YANG Zhi-hua, ZHANG Yong-shuang, GUO Chang-bao, et al., 2017. LANDSLIDE HAZARD RAPID ASSESSMENT IN THE Ms 8.1 NEPAL EARTHQUAKE-IMPACTED AREA, BASED ON NEWMARK MODEL. Journal of Geomechanics, 23 (1): 115-124.
Citation: JIAO He, KANG Jizu, HUANG Guobiao, et al., 2022. Magmatism, metallogenic characteristics, and prospecting prediction for gold deposits in the north of Kunlun River area, Qinghai, China. Journal of Geomechanics, 28 (3): 383-405. DOI: 10.12090/j.issn.1006-6616.2021159

Magmatism, metallogenic characteristics, and prospecting prediction for gold deposits in the north of Kunlun River area, Qinghai, China

doi: 10.12090/j.issn.1006-6616.2021159
Funds:

the Geological Survey Project of China Geological Survey 1212011140113

More Information
  • The north of Kunlun River area, which is close to the central Kunlun Fault Zone, has experienced multi-stage magmatic activities of early Paleozoic and Paleozoic-Mesozoic. A number of gold deposits (occurrences) have been discovered successively in this area for the past few years from west to east, such as Heihaibei, Lalingzaohuo, Suhaitu, Jiazutashixi, Xiangyanggou, Jiazutashidong, Dazaohuo and Heicigou, forming a metallogenic belt with an EW-length of nearly 150 km. In consideration of the basic characteristics of gold deposits in the belt, the ore-hosting wall rocks from the Heihaibei and Jiazutashidong gold deposits were selected to carry out zircon U-Pb dating in this study. The results show the silicified monzonitic granites from the Heihaibei deposit yield zircon weighted mean 206Pb/238U age of 443±8 Ma, which should be formed under the stretching environment after the collision of the Proto-Tethys Ocean to the Qaidam block. The diorite dikes from the Jiazutashidong deposit, which bears more inherited zircon, yield the zircon weighted mean 206Pb/238U age of 250±1 Ma and 420±2 Ma for primary zircon and inherited zircon, respectively, indicating a continental arc tectonic setting under the northward subduction of the Paleo-Tethys Ocean during the emplacement of diorites. Overall, it is believed that the gold mineralization in the northern Kunlun River area is more closely related to the Early Mesozoic Triassic magmatic activity, but opinions vary about the deposit types on whether it belongs to the orogenic or magmatic hydrothermal. Soil geochemical anomalies, low-resistance and high-polarization IP anomalies, and altered fracture zones formed by secondary faults can be used as the main ore prospecting markers in the northern of Kunlun River. It is considered that this metallogenic belt has good prospects for gold deposits.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • 2015年4月25日14时11分,在尼泊尔博克拉以东(N28.2°,E84.7°)发生Ms8.1级地震,震源深度20 km,震中峰值加速度1.02 g,震中距离我国西藏日喀则市约425 km。重烈度区从震中向东延伸,等震线长轴总体呈北西西走向,最大地震烈度大于Ⅸ度,烈度Ⅵ度及以上区域面积约20×104 km2,地震造成尼泊尔、中国、印度和孟加拉国等国受灾。当日14时45分,在尼泊尔(N28.3°,E84.8°)发生Ms7.0级地震,震源深度30 km;17时17分,在我国西藏日喀则地区的定日县(N28.4°,E87.3°)发生Ms5.9级地震,震源深度20 km。

    截至2015年5月13日,地震至少造成8219人死亡,17866人受伤,中国西藏南部、印度、孟加拉国、不丹等地均出现人员伤亡。由地震引起的崩塌、滑坡等地质灾害造成公路中断、房屋倒塌,部分滑坡堵塞河流形成堰塞湖,给抗震救灾造成巨大影响。震区历年降雨量较大,且局地短时强降雨量较大,随着震区渐入雨季,在极端强降雨作用下,震区发生滑坡、泥石流灾害风险加剧。

    尼泊尔地震发生在印度板块与欧亚板块碰撞带的喜马拉雅主断裂带上,属于罕见的破裂面接近水平(倾角约11°)的逆冲型特大地震,震中烈度相对偏低,余震区面积大,地震引起的应力调整对邻区和周边活动断裂可能产生重要影响[1]。尼泊尔地震标志着喜马拉雅构造带自1950年以来半个世纪的平静期已经结束,进入新活动期,预计将持续十到几十年[2]。地震发生后,我国政府启动应急预案,派遣专家赴尼泊尔地震灾区和西藏地区开展抗震救灾活动,急需地震诱发滑坡危险性分布状况。在研究分析地震灾区地形地貌、地层岩性、地质构造、气象水文和典型地区滑坡的基础上,采用Newmark斜坡累积位移模型[3~5]对尼泊尔地震滑坡危险性空间分布状况进行了快速评估,通过部分地区的滑坡遥感解译结果验证表明评估结果具有较好的可信度,初步反映了尼泊尔地震诱发滑坡危险性具有沿断裂带分布、与地震烈度关系密切、受地形影响显著等与地震滑坡既有认识一致的基本特征[6~8]。然后考虑降雨作用对震后滑坡危险性的影响,对地震叠加降雨诱发滑坡危险性分布状况进行了快速预测。研究结果对地震应急救灾中的地质灾害防灾减灾具有重要的参考意义。

    尼泊尔地势北高南低(见图 1),境内大部分属丘陵地带,东、西、北三面多高山,中部河谷区,多小山,南部是冲积平原,分布着森林和草原。尼泊尔北部喜马拉雅地区,海拔高度在4877~8844 m之间,中部山区占尼泊尔国土面积的68%。尼泊尔地区气候差异明显,主要可以分为北部高山、中部温带和南部亚热带三个气候区。

    图  1  尼泊尔及中国藏南地区地理地貌图
    F1-喜马拉雅中央主断裂; F2-喜马拉雅边界主断裂; F3-藏南滑脱拆离系断裂
    Figure  1.  Geographical landform in Nepal and southwest Tibet of China

    尼泊尔和我国藏南比邻区域降雨主要受印度西南季风和青藏高原地形阻挡共同影响,其中80%的年降雨量发生在夏季风活跃期(6—9月)。尼泊尔雨季(6—9月)降雨空间分布非常不均匀,首都加德满都的降雨量为1100 mm,加德满都东侧的奥卡尔东加站点的降雨非常丰沛,达到1400 mm,加德满都西侧的久姆拉站点的降雨量减少到520 mm。雨季(6—9月)加德满都平均气温为24 ℃,最高和最低气温分别为28.5 ℃和19.5 ℃。尼泊尔全国台站最高气温主要出现在6月,雨季平均气温在16 ℃左右,年际变化在14~18 ℃范围。

    尼泊尔和喜马拉雅地区可分为5个构造带:印度特莱构造带、中喜马拉雅构造带、低喜马拉雅构造带、高喜马拉雅构造带、西藏特提斯喜马拉雅造山带。在喜马拉雅地区,有两条横贯全境的大断裂,即中央主断裂和边界主断裂,正好把三个喜马拉雅地带分开。中央断裂层是把喜马拉雅山推到8000 m高度的一条断裂带,断层附近是片麻岩或花岗岩。研究区内自元古界到第四系地层均有出露(见图 2),尼泊尔境内以元古界、前寒武系地层为主,北部喜马拉雅地区以古生界和侏罗系地层为主。尼泊尔境内分布大量古生界变质岩,但是此次尼泊尔地震的震中位于花岗岩地层中。南部分布新近系、第四系沉积地层。

    图  2  尼泊尔及中国藏南区域地质图
    Figure  2.  Geological map of Nepal and southwest Tibet of China

    尼泊尔地震灾区主要位于喜马拉雅山南麓,地形地貌复杂,北部为著名的喜马拉雅山脉,中南部为河谷区和冲积平原,地形起伏度大。复杂的地形地貌和地质条件导致地震过程中地面震动反应强烈,造成大面积岩体破碎,斜坡破坏严重。地质灾害赋存的地质环境条件发生变化,增加了地质灾害易发性和危险性。

    地震诱发了大量崩塌、滑坡等地质灾害。中国科学院成都山地灾害与环境研究所在中国资源卫星应用中心的数据支持下,通过遥感影像处理和地震前后影像对比,解译出尼泊尔境内和我国藏南地区发生崩塌、滑坡等地质灾害375处。其中,尼泊尔Betrawati至我国吉隆热索口岸公路沿线有崩塌、滑坡113处、堰塞湖4个;尼泊尔Pangretar至我国聂拉木樟木口岸公路沿线崩塌、滑坡36处。

    地震发生后,珠穆朗玛峰北坡海拔约7000 m处发生雪崩,南坡的雪崩致使两个登山者营地被雪覆盖,多名登山者伤亡。地震造成我国西藏聂拉木县崩塌滑坡5处、吉隆县崩塌滑坡15处,造成樟木口岸边坡发生滚石(见图 3c)以及古滑坡后缘局部发生拉裂(见图 3d)。根据国土资源部尼泊尔地震应急专家组、遥感影像分析、现场调查,国道318线聂拉木至日喀则段有长约40 km的局部路段发生落石和塌方,道路双向中断,其中G318吉隆镇口岸处发生大型滑坡(见图 3b),为地震诱发老滑坡复活,滑坡体积约270×104 m3,造成国道中断,并形成堰塞湖(见图 3a)。

    图  3  尼泊尔地震诱发典型崩塌、滑坡和堰塞湖实例(据尼泊尔地震应急专家组)
    a-吉隆滑坡形成堰塞湖; b-吉隆滑坡; c-地震引起樟木口岸边坡发生滚石; d-地震引起樟木滑坡发生局部变形
    Figure  3.  Typical cases of Nepal earthquake-induced geo-hazards

    尼泊尔地震发生后,地震灾区发生了多起地质灾害事件,并造成人员伤亡和财产损失,迫切需要对地震滑坡危险性的空间分布做出快速评估,为抗震救灾、灾民安置和灾后重建提供参考。由于缺乏地震地质灾害和历史地质灾害详细目录,传统的层次分析法[9]、信息量模型[10]、加权线性叠加[11]、证据权模型[12]、支持向量机[13]、贝叶斯网络[14]和逻辑回归[15]等统计分析方法[16~19]不适应本次研究。因此,本文选用Newmark斜坡累积位移模型来快速评估尼泊尔地震滑坡危险性。

    Newmark模型的理论基础是无限斜坡的极限平衡理论,滑块的永久位移是在地震荷载作用下,滑动块体沿着最危险滑动面发生瞬时失稳后位移不断累积所致[20]。当施加于最危险滑动面处的加速度超过临界加速度时,块体即沿破坏面发生滑动;将外荷载加速度与临界加速度的差值部分对时间进行二次积分即可得到永久位移(见图 4)[4]

    图  4  Newmark模型的累积位移计算过程示意图[4]
    Figure  4.  Schematic diagram of calculation process of cumulative displacement of Newmark model

    经典的Newmark累积位移计算需要完整的地震动加速度记录,在缺乏地震动加速度记录的情况下,可以采用基于统计分析的简化Newmark位移模型[4, 21, 5],计算过程包含4个主要步骤:(1) 采用岩土体强度和斜坡形态参数,计算区域斜坡静态安全系数Fs;(2) 利用Fs和坡度,计算坡体临界加速度ac;(3) 利用ac和峰值地面加速度(PGA),计算地震诱发斜坡体发生的永久滑动位移量(Dn);(4) 统计分析斜坡位移量与滑坡发生之间的相关关系,并进行地震滑坡发生概率计算和危险性评价。

    3.2.1   斜坡体静态安全系数

    根据研究区地质构造(见图 1)和地层岩性(见图 2),划分工程地质岩组(见图 5a),包含5个类别:松散岩组、软弱岩组、较坚硬岩组、坚硬岩组和冰川水体。根据工程地质手册[22]赋予岩土体初始强度参数,结合斜坡形态参数(见图 5b),按照公式1[4]计算区域斜坡静态安全系数Fs,根据Fs的计算结果,调整岩土体强度参数,并进行迭代计算,保证Fs的最小值大于1。

    Fs=cγtsinα+tsinφtanα+mγwtanφγtanα=cγtsinα+(1mγwγ)×tanφtanα
    (1)
    图  5  尼泊尔地震滑坡危险性快速评估过程。
    (a)工程地质岩组, (b)斜坡坡度, (c)静态安全系数, (d)临界加速度, (e)地震峰值地面加速度, (f)地震诱发斜坡位移。
    Figure  5.  Rapid assessment procedure of Nepal earthquake-induced landslide hazard

    式中,c′是有效内聚力,kPa; φ 是有效内摩擦角,(°);γ是岩土体重度,kN/m3γw是地下水重度,kN/m3t是潜在滑体厚度,m;α是潜在滑面倾角,(°),m是潜在滑体中饱和部分占总滑体厚度的比例。

    图 5c是最终获得的斜坡静态安全系数Fs分布图,可以表征在没有地震和降雨等外在触发条件下的滑坡易发程度。斜坡静态安全性受地形影响显著,与斜坡坡度具有较大相关性,具有较低静态安全性的斜坡主要分布在喜马拉雅南麓,总体上呈NWW-SEE分布,大量的不稳定斜坡位于高山峡谷区以及河流、道路沿线。

    3.2.2   斜坡体临界加速度

    评价地震斜坡位移,需要计算斜坡的临界加速度,它是触发斜坡发生位移变形的最小外荷载加速度,在同等外荷载加速度情景下,临界加速度越小,斜坡发生的位移变形越大。采用斜坡静态安全系数Fs和地形坡度,按照公式2[20]计算坡体临界加速度ac。公式2中,g为重力加速度(m/s2),α为潜在滑面倾角。斜坡临界加速度ac计算结果见图 5d,其空间分布特征与斜坡静态安全系数Fs具有较大相似性,较小临界加速度ac主要位于地形复杂的喜马拉雅地区,呈现NWW-SEE分布,受地形坡度影响较大。

    ac=(Fs1)gsinα
    (2)
    3.2.3   地震诱发斜坡位移

    采用斜坡临界加速度ac和尼泊尔地震、西藏定日地震峰值地面加速度(amax)(USGS)(见图 5e),按照公式3[21]计算地震诱发斜坡位移量(DN),其中,较大斜坡位移主要分布在较小临界加速度和较大峰值地面加速度区域(见图 5f)。

    logDN=0.215+log[(1acamax)2.341(acamax)1.438]
    (3)
    3.2.4   地震诱发滑坡危险性

    地震诱发斜坡位移并不表征一定会发生滑坡灾害,只有斜坡位移累积到一定程度,斜坡才会失稳并沿滑动面滑坡而发生滑坡灾害。因此,采用斜坡位移和滑坡发生之间的统计关系(公式4[4])来计算尼泊尔地震滑坡发生的概率,并进行危险性分区。公式4[4]中,P(f)是地震滑坡发生概率,Dn是斜坡位移,m,ab是常量参数。

    P(f)=m[1exp(aDbn)]=0.335[1exp(0.048D1.565n)]
    (4)

    评价结果(见图 6)表明:地震诱发滑坡极高和高危险区面积达1.5×104 km2,主要位于烈度Ⅷ度以上区域,受断裂构造控制作用明显,自震中向东南延伸,呈NWW展布,加德满都南北两侧的两条大型断裂带(喜马拉雅中央主断裂和喜马拉雅边界主断裂)对地震滑坡分布具有重大影响。对比分析地震滑坡危险性分布与震后遥感解译地质灾害数据库的相关性(见图 7):81%的地震地质灾害位于极高和高危险区,17%位于中危险区。尼泊尔首都加德满都位于烈度Ⅷ-Ⅸ度区域,虽然地震造成了大量房屋倒塌,但是此处地势平坦,地震滑坡危险性较低。尼泊尔地震对我国的影响区域主要分布在西藏与尼泊尔的交界部位,包括吉隆县、聂拉木县和定日县等。西藏定日地震诱发滑坡危险性较小,仅在震中周围有少量的中等滑坡危险性区域。

    图  6  尼泊尔地震诱发滑坡危险性分布图
    Figure  6.  Distribution map of Nepal earthquake-induced landslide hazard
    图  7  尼泊尔地震诱发滑坡危险性快速评价结果与地质灾害分布统计关系图
    Figure  7.  Statistical relationship between earthquake-induced landslide hazard distribution and field landslide case distribution resulted from post-earthquake rapid remote sensing interpretation

    尼泊尔大部位于亚热带地区,受南亚热带季风影响大,受北部喜马拉雅山脉的阻挡作用,降雨量丰富。震区降雨分布严重不均,最大年降雨量520~1400 mm,80%的年降雨量发生在6—9月,其中7—8月是极端降雨频发期,最大日极端降雨量达405 mm,降雨作用曾导致尼泊尔地区大型滑坡、泥石流事件频繁发生,并导致严重人员伤亡和财产损失[23]

    地震改变了震区崩塌、滑坡、泥石流等地质灾害赋存的地质环境条件,叠加极端降雨作用,地质灾害风险加剧。根据中国国家气象局的尼泊尔震区6—9月(1981—2007年)气候平均降雨空间分布数据(见图 8),在地震诱发滑坡危险性快速评价的基础上,叠加降雨作用获得震后降雨滑坡危险性分布(见图 9)。尼泊尔加德满都北西和南东两侧的强降雨分布区使得震后降雨滑坡危险性显著增加,随着震区雨季的来临和降雨强度的增加,震区在地震叠加极端降雨作用下滑坡和泥石流灾害强度将显著增加,需要重点防范。

    图  8  尼泊尔及中国藏南地区6—9月平均降雨空间分布图(1981—2007年)(据中国国家气象局)
    Figure  8.  Average rainfall distribution from June to September (1981—2007) in Nepal and southwest Tibet of China
    图  9  尼泊尔震区震后降雨诱发滑坡危险性分布图
    Figure  9.  Hazard distribution map of post-earthquake rainfall-induced landslide in Nepal seismic area

    喜马拉雅山中段是世界上山地冰川最为发育的地区之一,而且受冰湖溃决洪水或泥石流灾害影响极为严重。据统计,尼泊尔境内冰湖共2145个,面积约74.14 km2,20世纪以来喜马拉雅山中段地区至少已有23次较大的冰湖溃决灾害事件发生,其中15次发生在我国西藏境内。与暴雨或融雪洪水不同,冰湖溃决洪水具有突发性强、频率低、洪峰高、破坏力强、灾害波及范围广等特点,往往对下游地区的人们生命财产和基础设施带来极大破坏。

    喜马拉雅山中段历史冰湖溃决表明,5—9月份是冰湖溃决的主要发生时段,受此次地震影响和雨季(6—9月)来临,冰湖溃决风险增大。预测的尼泊尔大部分区域雨季气温正常略偏高,其北部地区以及我国藏南比邻区域偏高更明显(部分区域偏高0.5 ℃),有利于积雪和冰川的融化,从而增加了冰湖溃决的风险。

    尼泊尔地震救援行动急需地震诱发滑坡危险性分布状况,采用Newmark动力模型、斜坡极限平衡模型和地理信息系统平台,对尼泊尔地震动力作用下的斜坡位移进行了定量计算,并考虑降雨作用对震后滑坡危险性的影响,对地震叠加降雨诱发滑坡危险性分布进行了快速预测。

    地震灾区局部降雨增多,气温升高,加快积雪和冰川消融,导致入湖水量急剧增加,加大冰湖溃决风险。建议做好地震灾区的气象监测和预报工作,特别是关注尼泊尔北部和我国藏南地区极端高温事件和持续性强降雨的发生。

    在我国藏南地区增设自动气象站和人工观测站,增加气象观测数据积累,为预测和研究该区域天气气候提供基础数据支持。同时,要加强该区域天气气候变化特征和规律的研究。

    致谢: 感谢中国地震局地球物理研究所,中国科学院成都山地灾害与环境研究所,国土资源部航空物探遥感中心,国家气象局,以及抗震救灾应急专家组提供的宝贵资料,感谢王珂和刘筱怡在数据处理过程中的帮助。
  • A C Y, WANG Y Z, REN J Q, et al., 2002. Disintegration of the Wanbaogou Group and discovery of Early Cambrian strata in the East Kunlun area[J]. Geology in China, 30(2): 199-206. (in Chinese with English abstract)
    AN H X, HAN G, WU P F, et al., 2018. Deposit geological characteristics and prospecting potential of Dazaohuogou-Heicigou gold mine in Qinghai province[J]. Metal Mine, (9): 127-136. (in Chinese with English abstract)
    BAI H K, TIAN H J, HUANG G B, et al., 2019. Pre-investigation report of gold polymetallic deposits in the upper reaches of Suhaitu River(2014-2016), Golmud city, Qinghai province[R]. Golmud: Qaidam basin comprehensive geological and mineral exploration Institute of Qinghai province. (in Chinese)
    CHEN B L, DENG Y L, CHEN J L, et al., 2016. Two ore-controlling structure systems in Wulonggou gold orefield, Qinghai province and its expecting significance[J]. Geotectonica et Metallogenia, 40(2): 224-236. (in Chinese with English abstract)
    CHEN B L, 2019. Geological characteristics of the Wulonggou gold ore field and determination of metallogenic geological bodies in East Kunlun Mountains[J]. Acta Geologica Sinica, 93(1): 179-196. (in Chinese with English abstract)
    CHEN B L, WANG Y, HAN Y, et al., 2019. Metallogenic age of Yanjingou gold deposit in Wulonggou gold orefield, eastern Kunlun Mountains[J]. Mineral Deposits, 38(3): 541-556. (in Chinese with English abstract)
    CHEN G C, PEI X Z, LI R B, et al., 2020. Late Palaeozoic-Early Mesozoic tectonic-magmatic evolution and mineralization in the eastern section of the East Kunlun Orogenic Belt[J]. Earth Science Frontiers, 27(4): 33-48. (in Chinese with English abstract)
    CHEN J J, 2018. Paleozoic-Mesozoic tectono-magmatic evolution and gold mineralization in Gouli Area, east end of East Kunlun Orogen[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract)
    DANG X Y, FAN G Z, LI Z M, et al., 2006. Typic deposit analysis in the Eastern Kunlun area, NW China[J]. Northwestern Geology, 39(2): 143-155. (in Chinese with English abstract)
    DING Q F, 2004. Metallogenesis and mineral resources assessment in eastern Kunlun orogenic Belt[D]. Changchun: Jilin University. (in Chinese with English abstract)
    DING Q F, WANG S K, WANG G, et al., 2013. Ore-forming fluid of the Guoluolongwa gold deposit in Dulan, Qinghai province[J]. Journal of Jilin University(Earth Science Edition), 43(2): 415-426. (in Chinese with English abstract)
    DONG Y P, HE D F, SUN S S, et al., 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 186: 231-261. doi: 10.1016/j.earscirev.2017.12.006
    FENG C Y, 2002. Multiple orogenic processes and mineralization of orogenic gold deposits in the east Kunlun orogen, Qinghai province[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    FENG C Y, ZHANG D Q, LI D X, et al., 2003. Sulfur and lead isotope geochemistry of the orogenic gold deposits in East Kunlun area, Qinghai province[J]. Acta Geoscient Ica Sinica, 24(6): 593-598. (in Chinese with English abstract)
    FENG C Y, LI D S, QU W J, et al., 2009. Re-Os isotopic dating of molybdenite from the suolajier skarn-type copper-molybdenum deposit of qimantage mountain in Qinghai province and its geological significance[J]. Rock and Mineral Analysis, 28(3): 223-227. (in Chinese with English abstract)
    FENG L Q, 2017. Geological and geochemical characteristics and ore genesis of the gold deposits in the Kunlun river district, Qinghai province[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    GAO Y B, 2013. The Intermediate-acid intrusive magmatism and mineralization in Qimantag, East Kunlun Moutains[D]. Beijing: Chang'an University. (in Chinese with English abstract)
    GUO Z F, DENG J F, XU Z Q, et al., 1998. Late Palaeozoic-Mesozoic intracontinental orogenic process and intermedate-acidic igneous rocks from the eastern Kunlun Mountains of Northwestern China[J]. Geoscience, 12(3): 344-352. (in Chinese with English abstract)
    HAN S F, ZHANG W S, 2004. Research on the third round of metallogenic prospect planning and prediction of prospecting target area, Qinghai province[R]. Xining, Qinghai Provincial Department of Land and Resources. (in Chinese)
    HAN Z H, SUN F Y, TIAN N, et al., 2021. Zircon U-Pb geochronology, geochemistry and geological implications of the early Paleozoic Wulanwuzhuer granites in the Qimantag, east Kunlun, China[J]. Earth Science, 46(1): 13-30. (in Chinese with English abstract)
    HE S Y, SHU S L, LIU Y L, et al., 2013. Summary of effective prospecting methods in Qimantag area, Qinghai province[J]. Mineral Deposits, 32(1): 187-194. (in Chinese with English abstract)
    HUANG G B, PENG J, WANG W H, et al., 2019. Metallogenic regularity and prospecting work deployment report of Lalingzaohuo gold deposit in Kunlun River area, Golmud city, Qinghai province[R]. Golmud: Qaidam basin comprehensive geological and mineral exploration Institute of Qinghai province. (in Chinese)
    HUANG G B, TIAN H J, LI C X, et al., 2020. Census report of Heihaibei gold mine in Golmud city, Qinghai province[R]. Golmud: Qaidam basin comprehensive geological and mineral exploration Institute of Qinghai province. (in Chinese)
    HUANG G B, MA W H, LI C Y, et al., 2021. Geological characteristics and prospecting prospects of Heihaibei Gold Deposit in Kunlunhe Area, Qinghai province[J]. Gold, 42(6): 26-30. (in Chinese with English abstract)
    JIAN K K, HE Y F, ZHAO D C, et al., 2020. Zircon U-Pb dating and geochemical characteristics of Zaohuogou Granitoids in the middle part of east Kunlun, China and their tectonic significance[J]. Journal of Earth Sciences and Environment, 42(5): 603-621. (in Chinese with English abstract)
    JIANG C F, 1992. Opening and closing tectonics in Kunlun[M]. Beijing: Geological Publishing House. (in Chinese)
    JIAO H, PENG J, WANG W H, et al., 2020. Metallogenic regularity and prospecting report of gold deposits in Kunlun River area, Golmud city, Qinghai province[R]. Golmud: Qaidam basin comprehensive geological and mineral exploration Institute of Qinghai province. (in Chinese)
    KANG J Z, Xu B B, XU W W, et al., 2014. Tungsten-tin mineralization characteristics of Kunlun river, and its relationship with early devonian granite[J]. China Mining Magazine, 23(2): 71-73. (in Chinese with English abstract)
    LEI Y X, LIU J B, PENG J, et al., 2019. Pre-investigation report of Jiazutaishixi gold-polymetallic mine in Golmud city, Qinghai province[R]. Golmud: Qaidam basin comprehensive geological and mineral exploration Institute of Qinghai province. (in Chinese)
    LI J C, 2017. Metallogenic regularity and metallogenic prognosis of gold deposit in the East Kunlun orogen, Qinghai province[D]. Xi'an: Chang'an University. (in Chinese with English abstract)
    LI S Y, LU H F, KANG J Z, et al., 2013. Exploring the geological characteristics and genesis of the Wanbaogou gold deposit in Golmud city, Qinghai province[J]. Earth, (9): 17, 82. (in Chinese with English abstract)
    LI W Y, 2010. Metallogenic characteristics and exploration countermeasures of Qimantage prospecting prospect[J]. Mineral Deposits, 29(S1): 16-17. (in Chinese)
    LI W Y, ZHANG Z W, GAO Y B, et al., 2011. Important metallogenic events and tectonic response of Qinling, Qilian and Kunlun orogenic belts[J]. Geology in China, 38(5): 1135-1149. (in Chinese with English abstract)
    LIU C L, LIU Y J, MO D S, et al., 2018. Prediction of deep halo prospecting of Heicigou gold deposit in Qinghai[J]. China' s Manganese Industry, 36(5): 28-33. (in Chinese with English abstract)
    LIU W, YANG X K, WANG S L, et al., 2014. Characteristics of ore-controlling structures of the Hutouya orefield in the Qimantage metallogenic belt, Qinghai province[J]. Geology in China, 41(1): 222-234. (in Chinese with English abstract)
    LIU W, YANG X K, JIANG W, et al., 2021. Analysis of the tectonic stress field in Hutouya copper polymetallic ore field, Qimantage of East Kunlun[J]. Northwestern Geology, 54(4): 100-112. (in Chinese with English abstract)
    LU L, WU Z H, HU D G, et al., 2010. Zircon U-Pb age for rhyolite of the Maoniushan Formation and its tectonic significance in the east Kunlun mountains[J]. Acta Petrologica Sinica, 26(4): 1150-1158. (in Chinese with English abstract)
    LIU Y S, HU Z C, ZONG K Q, et al., 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
    LU Y H, WANG L, SHENG J H, et al., 2020. Formation age, geochemical characteristics, tectonic setting and gold mineralization of amphibole-rich mafic rocks of the Nagenglongwa gold deposit in the eastern part of the East Kunlun Orogenic Belt[J]. Gold, 41(11): 5-15. (in Chinese with English abstract)
    LU Y Z, WANG T S, ZHENG Y, et al., 2020. Metallogenic regularity and prospecting direction of gold and tungsten deposits in Kunlunhe area, Qinghai province[J]. Mineral Exploration, 11(10): 2109-2116. (in Chinese with English abstract)
    LUO Z H, DENG J F, CAO Y Q, et al., 1999. On late Paleozoic Early Mesozoic volcanism and regional tectonic evolution of Eastern Kunlun, Qinghai province[J]. Geoscience, 13(1): 51-56. (in Chinese with English abstract)
    MENG F C, ZHANG J X, CUI M H, 2013. Discovery of Early Paleozoic eclogite from the East Kunlun, western China and its tectonic significance[J]. Gondwana Research, 23(2): 825-836. doi: 10.1016/j.gr.2012.06.007
    MO X X, LUO Z H, DENG J F, et al., 2007. Granitoids and crustal growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403-414. (in Chinese with English abstract)
    PAN C G, WAN W T, LI C X, et al., 2019. Forecast report of Jiazutashixi gold polymetallic deposit, Golmud Qinghai Province[R]. Xining: Geological and Mineral Exploration Institute of Qinghai Province. (in Chinese)
    PAN G T, WANG L Q, ZHANG W P, et al., 2013. Tectonic map and description of Qinghai Tibet Plateau and its adjacent areas (1:1500000)[M]. Beijing: Geological Publishing House. (in Chinese)
    PAN T, BAI Y S, SUN F Y, et al., 2011. Metallogenic series and metallogenic prediction of nonferrous and precious metal minerals in East Kunlun area, Qinghai province[M]. Beijing: Geological Publishing House. (in Chinese)
    PAN X, QIAO J F, SUN T T, et al., 2019. Geological characteristics and prospecting signs of Xiangyanggou copper-gold polymetallic deposit, Qinghai Province[J]. China's Manganese Industry, 37(4): 61-65. (in Chinese with English abstract)
    SHEN H, 2016. Geochemical characteristics and ore genesis of the Heihainan gold deposit in Kunlunhe area, Qinghai[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    SHI L C, CAI H J, XU H Q, et al., 2017. Material composition characteristics of Naijtal Group in subduction accretion complex on the southern slope of East Kunlun Mountains[J]. Geological Bulletin of China, 36(2-3): 251-257. (in Chinese with English abstract)
    SUN F Y, CHEN G H, CHI X G, et al., 2003. Report of comprehensive research results of metallogenic regularity and prospecting direction in Xinjiang-Qinghai east Kunlun metallogenic belt[R]. Changchun: Geological survey research institute of Jilin Unversity. (in Chinese)
    TANG Y, FU L B, YANG B R, et al., 2017. Ore controlling regularities of fault in the Guoluolongwa lode gold deposit, east segment of Eastern Kunlun orogen[J]. Geological Science and Technology Information, 36(2): 160-167. (in Chinese with English abstract)
    WANG B Z, QI S S, DING X Q, et al., 2008. Mineral resource potential evaluation actual material drawing and construction structure drawing instruction (1:250000), Dazaohuo area, Qinghai province[R]. Xining: Geological Survey Institute of Qinghai province. (in Chinese)
    WANG S, FENG C Y, LI S J, et al., 2009. Zircon SHRIMP U-Pb dating of granodiorite in the Kaerqueka polymetallic ore deposit, Qimantage Mountain, Qinghai province, and its geological implications[J]. Geology in China, 36(1): 74-84. (in Chinese with English abstract)
    WU T X, ZHANG S N, AN R L, et al., 2009. Analysis of ore-bearing stratum at the gold mine within the east segment of the East kunlun in Qinghai province[J]. Mineral Resources and Geology, 23(5): 431-441. (in Chinese with English abstract)
    WU Y B, ZHENG Y F, 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1007/BF03184122
    XIAO Y, FENG C Y, LI D X, et al., 2014. Chronology and fluid inclusions of the Guoluolongwa gold deposit in Qinghai Province[J]. Acta Geologica Sinica, 88(5): 895-902. (in Chinese with English abstract)
    XU W Y, ZHANG D Q, YAN S H, et al., 2001. Advances and prospecting of the mineral resources survey in Eastern Kunlun Area[J]. Chinese Geology, 28(1): 25-29. (in Chinese)
    YANG J S, ROBINSON P T, JIANG C F, et al., 1996. Ophiolites of the Kunlun Montains, China and their tectonic implications[J]. Tectonophysics, 258(1/2/3/4): 215-231.
    YANG J S, XU Z Q, LI H B, et al., 2005. The Paleo-Tethyan Volcanism and Plate Tectonic Regime in the A'nyemaqen Region of East Kunlun, Northern Tibet Plateau[J]. Acta Petrologica et Mineralogica, 24(5): 369-380. (in Chinese with English abstract)
    YANG S D, WU Z S, ZHAO C X, et al., 2013. Report on evaluation results of mineral resources potential in Qinghai province[R]. Xining: Bureau of Geological Exploration & Development of Qinghai Province. (in Chinese)
    YI P Q, WU Z S, ZHAO J W, et al., 2013. Report on research results of regional metallogenic law of important minerals in Qinghai province[R]. Xining: Bureau of Geological Exploration & Development of Qinghai Province. (in Chinese)
    YIN H F, ZHANG K X, 1998. Evolution and characteristics of the central orogenic belt[J]. Earth Science-Journal of China University of Geosciences, 23(5): 437-442. (in Chinese with English abstract)
    YUE W H, GAO J G, ZHOU J X, et al., 2013. LA-ICP-MS zircon U-Pb ages and lithogeochemistry of basic dykes in the Guoluolongwa Au ore field, Qinghai province, china[J]. Mineral Petrol, 33(3): 93-102. (in Chinese with English abstract)
    YU L, SUN F Y, BEIER C, et al., 2022. Geology, U-Pb geochronology and stable isotope geochemistry of the Heihaibei gold deposit inthe southern part of the Eastern Kunlun Orogenic Belt, China: a granitic intrusion-related gold deposit?[J]. Ore Geology Reviews, 144: 104859. doi: 10.1016/j.oregeorev.2022.104859
    YU M, FENG C Y, SANTOSH M, et al., 2017. The Qiman Tagh Orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau[J]. Earth-Science Reviews, 167: 103-123. doi: 10.1016/j.earscirev.2017.02.008
    ZHANG A K, MO X X, Li Y P, et al., 2010. New progress and significance in the Qimantage metallogenic belt prospecting, western Qinghai, China[J]. Geological Bulletin of China, 29(7): 1062-1074. (in Chinese with English abstract)
    ZHANG A K, LIU Z G, ZHANG D M, et al., 2020. Metallogenic model and discovery significance of the Chuakelaqian cryptoexplosion breccia type Pb-Zn deposit in the Qimantag metallogenic belt, Qinghai province[J]. Geological Bulletin of China, 39(2-3): 319-329. (in Chinese with English abstract)
    ZHANG D Q, DANF X Y, SHE H Q, et al., 2005. Ar-Ar dating of orogenic gold deposits in northern margin of Qaidam and East Kunlun Mountains and its geological significance[J]. Mineral Deposits, 24(2): 87-98. (in Chinese with English abstract)
    ZHANG D Q, WANG F C, SHE H Q, et al., 2007. Three-order ore-controlling structural system of orogenic gold deposits in the northern Qaidam margin- East Kunlun region[J]. Geology in China, 34(1): 92-100. (in Chinese with English abstract)
    ZHANG X T, YANG S D, 2007. Introduction to regional geology of Qinghai province[M]. Beijing: Geological Publishing House. (in Chinese)
    ZHANG Y L, HU D G, SHI Y R, et al., 2010. SHRIMP zircon U-Pb ages and tectonic significance of Maoniushan Formation volcanic rocks in East Kunlun orogenic belt, China[J]. Geological Bulletin of China, 29(11): 1614-1618. (in Chinese with English abstract)
    ZHANG Y T, 2018. Research on metallogenesis of gold deposits in the Wulongou ore concentration area, central segment of the East Kunlun Mountains, Qinghai province[D]. Changchun: Jilin University. (in Chinese with English abstract)
    阿成业, 王毅智, 任晋祁, 等, 2003. 东昆仑地区万保沟群的解体及早寒武世地层的新发现[J]. 中国地质, 30(2): 199-206. doi: 10.3969/j.issn.1000-3657.2003.02.014
    安海西, 韩光, 武鹏飞, 等, 2018. 青海大灶火沟—黑刺沟金矿矿床地质特征及找矿前景[J]. 金属矿山 (9): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201809025.htm
    拜红奎, 田海军, 黄国彪, 等, 2019. 青海省格尔木市苏海图河上游金多金属矿预查报告(2014—2016年度)[R]. 格尔木: 青海省柴达木综合地质矿产勘查院.
    陈柏林, 邓元良, 陈建林, 等, 2016. 青海五龙沟金矿田两种控矿构造识别及其找矿意义[J]. 大地构造与成矿学, 40(2): 224-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201602005.htm
    陈柏林, 2019. 东昆仑五龙沟金矿田地质特征与成矿地质体厘定[J]. 地质学报, 93(1): 179-196. doi: 10.3969/j.issn.0001-5717.2019.01.011
    陈柏林, 王永, 韩玉, 等, 2019. 东昆仑五龙沟矿田岩金沟金矿床成矿时代新认识[J]. 矿床地质, 38(3): 541-556. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201903006.htm
    陈国超, 裴先治, 李瑞保, 等, 2020. 东昆仑造山带东段晚古生代—早中生代构造岩浆演化与成矿作用[J]. 地学前缘, 27(4): 33-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004004.htm
    陈加杰, 2018. 东昆仑造山带东端沟里地区构造岩浆演化与金成矿[D]. 武汉: 中国地质大学.
    党兴彦, 范桂忠, 李智明, 等, 2006. 东昆仑成矿带典型矿床分析[J]. 西北地质, 39(2): 143-155. doi: 10.3969/j.issn.1009-6248.2006.02.009
    丁清峰, 2004. 东昆仑造山带区域成矿作用与矿产资源评价[D]. 长春: 吉林大学.
    丁清峰, 金圣凯, 王冠, 等, 2013. 青海省都兰县果洛龙洼金矿成矿流体[J]. 吉林大学学报(地球科学版), 43(2): 415-426. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201302011.htm
    丰成友, 2002. 青海东昆仑地区的复合造山过程及造山型金矿床成矿作用[D]. 北京: 中国地质科学院.
    丰成友, 张德全, 李大新, 等, 2003. 青海东昆仑造山型金矿硫、铅同位素地球化学[J]. 地球学报, 24(6): 593-598. doi: 10.3321/j.issn:1006-3021.2003.06.022
    丰成友, 李东生, 屈文俊, 等, 2009. 青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义[J]. 岩矿测试, 28(3): 223-227. doi: 10.3969/j.issn.0254-5357.2009.03.006
    冯李强, 2017. 青海省昆仑河地区金矿床地质地球化学特征与矿床成因[D]. 北京: 中国地质大学(北京).
    高永宝, 2013. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 西安: 长安大学.
    郭正府, 邓晋福, 许志琴, 等, 1998. 青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J]. 现代地质, 12(3): 344-352. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ803.006.htm
    韩生福, 章午生, 2004. 青海省第三轮成矿远景区划研究及找矿靶区预测[R]. 西宁: 青海省国土资源厅.
    韩志辉, 孙丰月, 田楠, 等, 2021. 东昆仑祁漫塔格地区乌兰乌珠尔早古生代花岗岩锆石U-Pb年代学、地球化学及其地质意义[J]. 地球科学, 46(1): 13-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101002.htm
    何书跃, 舒树兰, 刘永乐, 等, 2013. 青海祁漫塔格地区有效找矿方法总结[J]. 矿床地质, 32(1): 187-194. doi: 10.3969/j.issn.0258-7106.2013.01.014
    黄国彪, 彭建, 王伟虎, 等, 2019. 青海省格尔木市昆仑河地区拉陵灶火金矿成矿规律及找矿工作部署报告[R]. 格尔木: 青海省柴达木综合地质矿产勘查院.
    黄国彪, 田海军, 李成勋, 等, 2020. 青海省格尔木市黑海北金矿普查报告[R]. 格尔木: 青海省柴达木综合地质矿产勘查院.
    黄国彪, 马文虎, 李长印, 等, 2021. 青海昆仑河地区黑海北金矿床地质特征及找矿前景[J]. 黄金, 42(6): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202106005.htm
    菅坤坤, 何元方, 赵端昌, 等, 2020. 东昆仑中段灶火沟花岗岩锆石U-Pb年代学、地球化学特征及其构造意义[J]. 地球科学与环境学报, 42(5): 603-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005004.htm
    姜春发, 1992. 昆仑开合构造[M]. 北京: 地质出版社.
    焦和, 彭建, 王伟虎, 等, 2020. 青海省格尔木市昆仑河地区金矿成矿规律及找矿工作部署报告[R]. 格尔木: 青海省柴达木综合地质矿产勘查院.
    康继祖, 许贝贝, 薛万文, 2014. 青海昆仑河地区钨锡成矿特征及与早泥盆世花岗岩的关系[J]. 中国矿业, 23(2): 71-73, 98. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201412018.htm
    雷延祥, 刘久波, 彭建, 等, 2019. 青海省格尔木市加祖它士西金多金属矿预查报告[R]. 格尔木: 青海省柴达木综合地质矿产勘查院.
    李金超, 2017. 青海东昆仑地区金矿成矿规律及成矿预测[D]. 西安: 长安大学.
    李升阳, 鲁海峰, 康继祖, 2013. 探究青海省格尔木市万保沟金矿的地质特征及成因[J]. 地球 (9): 17, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201704168.htm
    李文渊, 2010. 祁漫塔格找矿远景区成矿特征及其勘查对策[J]. 矿床地质, 29(S1): 16-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1013.htm
    李文渊, 张照伟, 高永宝, 等, 2011. 秦祁昆造山带重要成矿事件与构造响应[J]. 中国地质, 38(5): 1135-1149. doi: 10.3969/j.issn.1000-3657.2011.05.002
    刘彩乐, 刘玉军, 莫东山, 等, 2018. 青海黑刺沟金矿床原生晕深部找矿预测[J]. 中国锰业, 36(5): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201805010.htm
    刘渭, 杨兴科, 王守良, 等, 2014. 青海省祁漫塔格矿带虎头崖矿田构造控矿特征[J]. 中国地质, 41(1): 222-234. doi: 10.3969/j.issn.1000-3657.2014.01.018
    刘渭, 杨兴科, 江万, 等, 2021. 东昆仑祁漫塔格虎头崖铜多金属矿田构造应力场分析[J]. 西北地质, 54(4): 100-112. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202104009.htm
    陆露, 吴珍汉, 胡道功, 等, 2010. 东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义[J]. 岩石学报, 26(4): 1150-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004013.htm
    卢寅花, 王力, 盛建华, 等, 2020. 东昆仑造山带东段那更龙洼金矿区富闪镁铁质岩形成时代、地球化学特征及其构造背景与金矿化关系[J]. 黄金, 41(11): 5-15. doi: 10.11792/hj202001102
    逯永卓, 王泰山, 郑英, 等, 2020. 青海昆仑河地区金钨矿床成矿规律及找矿方向[J]. 矿产勘查, 11(10): 2109-2116. doi: 10.3969/j.issn.1674-7801.2020.10.007
    罗照华, 邓晋福, 曹永清, 等, 1999. 青海省东昆仑地区晚古生代—早中生代火山活动与区域构造演化[J]. 现代地质, 13(1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ901.007.htm
    莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
    潘存钢, 万文亭, 李成勋, 等, 2019. 青海省格尔木市加祖它土西金多金属矿预查报告[R]. 西宁: 青海省柴达木综合地质矿产勘查院.
    潘桂棠, 王立全, 张万平, 等, 2013. 青藏高原及邻区大地构造图及说明书(1:1500000)[M]. 北京: 地质出版社.
    潘彤, 拜永山, 孙丰月, 等, 2011. 青海省东昆仑地区有色、贵金属矿产成矿系列与成矿预测[M]. 北京: 地质出版社.
    潘鑫, 乔建峰, 孙婷婷, 等, 2019. 青海向阳沟铜金多金属矿地质特征及找矿标志[J]. 中国锰业, 37(4): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201904013.htm
    申浩, 2016. 青海昆仑河地区黑海南金矿床地球化学特征及成因探讨[D]. 北京: 中国地质大学(北京).
    史连昌, 才航加, 许海全, 等, 2017. 东昆仑南坡俯冲增生杂岩楔中纳赤台群物质组成特征[J]. 地质通报, 36(2-3): 251-257. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2017Z1008.htm
    孙丰月, 陈国华, 迟效国, 等, 2003. 新疆-青海东昆仑成矿带成矿规律和找矿方向综合研究成果报告[R]. 长春: 吉林大学地质调查研究院.
    唐洋, 付乐兵, 杨宝荣, 等, 2017. 东昆仑东段果洛龙洼脉状金矿床断裂构造控矿规律[J]. 地质科技情报, 36(2): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702021.htm
    王秉璋, 祁生胜, 丁西歧, 等, 2008. 青海省矿产资源潜力评价实际材料图·建造构造图说明书(1:250000)大灶火幅[R]. 西宁: 青海省地质调查院.
    王松, 丰成友, 李世金, 等, 2009. 青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J]. 中国地质, 36(1): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901008.htm
    吴庭祥, 张绍宁, 安汝龙, 等, 2009. 青海东昆仑东段金矿区地层含矿性分析[J]. 矿产与地质, 23(5): 431-441. doi: 10.3969/j.issn.1001-5663.2009.05.006
    吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    肖晔, 丰成友, 李大新, 等, 2014. 青海省果洛龙洼金矿区年代学研究与流体包裹体特征[J]. 地质学报, 88(5): 895-902. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201405007.htm
    徐文艺, 张德全, 阎升好, 等, 2001. 东昆仑地区矿产资源大调查进展与前景展望[J]. 中国地质, 28(1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200101006.htm
    杨经绥, 许志琴, 李海兵, 等, 2005. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J]. 岩石矿物学杂志, 24(5): 369-380. doi: 10.3969/j.issn.1000-6524.2005.05.004
    杨生德, 吴正寿, 赵呈祥, 等, 2013. 青海省矿产资源潜力评价成果报告[R]. 西宁: 青海省地质矿产勘查开发局.
    易平乾, 吴正寿, 赵俊伟, 等, 2013. 青海省重要矿种区域成矿规律研究成果报告[R]. 西宁: 青海省地质矿产勘查开发局.
    殷鸿福, 张克信, 1998. 中央造山带的演化及其特点[J]. 地球科学: 中国地质大学学报, 23(5): 437-442. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX805.000.htm
    岳维好, 高建国, 周家喜, 2013. 青海果洛龙洼金矿基性岩脉锆石U-Pb年龄及岩石地球化学特征[J]. 矿物岩石, 33(3): 93-102. doi: 10.3969/j.issn.1001-6872.2013.03.014
    张爱奎, 莫宣学, 李云平, 等, 2010. 青海西部祁漫塔格成矿带找矿新进展及其意义[J]. 地质通报, 29(7): 1062-1074. doi: 10.3969/j.issn.1671-2552.2010.07.013
    张爱奎, 刘智刚, 张大明, 等, 2020. 青海祁漫塔格楚阿克拉千隐爆角砾岩型铅锌矿床成矿模式及发现意义[J]. 地质通报, 39(2-3): 319-329. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2020Z1014.htm
    张德全, 党兴彦, 佘宏全, 等, 2005. 柴北缘—东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义[J]. 矿床地质, 24(2): 87-98. doi: 10.3969/j.issn.0258-7106.2005.02.001
    张德全, 王富春, 佘宏全, 等, 2007. 柴北缘—东昆仑地区造山型金矿床的三级控矿构造系统[J]. 中国地质, 34(1): 92-100. doi: 10.3969/j.issn.1000-3657.2007.01.014
    张雪亭, 杨生德, 2007. 青海省区域地质概论: 1:100万青海省地质图说明书[M]. 北京: 地质出版社.
    张耀玲, 胡道功, 石玉若, 等, 2010. 东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地质通报, 29(11): 1614-1618. doi: 10.3969/j.issn.1671-2552.2010.11.003
    张宇婷, 2018. 青海东昆仑中段五龙沟矿集区金矿成矿作用研究[D]. 长春: 吉林大学.
  • Relative Articles

    DU Xiaofei, WANG Wei, ZHANG Chuanlin, MA Huadong, ZHU Bingyu, QIU Lin. 2025: Zircon U-Pb age, geochemical characteristics, and tectonic implications of the early Permian ultrabasic dykes in the Harlik Mountain, east Tianshan, Xinjiang. Journal of Geomechanics, 31(1): 156-168. doi: 10.12090/j.issn.1006-6616.2024020
    ZHENG Guanggao, CUI Jianjun, LIU Xiaochun, CHEN Shaofeng, QU Wei, QIAO Jianxin, CHEN Longyao, ZHAO Wenping, LI Miao, LIU Lin. 2019: ZIRCON U-PB AGE AND SOURCE CHARACTERISTICS OF NEOPROTEROZOIC GABBRO AND DYKES IN LONGWANGTANG REGION OF XIXIANG COUNTY, SHAANXI PROVINCE. Journal of Geomechanics, 25(4): 574-589. doi: 10.12090/j.issn.1006-6616.2019.25.04.056
    KONG Huilei, LI Yazhi, LI Jinchao, JIA Qunzi, GUO Xianzheng, ZHANG Bin. 2019: LA-ICP-MS ZIRCON U-PB DATING AND GEOCHEMICAL CHARACTERISTICS OF THE XIWANGGOU OLIVINE PYROXENOLITE IN EAST KUNLUN. Journal of Geomechanics, 25(3): 440-452. doi: 10.12090/j.issn.1006-6616.2019.25.03.041
    CHENG Yu, LI Xiangqian, ZHAO Zengyu, ZHANG Xiangyun, GUO Gang. 2018: DETRITAL ZIRCON U-Pb AGES AND ITS PROVENANCE SIGNIFICANCE IN THE TZK3 CORE FROM THE YANGTZE RIVER DELTA. Journal of Geomechanics, 24(5): 635-644. doi: 10.12090/j.issn.1006-6616.2018.24.05.064
    LIU Gaofeng, WANG Bin, CHEN Shihai, AI Haiping. 2018: ZIRCON U-PB DATING AND GEOCHEMICAL FEATURES OF CHAHANCHAHA GRANITE FROM WESTERN TIANSHAN, XINJIANG: IMPLICATIONS FOR TECTONIC EVOLUTION. Journal of Geomechanics, 24(4): 533-543. doi: 10.12090/j.issn.1006-6616.2018.24.04.056
    ZHANG Yaoling, SHEN Yanxu, WU Zhenhan, ZHAO Zhen. 2018: ZIRCON U-PB AGES OF MAGMATIC ROCKS FROM MEISU FORMATION IN GERZE AREA IN TIBET AND ITS GEOLOGICAL SIGNIFICANCE. Journal of Geomechanics, 24(1): 128-136. doi: 10.12090/j.issn.1006-6616.2018.24.01.014
    ZHUAN Shaopeng, BAI Chundong, MAO Zhifang, LI Dian, ZHANG Xinzheng, CHEN Yuanyuan, LIAN Qing. 2018: ZIRCON U-Pb AGES AND GEOCHEMICAL CHARACTERISTICS OF THE SUGAITILIKE LATE SILURIAN GRANITES IN SOUTHERN KUDI, XINJIANG AND ITS GEOTECTONIC SIGNIFICANCE. Journal of Geomechanics, 24(5): 661-669. doi: 10.12090/j.issn.1006-6616.2018.24.05.066
    LI Jinchao, KONG Huilei, LI Yazhi, GUO Xianzheng, NAMKHA Norbu, WANG Xianxiao, JIA Qunzi, ZHANG Bin, YAO Xuegang. 2018: ZIRCON U-PB DATING, GEOCHEMICAL CHARACTERISTICS AND METALLOGENIC SIGNIFICANCE OF GRONODIORITE PORPHYRY FROM THE XIZANGDAGOU GOLD DEPOSIT IN EAST KUNLUN, QINGHAI PROVINCE. Journal of Geomechanics, 24(2): 188-198. doi: 10.12090/j.issn.1006-6616.2018.24.02.020
    MA Shuai, CHEN Shiyue, SUN Jiaopeng, WANG Feng, SHAN Tengfei. 2017: A STUDY ON ZIRCON LA-ICP-MS U-PB AND 40AR/39AR AGES OF VOLCANIC ROCKS FROM KENDEKEKE, QIMANTAGE AND THE GEOLOGICAL SIGNIFICANCE. Journal of Geomechanics, 23(4): 558-566.
    ZHENG Guanggao, CUI Jianjun, LIU Xiaochun, QIAO Jianxin, QU Wei, CHEN Longyao, LI Miao, ZHAO Wenping, LI Dongdong. 2017: METALLOGENIC AGES AND THE NATURE OF MAGMA SOURCE OF THE YUJIASHAN CU-NI DEPOSIT, HANNAN COMPLEX:CONSTRAINTS FROM ZIRCON U-PB DATING AND LU-HF ISOTOPE. Journal of Geomechanics, 23(5): 661-672.
    NIMA Ciren, WANG Guocan, DU Dun, PU Chi, Ciren Yangzong, JIAO Wenlong, Li Kaiyun, YE Qiang, LUOSANG Langjie, DA Wa. 2017: ZIRCON U-PB AGES, GEOCHEMICAL CHARACTERISTICS AND TECTONICS IMPLICATIONS OF LATE JURASSIC INTERMEDIATE INTRUSIVE ROCKS IN SHIQUANHE AREA, WESTERN TIBET. Journal of Geomechanics, 23(5): 673-685.
    ZHAO Li-guo, YANG Xiao-ping, ZHAO Xing-min, LIU Yuan, ZHANG Wei-long. 2014: LA-ICP-MS U-Pb GEOCHRONOLOGY OF THE SEDIMENTARY ROCK AND VOLCANO ROCK ZIRCONS FROM THE EMOERHE GROUP IN THE MOHE BASIN AND ITS GEOLOGICAL SIGNIFICANCE. Journal of Geomechanics, 20(3): 285-291.
    LIAO Hua, HU Dao-gong, ZHANG Xu-jiao, YU Wen-lin, GUO Tao. 2014: ZIRCON U-Pb AGE FOR GRANITE OF THE ORDOVICIAN FORMATION AND ITS TECTONIC SIGNIFICANCE IN THE SOUTHERN QILIAN. Journal of Geomechanics, 20(3): 292-298.
    LI Bo, HU Dao-gong, GUO Tao. 2012: APPLICATION OF THE FIELD EMERGENCY SAFEGUARD SYSTEM BASED ON THE VSAT STATION IN EAST KUNLUN AREA. Journal of Geomechanics, 18(3): 306-313.
    ZHANG Kai, GOU Rong-tao, LIU Shu-lin, GUO Gang, XU Jun-jie, WANG Bo-wen, LI Hua-nan, YUAN Jing. 2012: CHARACTERISTICS AND SIGNIFICANCE OF THE COPPER-GOLD-ANTIMONY DEPOSITS IN DAGANGOU AREA, EAST KUNLUN. Journal of Geomechanics, 18(4): 401-409.
    LU Lu, HU Dao-gong, ZHANG Yong-qing, WU Zhen-han. 2010: ZIRCON U-Pb AGE FROM SYNTECTONIC GRANITIC PORPHYRY IN THE MIDDLE KUNLUN FAULT BELT AND ITS TECTONIC SIGNIFICANCE. Journal of Geomechanics, 16(1): 36-43.
    WU Fang, ZHANG Xu-jiao, ZHANG Yong-qing, ZHANG Yao-ling. 2010: ZIRCON U-Pb AGES FOR RHYOLITIC TUFFS OF THE NAOCANGJIANGOU FORMATION IN THE EAST KULUN OROGENIC BELT AND THEIR IMPLICATION. Journal of Geomechanics, 16(1): 44-50.
    ZHANG Zi-cheng, ZHANG Xu-jiao, GAO Wan-li, HU Dao-gong, LU Lu. 2010: EVIDENCE OF ZIRCON U-Pb AGES FOR THE FORMATION TIME OF THE EAST KUNLUN LEFT-LATERAL DUCTILE SHEAR BELT. Journal of Geomechanics, 16(1): 51-58.
    ZHOU Chun-jing, HU Dao-gong, BAROSH P J, WU Zhen-han, ZHANG Yong-qing, GENG Jian-zhen, HAO Shuang, NI Jin-yu, ZHANG Yao-ling. 2010: ZIRCON U-Pb DATING OF THE RHYOLITE-DACITE PORPHYRY IN THE SANDAOWAN OF EAST KUNLUN MOUNTAINS AND ITS GEOLOGICAL SIGNIFICANCE. Journal of Geomechanics, 16(1): 28-35.
    ZHANG Yao-ling, ZHANG Xu-jiao, HU Dao-gong, SHI Yu-ruo, LU Lu. 2010: SHRIMP ZIRCON U-Pb AGES OF RHYOLITE FROM THE NAIJ TAL GROUP IN THE EAST KULUN OROGENIC BELT. Journal of Geomechanics, 16(1): 21-27, 50.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.5 %FULLTEXT: 12.5 %META: 77.7 %META: 77.7 %PDF: 9.8 %PDF: 9.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.6 %其他: 9.6 %China: 0.3 %China: 0.3 %United States: 0.6 %United States: 0.6 %三亚: 0.1 %三亚: 0.1 %上海: 1.4 %上海: 1.4 %东莞: 0.2 %东莞: 0.2 %中卫: 3.1 %中卫: 3.1 %临汾: 0.3 %临汾: 0.3 %临沂: 0.5 %临沂: 0.5 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %九江: 0.7 %九江: 0.7 %佳木斯: 0.2 %佳木斯: 0.2 %保山: 0.1 %保山: 0.1 %克拉玛依: 0.1 %克拉玛依: 0.1 %六盘水: 0.1 %六盘水: 0.1 %兰州: 1.0 %兰州: 1.0 %包头: 0.1 %包头: 0.1 %北京: 18.7 %北京: 18.7 %十堰: 0.2 %十堰: 0.2 %南宁: 0.3 %南宁: 0.3 %南昌: 0.1 %南昌: 0.1 %厦门: 0.1 %厦门: 0.1 %台州: 1.0 %台州: 1.0 %合肥: 0.1 %合肥: 0.1 %吉安: 0.1 %吉安: 0.1 %吕梁: 0.3 %吕梁: 0.3 %周口: 0.1 %周口: 0.1 %呼和浩特: 0.4 %呼和浩特: 0.4 %咸宁: 0.1 %咸宁: 0.1 %哈尔滨: 0.6 %哈尔滨: 0.6 %哈里亚纳: 0.2 %哈里亚纳: 0.2 %哥伦布: 0.6 %哥伦布: 0.6 %唐山: 0.2 %唐山: 0.2 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %大同: 0.3 %大同: 0.3 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天水: 0.1 %天水: 0.1 %天津: 0.6 %天津: 0.6 %太原: 0.1 %太原: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %崇左: 0.1 %崇左: 0.1 %常德: 0.1 %常德: 0.1 %广州: 0.6 %广州: 0.6 %庆阳: 0.1 %庆阳: 0.1 %廊坊: 0.3 %廊坊: 0.3 %延边: 0.1 %延边: 0.1 %张家口: 2.7 %张家口: 2.7 %徐州: 0.3 %徐州: 0.3 %怀化: 0.1 %怀化: 0.1 %成都: 0.4 %成都: 0.4 %抚州: 0.1 %抚州: 0.1 %拉贾斯坦邦: 0.2 %拉贾斯坦邦: 0.2 %新乡: 0.1 %新乡: 0.1 %无锡: 0.2 %无锡: 0.2 %日喀则: 0.2 %日喀则: 0.2 %昆明: 0.4 %昆明: 0.4 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.6 %杭州: 0.6 %桂林: 0.1 %桂林: 0.1 %武汉: 1.2 %武汉: 1.2 %永州: 0.1 %永州: 0.1 %池州: 0.1 %池州: 0.1 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %泰安: 0.1 %泰安: 0.1 %泰州: 0.2 %泰州: 0.2 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.4 %济南: 0.4 %济宁: 0.1 %济宁: 0.1 %济源: 0.1 %济源: 0.1 %海东: 0.1 %海东: 0.1 %海口: 0.1 %海口: 0.1 %海西: 0.5 %海西: 0.5 %淮北: 0.1 %淮北: 0.1 %淮南: 0.2 %淮南: 0.2 %温州: 0.4 %温州: 0.4 %渭南: 0.1 %渭南: 0.1 %湖州: 0.5 %湖州: 0.5 %漯河: 0.2 %漯河: 0.2 %濮阳: 0.2 %濮阳: 0.2 %石家庄: 0.8 %石家庄: 0.8 %福州: 0.2 %福州: 0.2 %红河: 0.1 %红河: 0.1 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.2 %绍兴: 0.2 %芒廷维尤: 9.6 %芒廷维尤: 9.6 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %莆田: 0.1 %莆田: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %莱芜: 0.1 %莱芜: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.7 %衢州: 0.7 %襄阳: 0.2 %襄阳: 0.2 %西宁: 21.9 %西宁: 21.9 %西安: 1.1 %西安: 1.1 %许昌: 0.1 %许昌: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.6 %贵阳: 0.6 %资阳: 0.2 %资阳: 0.2 %赣州: 0.2 %赣州: 0.2 %赤峰: 0.1 %赤峰: 0.1 %达州: 0.1 %达州: 0.1 %运城: 1.0 %运城: 1.0 %通辽: 0.1 %通辽: 0.1 %邯郸: 0.7 %邯郸: 0.7 %郑州: 0.3 %郑州: 0.3 %郴州: 0.4 %郴州: 0.4 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.5 %重庆: 0.5 %银川: 0.7 %银川: 0.7 %长春: 0.7 %长春: 0.7 %长沙: 0.7 %长沙: 0.7 %阜阳: 0.1 %阜阳: 0.1 %阳泉: 0.1 %阳泉: 0.1 %阿勒泰地区: 0.2 %阿勒泰地区: 0.2 %青岛: 0.4 %青岛: 0.4 %马德里: 0.1 %马德里: 0.1 %马鞍山: 0.2 %马鞍山: 0.2 %驻马店: 0.1 %驻马店: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黄石: 0.1 %黄石: 0.1 %黔南: 0.1 %黔南: 0.1 %其他ChinaUnited States三亚上海东莞中卫临汾临沂乌鲁木齐九江佳木斯保山克拉玛依六盘水兰州包头北京十堰南宁南昌厦门台州合肥吉安吕梁周口呼和浩特咸宁哈尔滨哈里亚纳哥伦布唐山圣彼得堡大同大庆大连天水天津太原安康宣城崇左常德广州庆阳廊坊延边张家口徐州怀化成都抚州拉贾斯坦邦新乡无锡日喀则昆明晋中晋城朝阳杭州桂林武汉永州池州沈阳沧州泰安泰州洛阳济南济宁济源海东海口海西淮北淮南温州渭南湖州漯河濮阳石家庄福州红河纽约绍兴芒廷维尤芝加哥苏州莆田莫斯科莱芜衡水衡阳衢州襄阳西宁西安许昌诺沃克贵阳资阳赣州赤峰达州运城通辽邯郸郑州郴州鄂州重庆银川长春长沙阜阳阳泉阿勒泰地区青岛马德里马鞍山驻马店黄冈黄石黔南

Catalog

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (768) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return