Volume 27 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
WANG Jianguo, ZHOU Xiaofeng, TANG Haizhong, et al., 2021. Identifying intergranular pore types by distinguishing between cementation and dissolution of dotted calcite: A case study of the Xinhe Formation sandstones in the Yabrai Basin, China. Journal of Geomechanics, 27 (4): 652-661. DOI: 10.12090/j.issn.1006-6616.2021.27.04.054
Citation: WANG Jianguo, ZHOU Xiaofeng, TANG Haizhong, et al., 2021. Identifying intergranular pore types by distinguishing between cementation and dissolution of dotted calcite: A case study of the Xinhe Formation sandstones in the Yabrai Basin, China. Journal of Geomechanics, 27 (4): 652-661. DOI: 10.12090/j.issn.1006-6616.2021.27.04.054

Identifying intergranular pore types by distinguishing between cementation and dissolution of dotted calcite: A case study of the Xinhe Formation sandstones in the Yabrai Basin, China

doi: 10.12090/j.issn.1006-6616.2021.27.04.054
Funds:

the PetroChina Innovation Foundation 2019D-5007-0202

More Information
  • Received: 2020-09-08
  • Revised: 2021-01-31
  • Published: 2021-08-28
  • There is still no consensus among researchers about whether intergranular pores in oil-bearing sandstone are primary pores or secondary pores. Distinguishing between cementation and dissolution of dotted calcite can effectively identify intergranular pore types. In this paper, taking the diagenetic environment evolution and diagenesis sequence as the thread, we carefully observed the casting slices from the Xinhe Formation sandstones in the Yabrai Basin and finely dissected the microphenomenon by focusing on the calcite cements in its relation between the origins of substance and dissolution fluids and the occurrence mode. The genesis of the dotted calcite was clarified thus, and then the intergranular pore types and reservoir space types in the sandstones were identified. The study results show that the dotted calcite in the intergranular pore is the dissolution residue of the disseminated calcite formed in the early diagenetic stage, and the dissolution type is the consistent dissolution. The dissolution fluid, organic acid fluid formed during the middle diagenetic stage, caused the secondary pores. Therefore, it is concluded that the reservoir space in the Xinhe Formation sandstones in the Yabrai Basin consists of the secondary intergranular pores and the secondary intragranular pores such as dissolution pores of cements of feldspar, lithoclast, lithoclast.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • CHEN X Y, WANG J, ZHANG L P, et al., 2020. Sedimentary characteristics and genesis of carbonate cements in carboniferous Donghe sandstone member, Hanilcatam area of Tarim basin[J]. Journal of Jilin University (Earth Science Edition), 50(2): 509-517. (in Chinese with English abstract)
    DONG Y G, 2014. Hydrocarbon source rocks evaluation in Jurassic of YaBulai basin of Inner Mangolia[D]. Beijing: China University of Geosciences (Beijing): 15-20. (in Chinese with English abstract)
    DU P Y, 2016. Distribution of Jurassic effective source rocks in the Yabrai basin and its control to petroleum[D]. Beijing: China University of Petroleum (Beijing): 20-25. (in Chinese with English abstract)
    DU P Y, GAO G, WEI T, et al., 2018. Effective Source Rocks in Jurassic Xinhe Formation in Sartai Sag, Yabrai Basin[J]. Journal of Jilin University (Earth Science Edition), 48(1): 29-38. (in Chinese with English abstract)
    EMSBO P, HOFSTRA A H, 2003. Origin and significance of postore dissolution collapse breccias cemented with calcite and barite at the Meikle gold deposit, northern Carlin Trend, Nevada[J]. Economic Geology, 98(6): 1243-1252. doi: 10.2113/gsecongeo.98.6.1243
    FU S T, WANG Z L, ZHANG Y S, et al., 2015. Origin of carbonate cements in reservoir rocks and its petroleum geologic significance: Eboliang structure belt, northern margin of Qaidam Basin[J]. Acta Sedimentologica Sinica, 33(5): 991-999. (in Chinese with English abstract)
    GAO G, ZHAO L Y, MA G F, et al., 2017. Formation conditions of the Jurassic Xinhe Formation tight oil reservoirs and resource potential in the Yabrai Basin[J]. Oil & Gas Geology, 38(3): 478-488. (in Chinese with English abstract)
    HE S, YANG Z, HE Z L, et al., 2009. Mechanism of carbonate cementation and secondary dissolution porosity formation in deep-burial sandstones near the top Overpressured surface in central part of Junggar basin[J]. Earth Science-Journal of China University of Geosciences, 34(5): 759-768, 798. (in Chinese with English abstract) doi: 10.3799/dqkx.2009.084
    HUANG J P, YANG Z L, MA G F, et al., 2015. The geological characteristics and exploration potential of tight oil in small fault-subsided lake Basins, China[J]. Natural Gas Geoscience, 26(9): 1763-1772. (in Chinese with English abstract)
    LI M J, ZHENG M L, CAO C C, et al., 2004. Evolution of superposed Jurassic and Cretaceous basins in Beishan-Alxa area[J]. Oil & Gas Geology, 25(1): 54-57. (in Chinese with English abstract)
    LI Y, ZHANG W X, LI S T, et al., 2018. Characteristics of carbonate cements and their effects on properties in Chang 8 sandstone reservoir, Ordos Basin[J]. Geological Science and Technology Information, 37(4): 175-183. (in Chinese with English abstract)
    LIU H M, WANG X J, DU Z J, et al., 2020. Study on pore structure characteristics of tight sandstone in Block 4 of the central Junggar basin[J]. Journal of Geomechanics, 26(1): 96-105. (in Chinese with English abstract)
    LOUCKS R G, DUTTON S P, 2019. Insights into deep, onshore gulf of Mexico Wilcox sandstone pore networks and reservoir quality through the integration of petrographic, porosity and permeability, and mercury injection capillary pressure analyses[J]. AAPG Bulletin, 103(3): 745-765. doi: 10.1306/09181817366
    LV C F, QIN C W, CHEN G J, et al., 2010. Diagenesis of lower cretaceous reservoir sandstones from Jiudong depression in Jiuquan basin[J]. Natural Gas Geoscience, 21(6): 939-946. (in Chinese with English abstract)
    PETTIJOHN F J, POTTER P E, SIEVER R, 1972. Sand and sandstone[M]. New York, Heidelberg, Berlin: Springer-Verlag: 383-437.
    PITTMAN E D, LARESE R E, HEALD M T, 1992. Clay coats: Occurrence and relevance to preservation of porosity in sandstones[M]//HOUSEKNECHT D W, PITTMAN E D. Origin, diagenesis, and petrophysics of clay minerals in sandstones. Tulsa: SEPM Society for Sedimentary Geology: 241-255.
    POMMER M, SARG J F, 2019. Biochemical and stratigraphic controls on pore-system evolution, Phosphoria Rock Complex (Permian), Rocky mountain Region, USA[J]. Journal of Sedimentary Research, 18(2): 25-60.
    SHANLEY K W, CLUFF R M, 2015. The Evolution of Pore-scale fluid-saturation in Low-permeability Sandstone reservoirs[J]. AAPG Bulletin, 99(10): 1957-1990. doi: 10.1306/03041411168
    SHEN J, 2020. Carbonate cementation characteristics and genetic mechanism of tight sandstone reservoirs in Longdong area, Ordos Basin[J]. Lithologic Reservoirs, 32(2): 24-32. (in Chinese with English abstract)
    SHI Y T, LIAO Y T, TANG J R, et al., 2015. Characteristics of sequence stratigraphy and sedimentary facies in the lower Xinhe formation of Xiaohu Sub-sag, Yabulai basin[J]. Geological Science and Technology Information, 34(5): 38-45. (in Chinese with English abstract)
    SUN G Q, WANG H F, ZOU K Z, et al., 2014. Characteristics and significance of carbon and oxygen isotopic compositions of carbonate cements in Jiulongshan region, north edge of Qaidam basin[J]. Natural Gas Geoscience, 25(9): 1358-1365. (in Chinese with English abstract)
    TAN T, REN Z L, WU X Q, et al., 2015. Apatite fission track analysis of Meso-cenozoic tectonic-thermal history in Sartai depression, Yabrai Basin[J]. Journal of Central South University (Science and Technology), 46(8): 2974-2982. (in Chinese with English abstract)
    TAN X F, HUANG J H, LI J, et al., 2015. Origin of carbonate cements and the transformation of the reservoir in sandstone under the deep burial condition-A case study on Eocene Kongdian formation in Jiyang Depression, Bohai Bay Basin[J]. Geological Review, 61(5): 1107-1120. (in Chinese with English abstract)
    TANG H Z, WEI J, ZHOU Z H, et al., 2019. Characteristics of calcite cements in deep Xiagou Formation sandstones of Ying'er Depression, Jiuquan Basin[J]. Natural Gas Geoscience, 30(5): 652-661. (in Chinese with English abstract)
    WANG D R, 2000. Stable isotope geochemistry of oil and gas[M]. Beijing: Petroleum Industry Press: 123-145. (in Chinese)
    WANG J W, SONG S J, BAO Z D, et al., 2006. Analysis of the quality reservoir development controlling factors of J1s2 formation of Zhuang-1 area in Zhungeer Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 21(1): 11-14. (in Chinese with English abstract)
    WANG Y B, 2014. Analysis on geochemical characteristics and potentials of Xinhe formation in Yyabrai Basin[D]. Xi'an: Xi'an Shiyou University: 16-23. (in Chinese with English abstract)
    WANG Y T, SUN G Q, YANG Y H, et al., 2020. Characteristics and significance of carbonate cement in the No. 7 area of Lenghu, Northern Margin of Qaidam Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 42(1): 45-56. (in Chinese with English abstract)
    WU X Z, WANG G J, ZHENG M, et al., 2015. Structural evolution and hydrocarbon accumulation in Yabulai Basin[J]. Chinese Journal of Geology, 50(1): 74-87. (in Chinese with English abstract)
    XUE M W, ZHANG T, DING W L, et al., 2020. Fluid potential characteristics of Carboniferous and the division of hydrocarbon migration and accumulation units in the eastern depression of the Bayanhaote Basin[J]. Journal of Geomechanics, 26(1): 65-73. (in Chinese with English abstract)
    YANG B, HOU J, CHEN H Q, et al., 2018. Characteristics of the Yabulai Mesozoic Basin and its exploration strategy[J]. Oil Geophysical Prospecting, 53(S2): 314-320. (in Chinese with English abstract)
    YUAN G H, CAO Y C, JIA Z Z, et al., 2015. Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin[J]. Natural Gas Geoscience, 26(1): 28-42. (in Chinese with English abstract)
    ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25 (5): 722-745. (in Chinese with English abstract)
    ZHANG J H, XIANG P, 2019. Genetic mechanisms of low-permeability reservoir of Sangonghe Formation in Block 1 of central Junggar Basin[J]. Journal of Xi'an Shiyou University (Natural Science), 34(1): 43-49. (in Chinese with English abstract)
    ZHANG S M, CAO Y C, ZHU R K, et al., 2016. The lithofacies and depositional environment of fine-grained sedimentary rocks of Xiaohu Subsag in Yabulai basin[J]. Natural Gas Geoscience, 27(2): 309-319. (in Chinese with English abstract)
    ZHONG J Y, HE M, ZHOU T, et al., 2011. Origin analysis of carbonate cements in Chang 8 reservoir in southeastern margin of Ordos Basin[J]. Lithologic Reservoirs, 23(4): 65-69. (in Chinese with English abstract)
    ZHONG W, LIN C M, WU C, et al., 2013. The Mesozoic tectonic in the Yabrai Basin[J]. Acta Geologica Sichuan, 33(1): 7-11. (in Chinese with English abstract)
    ZHOU X F, LI J, ZHANG J X, et al., 2018. Revisiting the compaction time of Chang 8 sandstones in Southwestern Ordos Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 40(3): 1-10. (in Chinese with English abstract)
    陈秀艳, 王剑, 张立平, 等, 2020. 塔里木盆地哈拉哈塘地区石炭系东河砂岩段碳酸盐胶结物沉积特征及其成因[J]. 吉林大学学报(地球科学版), 50(2): 509-517. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002016.htm
    董义国, 2014. 内蒙古雅布赖盆地侏罗系烃源岩评价[D]. 北京: 中国地质大学(北京): 15-20.
    都鹏燕, 2016. 雅布赖盆地侏罗系有效烃源岩分布及其对油气的控制作用[D]. 北京: 中国石油大学(北京): 20-25.
    都鹏燕, 高岗, 魏涛, 等, 2018. 雅布赖盆地萨尔台凹陷侏罗系新河组有效烃源岩研究[J]. 吉林大学学报(地球科学版), 48(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201801003.htm
    付锁堂, 王震亮, 张永庶, 等, 2015. 柴北缘西段鄂博梁构造带储层碳酸盐胶结物成因及其油气地质意义: 来自碳、氧同位素的约束[J]. 沉积学报, 33(5): 991-999. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201505015.htm
    高岗, 赵乐义, 马国福, 等, 2017. 雅布赖盆地侏罗系新河组致密油形成条件与有利区资源潜力[J]. 石油与天然气地质, 38(3): 478-488. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703007.htm
    何生, 杨智, 何治亮, 等, 2009. 准噶尔盆地腹部超压顶面附近深层砂岩碳酸盐胶结作用和次生溶蚀孔隙形成机理[J]. 地球科学-中国地质大学学报, 34(5): 759-768, 798. doi: 10.3321/j.issn:1000-2383.2009.05.006
    黄军平, 杨占龙, 马国福, 等, 2015. 中国小型断陷湖盆致密油地质特征及勘探潜力分析[J]. 天然气地球科学, 26(9): 1763-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509019.htm
    李明杰, 郑孟林, 曹春潮, 等, 2004. 北山-阿拉善地区侏罗-白垩纪盆地的叠合演化[J]. 石油与天然气地质, 25(1): 54-57. doi: 10.3321/j.issn:0253-9985.2004.01.010
    李阳, 张文选, 李树同, 等, 2018. 鄂尔多斯盆地长8砂岩储层碳酸盐胶结物特征及其对物性的影响[J]. 地质科技情报, 37(4): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804024.htm
    刘惠民, 王学军, 杜振京, 等, 2020. 准中4区块致密砂岩孔隙结构特征研究[J]. 地质力学学报, 26(1): 96-105. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200110&journal_id=dzlxxb
    吕成福, 秦长文, 陈国俊, 等, 2010. 酒泉盆地酒东坳陷下白垩统低孔渗储层成岩作用研究[J]. 天然气地球科学, 21(6): 939-946. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201006010.htm
    孙国强, 王海峰, 邹开真, 等, 2014. 柴北缘九龙山地区侏罗系砂岩中碳酸盐胶结物特征及意义[J]. 天然气地球科学, 25(9): 1358-1365. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201409008.htm
    沈健, 2020. 鄂尔多斯盆地陇东地区致密砂岩储层碳酸盐胶结物特征及成因机理[J]. 岩性油气藏, 32(2): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202002003.htm
    石英涛, 廖远涛, 汤建荣, 等, 2015. 雅布赖盆地小湖次凹新河组下段层序及沉积相特征[J]. 地质科技情报, 34(5): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505007.htm
    谭先锋, 黄建红, 李洁, 等, 2015. 深部埋藏条件下砂岩中碳酸盐胶结物的成因及储层改造: 以济阳坳陷始新统孔店组为例[J]. 地质论评, 61(5): 1107-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201505014.htm
    唐海忠, 魏军, 周在华, 等, 2019. 酒泉盆地营尔凹陷深层下沟组砂岩方解石胶结物特征[J]. 天然气地球科学, 30(5): 652-661. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201905005.htm
    田涛, 2015. 雅布赖盆地萨尔台凹陷热演化史与油气成藏期次研究[D]. 西安: 西北大学: 13-18.
    田涛, 任战利, 吴晓青, 等, 2015. 雅布赖盆地萨尔台凹陷中-新生代构造热事件的磷灰石裂变径迹分析[J]. 中南大学学报(自然科学版), 46(8): 2974-2982. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201508030.htm
    王大锐, 2000. 油气稳定同位素地球化学[M]. 北京: 石油工业出版社: 123-145.
    王建伟, 宋书君, 鲍志东, 等, 2006. 准噶尔盆地庄1井区J1s2段优质储层发育控制因素[J]. 西安石油大学学报(自然科学版), 21(1): 11-14. doi: 10.3969/j.issn.1673-064X.2006.01.003
    王彦博, 2014. 雅布赖盆地新河组烃源岩地化特征及资源潜力分析[D]. 西安: 西安石油大学: 16-23.
    王晔桐, 孙国强, 杨永恒, 等, 2020. 柴北缘冷湖七号地区碳酸盐胶结物特征及其意义[J]. 西南石油大学学报(自然科学版), 42(1): 45-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202001005.htm
    吴晓智, 王桂君, 郑民, 等, 2015. 雅布赖盆地构造演化与油气聚集[J]. 地质科学, 50(1): 74-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201501005.htm
    薛明旺, 张坦, 丁文龙, 等, 2020. 巴彦浩特盆地东部坳陷石炭系流体势特征及油气运聚单元划分[J]. 地质力学学报, 26(1): 65-73. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200107&journal_id=dzlxxb
    杨波, 侯军, 陈海清, 等, 2018. 雅布赖中生代叠合盆地特征及勘探方向[J]. 石油地球物理勘探, 53(S2): 314-320. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S2049.htm
    远光辉, 操应长, 贾珍臻, 等, 2015. 含油气盆地中深层碎屑岩储层异常高孔带研究进展[J]. 天然气地球科学, 26(1): 28-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201501005.htm
    翟明国, 2019. 华北克拉通构造演化[J]. 地质力学学报, 25(5): 722-745. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190507&journal_id=dzlxxb
    张江华, 相鹏, 2019. 准噶尔盆地中部1区三工河组低渗透储层成因机制[J]. 西安石油大学学报(自然科学版), 34(1): 43-49. doi: 10.3969/j.issn.1673-064X.2019.01.006
    张少敏, 操应长, 朱如凯, 等, 2016. 雅布赖盆地小湖次凹细粒沉积岩岩相特征与沉积环境探讨[J]. 天然气地球科学, 27(2): 309-319. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602014.htm
    钟金银, 何苗, 周韬, 等, 2011. 鄂尔多斯盆地东南缘长8油层组碳酸盐胶结物成因分析[J]. 岩性油气藏, 23(4): 65-69. doi: 10.3969/j.issn.1673-8926.2011.04.012
    钟玮, 林常梅, 吴超, 等, 2013. 雅布赖盆地中生代构造特征[J]. 四川地质学报, 33(1): 7-11. doi: 10.3969/j.issn.1006-0995.2013.01.003
    周晓峰, 李景, 张建欣, 等, 2018. 鄂尔多斯盆地西南部长8砂岩致密时间再认识[J]. 西南石油大学学报(自然科学版), 40(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201803001.htm
  • 加载中

Catalog

    Figures(4)

    Article Metrics

    Article views (695) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return