, 33(1): 169-177. (in Chinese with English abstract)
    LIU J Z, XIA Y, DENG Y M, et al., 2009. Researches on the Sbt of Shuiyindong gold deposit and significance for regional prospecting[J]. Gold Science and Technology, 17(3): 1-5. (in Chinese with English abstract)
    LIU X F, NI S Z, SU W C, 1996. Characteristics of isotope geochemistry and plutonic-origin fluid mineralization for Carlin-type gold deposits in the Yunnan-Guizhou-Guangxi[J]. Journal of Mineralogy and Petrology, 16(4): 106-111. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KWYS199604016.htm
    LIU Y H, 2002. Analysis on the Minerogenetic Geological Condition of the Gold Ore in the Lianhuashan Anticline Western Guizhou[J]. Guizhou Geology, 19(4): 231-234. (in Chinese with English abstract)
    LU H Z, 2008. Role of CO2 fluid in the formation of gold deposits: Fluid inclusion evidences[J]. Geochimica, 37(4): 321-328. (in Chinese with English abstract)
    LU H Z, 2019. Geofluids and across earth sphere structures[J]. Journal of Geomechanics, 25(6): 1003-1012. (in Chinese with English abstract)
    MAO J W, LI Y Q, 2001. Fluid inclusions of the Dongping gold telluride deposit in Hebei Province, China: involvement of mantle fluid in metallogenesis[J]. Mineral Deposits, 20(1): 23-36. (in Chinese with English abstract)
    NIE G J, YU H M, HE S, et al., 2020. Physical simulation analysis of the Cenozoic fault activities and structural deformation mechanism of the Youjiang area[J]. Journal of Geomechanics, 26(3): 316-328. (in Chinese with English abstract)
    NIE L Q, ZHOU T F, WANG F Y, et al., 2019. Study of fluid inclusions and H-O-S isotopic compositions of Donggushan tungsten skarn deposit, Anhui Province, China[J]. Acta Petrologica Sinica, 35(12): 3825-3837. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.12.16
    PENG Y W, GU X X, ZHANG Y M, et al., 2014. Source and evolution of ore-forming fluid of the Huijiabao gold field, Southwestern Guizhou: evidences from fluid inclusions and stable isotopes[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(5): 666-680. (in Chinese with English abstract)
    QIU L F, WU D, WU Y, et al., 2019. Characteristics of ore-forming fluids and sources of polymetallic ore-forming materials in deep segment of uranium deposits in Niutoushan area, Xiangshan[J]. Mineral Deposits, 38(2): 291-302. (in Chinese with English abstract)
    SU W C, XIA B, ZHANG H T, et al., 2008. Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for the environment and processes of ore formation[J]. Ore Geology Reviews, 33(3-4): 667-679. doi: 10.1016/j.oregeorev.2007.10.002
    SU W C, ZHANG H T, HU R Z, et al., 2012. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for gold depositional processes[J]. Mineralium Deposita, 47(6): 653-662. doi: 10.1007/s00126-011-0328-9
    TIAN C, ZHANG W G, HE H J, et al., 2021. Mineralogical characteristics of gold-bearing pyrite and gold occurrence regularity of the Jiadi gold deposit in southwestern Guizhou Province[J]. Geology in China, 48(4): 1255-1266. (in Chinese with English abstract)
    WANG D F, LIU J Z, XIONG C J, et al., 2014. A Preliminary Study on Ore Characteristics of the Jiadi Gold Deposit in Panxian, Guizhou[J]. Journal of Guizhou University (Natural Sciences), 31(6): 55-60. (in Chinese with English abstract)
    WANG D F, 2015. A preliminary study on the geological and geochemical characteristics of the Jiadi gold deposit in Panxian, Guizhou[D]. Guiyang: Guizhou University. (in Chinese with English abstract)
    WU F Y, GE W C, SUN D Y, et al., 2003. Discussions on the lithospheric thinning in eastern China[J]. Earth Science Frontiers, 10(3): 51-60. (in Chinese with English abstract)
    WU X H, CHENG P L, XIAO C G, et al., 2013. Metallogenic geologic characteristics of Damaidi gold deposit in basalt distribution area of Western Guizhou[J]. Guizhou Geology, 30(4): 283-288. (in Chinese with English abstract)
    XIA Y, 2005. Characteristics and model for Shuiyindong gold deposit in Southwestern Guizhou, China[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences. (in Chinese with English abstract)
    YAN D P, ZHOU M F, SONG H L, et al., 2002, Where was south China locatedin the reconstruction of Rodinia?[D]. Eart h Science Frontiers, 9(4): 249-256. (in Chinese with English abstract)
    YAO J, 2018. Studies on ore-forming material source and ore genesis of Laozhaiwan fine-disseminated gold deposit, in Yunnan[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    ZENG G P, 2018. Study on the structurally controlling on the micro-disseminated gold deposits in the western of the Southwest Guizhou gold ore concentration area[D]. Wuhan: China University of Geosciences (Wuhan). (in Chinese with English abstract)
    ZENG S G, WANG S H, WU X H, 2014. Metallogenic Mode Disscussion of Microscopic Disseminated Type Gold Deposit in Lianhuashan Area[J]. Guizhou Geology, 31(3): 161-169. (in Chinese with English abstract)
    ZHANG L, DU D Q, ZHANG H B, et al., 2012. Study on structural ore control of Huijiapu gold mine field in Southwestern Guizhou: tectonic significance of the "Two-stairs" model[J]. Gold, 33(9): 13-18. (in Chinese with English abstract)
    ZHANG R Q, ZHOU Y, WANG X W, et al., 2009. Structural features and tectonic evolution of the Wei-Zi-Luo fault zone in Southwestern Guizhou Province[J]. Journal of Geomechanics, 15(2): 178-189. (in Chinese with English abstract)
    ZHANG T, CHEN Z L, HUANG H Y, et al., 2020. Geochemical characteristics of gold-bearing minerals and its geological significance in the Ashawayi gold deposit in the southwestern Tianshan Orogen[J]. Journal of Geomechanics, 26(3): 443-458. (in Chinese with English abstract)
    ZHAO F Y, XIAO C G, ZHANG B Q, et al., 2018. REE and isotopic features of the Jiadi gold deposit in Panxian county, Guizhou Province and its ore-forming material source[J]. Geology and Exploration, 54(3): 465-478. (in Chinese with English abstract)
    ZHENG L L, 2017. Mineralization mechanism and ore-forming process of the Nibao gold deposit in Southwestern Guizhou, China[D]. Guiyang: Guizhou University. (in Chinese with English abstract)
    ZHU L M, JIN J F, HE M Y, et al., 1997. An initial study of the mineralization of plutonic fluid of the fine disseminated gold deposit in Southwest Guizhou Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 16(3): 173-177. (in Chinese with English abstract)
    ZHUO Y Z, HU R Z, XIAO J F, et al., 2019. Trace elements and C-O isotopes of calcite from Carlin-type gold deposits in the Youjiang Basin, SW China: constraints on ore-forming fluid compositions and sources[J]. Ore Geology Reviews, 113: 103067. doi: 10.1016/j.oregeorev.2019.103067
    陈本金, 温春齐, 霍艳, 等, 2010. 黔西南水银洞金矿床流体包裹体研究[J]. 矿物岩石地球化学通报, 29(1): 45-51. doi: 10.3969/j.issn.1007-2802.2010.01.007
    陈懋弘, 毛景文, 屈文俊, 等, 2007. 贵州贞丰烂泥沟卡林型金矿床含砷黄铁矿Re-Os同位素测年及地质意义[J]. 地质论评, 53(3): 371-382. doi: 10.3321/j.issn:0371-5736.2007.03.010
    杜放, 2017. 贵州安龙戈塘金矿角砾状矿石流体包裹体特征研究及意义[D]. 成都: 成都理工大学.
    范宏瑞, 谢奕汉, 王英兰, 1997. 流体包裹体与金矿床的成矿及勘探评价[J]. 贵金属地质, 6(3): 204-213. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD703.006.htm
    范宏瑞, 胡芳芳, 杨进辉, 等, 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J]. 岩石学报, 21(5): 1317-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505000.htm
    国家辉, 2002. 滇东南桂西北微细粒型金矿成矿作用探讨[J]. 矿床地质, 21(S1): 121-124. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1038.htm
    韩雪, 2012. 贵州烂泥沟卡林型金矿床地质地球化学特征及成因探讨[D]. 成都: 成都理工大学.
    何金坪, 苑顺发, 汪小勇, 等, 2018. 黔西南矿集区莲花山背斜区地球化学特征[J]. 四川地质学报, 38(3): 384-387, 397. doi: 10.3969/j.issn.1006-0995.2018.03.007
    胡瑞忠, 苏文超, 毕献武, 等, 1995. 滇黔桂三角区微细浸染型金矿床成矿热液一种可能的演化途径: 年代学证据[J]. 矿物学报, 15(2): 144-149. doi: 10.3321/j.issn:1000-4734.1995.02.005
    胡承伟, 牟永忠, 2015. 贵州省盘县架底金矿床成矿地质特征及找矿潜力分析[J]. 有色金属文摘, 30(3): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJW201503023.htm
    华仁民, 陈培荣, 张文兰, 等, 2005. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质, 24(2): 99-107. doi: 10.3969/j.issn.0258-7106.2005.02.002
    黄锡强, 陈正乐, 王平安, 等, 2008. 江西相山铀矿田沙洲矿床流体包裹体研究[J]. 地质力学学报, 14(2): 176-185. doi: 10.3969/j.issn.1006-6616.2008.02.009
    李俊海, 2021. 贵州西南部架底和大麦地玄武岩中金矿床成矿过程研究[D]. 贵阳: 贵州大学.
    刘斌, 段光贤, 1987. NaCl—H2O溶液包裹体的密度式和等容式及其应用[J]. 矿物学报, 7(4): 345-352. doi: 10.3321/j.issn:1000-4734.1987.04.010
    刘斌, 2011. 简单体系水溶液包裹体pH和Eh的计算[J]. 岩石学报, 27(5): 1533-1542. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105026.htm
    刘建明, 刘家军, 1997. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J]. 矿物学报, 17(4): 448-456. doi: 10.3321/j.issn:1000-4734.1997.04.012
    刘建中, 邓一明, 刘川勤, 等, 2006. 贵州省贞丰县水银洞层控特大型金矿成矿条件与成矿模式[J]. 中国地质, 33(1): 169-177. doi: 10.3969/j.issn.1000-3657.2006.01.019
    刘建中, 夏勇, 邓一明, 等, 2009. 贵州水银洞Sbt研究及区域找矿意义探讨[J]. 黄金科学技术, 17(3): 1-5. doi: 10.3969/j.issn.1005-2518.2009.03.001
    刘显凡, 倪师军, 苏文超, 1996. 滇黔桂微细浸染型金矿同位素地球化学特征与深源流体成矿[J]. 矿物岩石, 16(4): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199604016.htm
    刘远辉, 2002. 贵州莲花山背斜金的成矿地质条件分析[J]. 贵州地质, 19(4): 231-234. doi: 10.3969/j.issn.1000-5943.2002.04.004
    卢焕章, 2008. CO2流体与金矿化: 流体包裹体的证据[J]. 地球化学, 37(4): 321-328. doi: 10.3321/j.issn:0379-1726.2008.04.006
    卢焕章, 2019. 地球中的流体和穿越层圈构造[J]. 地质力学学报, 25(6): 1003-1012. doi: 10.12090/j.issn.1006-6616.2019.25.06.083
    毛景文, 李荫清, 2001. 河北省东坪碲化物金矿床流体包裹体研究: 地幔流体与成矿关系[J]. 矿床地质, 20(1): 23-36. doi: 10.3969/j.issn.0258-7106.2001.01.004
    聂冠军, 于红梅, 何声, 等, 2020. 右江地区新生代断裂活动及构造变形机制的物理模拟分析[J]. 地质力学学报, 26(3): 316-328. doi: 10.12090/j.issn.1006-6616.2020.26.03.029
    聂利青, 周涛发, 汪方跃, 等, 2019. 安徽庐枞矿集区东顾山钨矿床成矿流体来源与演化: 来自H、O、S同位素和流体包裹体的证据[J]. 岩石学报, 35(12): 3825-3837. doi: 10.18654/1000-0569/2019.12.16
    彭义伟, 顾雪祥, 章永梅, 等, 2014. 黔西南灰家堡金矿田成矿流体来源及演化: 流体包裹体和稳定同位素证据[J]. 矿物岩石地球化学通报, 33(5): 666-680. doi: 10.3969/j.issn.1007-2802.2014.05.013
    邱林飞, 吴迪, 吴玉, 等, 2019. 相山牛头山地区铀矿床深部多金属成矿流体特征与成矿物质来源探讨[J]. 矿床地质, 38(2): 291-302. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201902005.htm
    田冲, 张文高, 何虎军, 等, 2021. 黔西南架底金矿床载金黄铁矿的矿物学特征及金的赋存规律研究[J]. 中国地质, 48(4): 1255-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202104022.htm
    王大福, 刘建中, 熊灿娟, 等, 2014. 贵州盘县架底金矿矿石特征初步研究[J]. 贵州大学学报(自然科学版), 31(6): 55-60. doi: 10.3969/j.issn.1000-5269.2014.06.014
    王大福, 2015. 贵州盘县架底金矿地质地球化学特征初步研究[D]. 贵阳: 贵州大学.
    吴福元, 葛文春, 孙德有, 等, 2003. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘, 10(3): 51-60. doi: 10.3321/j.issn:1005-2321.2003.03.004
    吴小红, 程鹏林, 肖成刚, 等, 2013. 贵州西部玄武岩分布区大麦地金矿成矿地质特征[J]. 贵州地质, 30(4): 283-288. doi: 10.3969/j.issn.1000-5943.2013.04.008
    夏勇, 2005. 贵州贞丰县水银洞金矿床成矿特征和金的超常富集机制研究[D]. 贵阳: 中国科学院研究生院(地球化学研究所).
    颜丹平, 周美夫, 宋鸿林, 等, 2002. 华南在Rodinia古陆中位置的讨论: 扬子地块西缘变质-岩浆杂岩证据及其与Seychelles地块的对比[J]. 地学前缘, 9(4): 249-256. doi: 10.3321/j.issn:1005-2321.2002.04.004
    姚娟, 2008. 云南老寨湾金矿床成矿物质来源分析及矿床成因探讨[D]. 成都: 成都理工大学.
    曾国平, 2018. 黔西南矿集区西段微细浸染型金矿构造控矿作用研究[D]. 武汉: 中国地质大学(武汉).
    张蕾, 杜定全, 张晗彬, 等, 2012. 黔西南灰家堡金矿田的构造控矿模式研究: "两层楼"模式的构造意义[J]. 黄金, 33(9): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201209003.htm
    张荣强, 周雁, 汪新伟, 等, 2009. 贵州西南部威-紫-罗断裂带构造特征及演化[J]. 地质力学学报, 15(2): 178-189. doi: 10.3969/j.issn.1006-6616.2009.02.007
    曾昭光, 王石华, 吴小红, 2014. 莲花山地区微细粒浸染型金矿成矿模式探讨: 以架底金矿为例[J]. 贵州地质, 31(3): 161-169. doi: 10.3969/j.issn.1000-5943.2014.03.001
    张涛, 陈正乐, 黄宏业, 等, 2020. 西南天山阿沙哇义金矿载金矿物地球化学特征及地质意义[J]. 地质力学学报, 26(3): 443-458. doi: 10.12090/j.issn.1006-6616.2020.26.03.038
    赵富远, 肖成刚, 张兵强, 等, 2018. 贵州盘县架底金矿稀土元素和同位素特征及成矿物质来源探讨[J]. 地质与勘探, 54(3): 465-478. doi: 10.3969/j.issn.0495-5331.2018.03.003
    郑禄林, 2017. 贵州西南部泥堡金矿床成矿作用与成矿过程[D]. 贵阳: 贵州大学.
    朱赖民, 金景福, 何明友, 等, 1997. 初论黔西南微细浸染型金矿床深源流体成矿[J]. 矿物岩石地球化学通报, 16(3): 173-177. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH703.008.htm
  • Relative Articles

    TAN Lijin, LIU Jianzhong, TAN Qinping, LI Songtao, SONG Weifang, LI Junhai, WANG Zepeng, XU Liangyi, ZHANG Bingqiang, LIU Ping, MENG Minghua. 2024: Research on weak information extraction methods in the exploration of hidden Carlin-type gold deposits in southwestern Guizhou, China. Journal of Geomechanics, 30(1): 57-71. doi: 10.12090/j.issn.1006-6616.2023115
    2022: Inside Cover. Journal of Geomechanics, 28(3): 316-316.
    ZHENG Fanbo, WANG Guoguang, NI Pei. 2021: Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits. Journal of Geomechanics, 27(4): 596-613. doi: 10.12090/j.issn.1006-6616.2021.27.04.050
    JIA Runxing, FANG Weixuan. 2021: The migration rule of the ore-forming fluids in the Meso-Cenozoic Basins, Southwestern Tianshan, China. Journal of Geomechanics, 27(4): 529-541. doi: 10.12090/j.issn.1006-6616.2021.27.04.046
    ZHAO Maochun, WU Baoqian, YU Haijun, HE Yun, TANG Qiong, YANG Jinsong, LI Jiacheng, ZHANG Sishan, WANG Guanglong. 2020: Ore-forming fluid fracturing treatment of ore-bearing fractures and the characteristics of the related veins in porphyry deposits. Journal of Geomechanics, 26(3): 299-315. doi: 10.12090/j.issn.1006-6616.2020.26.03.028
    XU Xingwang, NIU Lei, HONG Tao, KE Qiang, LI Hang, WANG Xuehai. 2019: TECTONIC DYNAMICS OF FLUIDS AND METALLOGENESIS. Journal of Geomechanics, 25(1): 1-8. doi: 10.12090/j.issn.1006-6616.2019.25.01.001
    YAN Liyu, ZHENG Yi, WANG Chengming, YU Pengpeng. 2019: APPLICATION OF FLUID INCLUSIONS METHODOLOGY IN THE SHALE GAS STUDY: A REVIEW. Journal of Geomechanics, 25(S1): 103-107. doi: 10.12090/j.issn.1006-6616.2019.25.S1.017
    SI Shanghua, ZHAO Jingzhou, MENG Qi'an, CAO Qing, WU Weitao, ZHANG Yuhang. 2018: THE FLUID INCLUSION PALEO PRESSURE CHARACTERISTICS AND GEOLOGICAL IMPLICATIONS OF GAOTAIZI TIGHT RESERVOIR IN QIJIA AREA OF SONGLIAO BASIN. Journal of Geomechanics, 24(1): 51-59. doi: 10.12090/j.issn.1006-6616.2018.24.01.006
    DONG Hui, WANG Zhihai, DONG Min, LI Hong, WEI Xiaoyan, LIANG Jiwei. 2017: APPLICATION OF LASER RAMAN SPECTROSCOPY IN THE STUDY OF ORGANIC INCLUSIONS: A CASE STUDY ON OIL AND GAS INCLUSIONS IN THE 8th MEMBER OF THE SHIHEZI FORMATION IN WESTERN SULIGE GASFIELD. Journal of Geomechanics, 23(4): 594-601.
    WU Jun-jie, CHEN Zheng-le, FU Lei, PAN Jia-yong, HAN Feng-bin, SHEN Tao. 2016: H-O-S-Pb ISOTOPIC COMPONENTS OF THE LIANGSHAN MOLYBDENUM DEPOSIT IN XINYU, JIANGXI PROVINCE AND THEIR IMPLICATIONS FOR THE ORE FORMING PROCESS. Journal of Geomechanics, 22(2): 325-337.
    LIU Nai-zhong. 2016: PHYSICAL-CHEMICAL CONDITIONS FOR MINERALIZATION OF THE QINSHAN IRON DEPOSIT IN DATIAN COUNTY, FUJIAN PROVINCE. Journal of Geomechanics, 22(1): 39-47.
    HUO Yan, LI Dan. 2016: STUDY ON THE FLUID INCLUSION PHYSICOCHEMICAL CONDITIONS OF BOLONG PORPHYRY COPPER-GOLD DEPOSIT IN TIBET. Journal of Geomechanics, 22(2): 338-345.
    ZHU Rong-wei, JIANG You-lu, LIU Jing-dong, HU Hong-jin, XU Juan-juan. 2015: PALEO-PRESSURE RESTORATION AND DYNAMIC MECHANISM FOR HYDROCARBON MIGRATION AND ACCUMULATION OF Es3 MEMBER IN NORTH DONGPU SAG. Journal of Geomechanics, 21(4): 492-501.
    WANG De-quan, WANG JIAN-GUO, WANG YI-ZHONG, LIU Jian-chao, ZHANG Hai-dong. 2015: STUDY ON FLUID INCLUSIONS AND GENETIC TYPE OF HAOYAOERHUDONG GOLD DEPOSIT, INNER MONGOLIA. Journal of Geomechanics, 21(4): 517-526.
    HUANG Xi-qiang, CHEN Zheng-le, WANG Ping-an, YANG Nong, ZHI Jian. 2008: FLUID INCLUSION STUDY OF THE SHAZHOU URANIUM OREFIELD IN THE XIANGSHAN DEPOSIT, JIANGXI. Journal of Geomechanics, 14(2): 176-185.
    WANG Hai-qin, HUO Guang-hui. 2008: CHARACTERISTICS OF MINERAL INCLUSIONS IN GRANITES CLOSELY RELATED WITH GOLD FORMING IN EASTERN SHANDONG PROVINCE. Journal of Geomechanics, 14(3): 263-273.
    YIN Xiu-lan, ZHOU Dong-sheng, LÜ Jie-tang, MENG Yuan-lin. 2006: CHARACTERISTICS OF FLUID INCLUSIONS AND THEIR SIGNIFICANCE FOR RESEARCH ON OIL ACCUMULATION IN THE CENTRAL BOHAI DEPRESSION. Journal of Geomechanics, 12(1): 84-90.
    WANG Xue-bin, PAN Yi-shan, DING Xiu-li, SHENG Qian. 2001: STUDY ON EFFECT OF PORE PRESSURE ON STRAIN LOCALIZATION OF ROCK AND DIGITAL SIMULATION. Journal of Geomechanics, 7(2): 139-143.
  • 加载中

Catalog

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (860) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return