Volume 27 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
MAO Xiaoping, HE Liankang, LIU Jialin, et al., 2021. Mechanism of the strong earthquake triggered by high pressure fluid in reservoir: A case study of the 5.12 Wenchuan earthquake. Journal of Geomechanics, 27 (4): 628-642. DOI: 10.12090/j.issn.1006-6616.2021.27.04.052
Citation: MAO Xiaoping, HE Liankang, LIU Jialin, et al., 2021. Mechanism of the strong earthquake triggered by high pressure fluid in reservoir: A case study of the 5.12 Wenchuan earthquake. Journal of Geomechanics, 27 (4): 628-642. DOI: 10.12090/j.issn.1006-6616.2021.27.04.052

Mechanism of the strong earthquake triggered by high pressure fluid in reservoir: A case study of the 5.12 Wenchuan earthquake

doi: 10.12090/j.issn.1006-6616.2021.27.04.052
Funds:

the Science and Technology Project of China Petrochemical Corporation JP14009

More Information
  • Received: 2021-04-05
  • Revised: 2021-07-16
  • Published: 2021-08-28
  • At present, the mechanism of earthquake is still based on elastic rebound theory—Earthquake is caused by the release of elastic energy of rock strata due to fault dislocation. But more and more scholars began to question whether the elastic energy after fault faulting can really reach the huge energy released by the actual earthquake. Therefore, it is necessary to study the nature of destructive strong earthquake and its real energy source after the initial movement. According to the characteristics of the reservoir and its pressure in the sedimentary strata, it is concluded that there are a lot of high-pressure fluid in the reservoir, and its pressure can be released under certain conditions, resulting in fluid physical explosion, which may be an important part of strong earthquake energy. The calculation results show that when the fault ruptures and penetrates the reservoir with large area, the elastic energy produced by the pressure release can reach the energy released by the earthquake with magnitude above 8.0; Artificial engineering activities can also lead to the release of small-scale fluid pressure, such as blowout during drilling, earthquake induced by hydraulic fracturing, etc. At the same time, according to the analysis of the waveforms and propagation ray paths of the seismic stations close to the epicenter, it is considered that the strong earthquake wave may not be S-wave, but P-wave. Therefore, it cannot be ruled out that the strong earthquake might be caused by explosion. A large number of direct or indirect evidence, such as the time domain and frequency domain characteristics of seismic waves recorded by several stations during the Wenchuan earthquake, the explosion phenomena observed on the ground, and the cores obtained by scientific drilling after the earthquake, indicate the possibility of the release of this kind of fluid explosion energy. Finally, this paper proposes that the seismicity can be divided into three stages: The stage Ⅰ of micro rupture, in which there is fluid activity and electrokinetic effect, but the initial earthquake motion is not triggered; The stage Ⅱ of fault rupture after the initial earthquake motion; The strong earthquake stage Ⅲ, which is caused by the release of fluid pressure.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • ARAI K, INOUE T, IKEHARA K, et al., 2014. Episodic subsidence and active deformation of the forearc slope along the Japan Trench near the epicenter of the 2011 Tohoku Earthquake[J]. Earth and Planetary Science Letters, 408: 9-15. doi: 10.1016/j.epsl.2014.09.048
    BELL D R, ROSSMAN G R, 1992. Water in Earth's mantle: the role of nominally anhydrous minerals[J]. Science, 255(5050): 1391-1397. doi: 10.1126/science.255.5050.1391
    BEROZA G C, JORDAN T H, 1990. Searching for slow and silent earthquakes using free oscillations[J]. Journal of Geophysical Research: Solid Earth, 95(B3): 2485-2510. doi: 10.1029/JB095iB03p02485
    BRACE W F, BYERLEE J D, 1966. Stick-slip as a mechanism for earthquakes[J]. Science, 153(3739): 990-992. doi: 10.1126/science.153.3739.990
    BYERLEE J D, 1970. The mechanics of stick-slip[J]. Tectonophysics, 9(5): 475-486. doi: 10.1016/0040-1951(70)90059-4
    CHEN T, ZHANG X X, ZHANG X M, et al., 2021. Imminent Estimation of Earthquake Hazard by regional network monitoring the near surface vertical atmospheric electrostatic field[J]. Chinese Journal of Geophysics, 64(4): 1045-1054. (in Chinese with English abstract) http://www.mdpi.com/2072-4292/13/17/3420#metrics
    CURRAY J R, 1991. Possible greenschist metamorphism at the base of a 22-km sedimentary section, Bay of Bengal[J]. Geology, 19(11): 1097-1100. doi: 10.1130/0091-7613(1991)019<1097:PGMATB>2.3.CO;2
    DU J G, SI X Y, CHEN Y X, et al., 2008. Geochemical anomalies connected with great earthquakes in China[M]//Geochemistry research advances. New York: Nova Science Publishers, Inc., 57-92.
    DZIERMA Y, THORWART M, RABBEL W, 2012. Moho topography and subducting oceanic slab of the Chilean continental margin in the maximum slip segment of the 1960 Mw 9.5 Valdivia (Chile) earthquake from P-receiver functions[J]. Tectonophysics, 530-531: 180-192. doi: 10.1016/j.tecto.2011.12.016
    FANG S N, ZHANG Z S, WANG Z, et al., 2020. Principal Slip Zone determination in the Wenchuan earthquake Fault Scientific Drilling project-hole 1: considering the Bayesian discriminant function[J]. Acta Geophysica, 68(6): 1595-1607. doi: 10.1007/s11600-020-00496-z
    FIDANI C, 2010. The earthquake lights (EQL) of the 6 April 2009 Aquila earthquake, in Central Italy[J]. Natural Hazards and Earth System Sciences, 10(5): 967-978. doi: 10.5194/nhess-10-967-2010
    FINKELSTEIN D, POWELL, J. 1970. Earthquake lightning. Nature, 228(5273), 759-760. doi: 10.1038/228759a0
    FINKELSTEIN D, HILL R D, POWELL J R, 1973. The Piezoelectric Theory of earthquake lightning[J]. Journal of Geophysical Research, 78(6): 992-993. doi: 10.1029/JC078i006p00992
    FITTERMAN D V, 1978. Electrokinetic and magnetic anomalies associated with dilatant regions in a layered Earth[J]. Journal of Geophysical Research: Solid Earth, 83(B21): 5923-5928.
    GAO J Y, LIU X F, YAN R, 2020. Time-frequency analysis of seismic records generated by natural earthquakes, blasts, and collapses near Pingmei mine based on STFT[J]. Seismological and Geomagnetic Observation and Research, 41(3): 67-74. (in Chinese with English abstract)
    GAO X, WANG K L, 2017. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip[J]. Nature, 543(7645): 416-419. doi: 10.1038/nature21389
    GILAT A, VOL A, 2005. Primordial hydrogen-helium degassing, an overlooked major energy source for internal terrestrial processes[J]. HAIT Journal of Science & Engineering B, 2(1-2): 125-167. http://www.researchgate.net/publication/241587405_Primordial_hydrogen-helium_degassing_an_overlooked_major_energy_source_for_internal_terrestrial_processes
    GOMBERG J, BODIN P, LARSON K, et al., 2004. Earthquake nucleation by transient deformations caused by the M=7.9 Denali, Alaska, earthquake[J]. Nature, 427(6975): 621-624. doi: 10.1038/nature02335
    HAO J G, 1988. Near earth surface anomalies of the atmospheric electric field and earthquakes[J]. Acta Seisemologica Sinica, 10(2): 206-212. (in Chinese with English abstract)
    HARMS U. 1994. New achievements of (KTB) in 7 km ultra-deep drilling in Germany-fluids in the Variscan basement and their passageways. Geological science translation cluster, 11(2): 91-93. (in Chinese)
    HE B Z, QIAO X F, 2015. Advances and overview of the study on paleo-earthquake events: a review of seismites[J]. Acta Geologica Sinica (English Edition), 89(5): 1702-1746. doi: 10.1111/1755-6724.12575
    HEINICKEA J, STEPHAN T, ALEXANDRAKIS C, et al., 2019. Alteration as possible cause for transition from brittle failure to aseismic slip: the case of the NW-Bohemia/Vogtland earthquake swarm region. Journal of Geodynamics, 124: 79-92. doi: 10.1016/j.jog.2019.01.010
    HONDA H, 1962. Earthquake Mechanism and Seismic Waves[J]. Journal of Physics of the Earth, 10(2): 1-97. doi: 10.4294/jpe1952.10.2_1
    HU X G, 2018. Secondary microseisms of North Atlantic windstorms in Central Eurasia-an understanding of an anomalously big bulge of seismic noise before the 2001 November 14 Mw 7.8 Kunlun earthquake[J]. Geophysical Journal International, 214(3): 2084-2097. doi: 10.1093/gji/ggy237
    HUBBARD J, SHAW J H, 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake[J]. Nature, 458(7235): 194-197. doi: 10.1038/nature07837
    HUENGES E, ERZINGER J, KVCK J, et al., 1997. The permeable crust: geohydraulic properties down to 9101 m depth[J]. Journal of Geophysical Research: Solid Earth, 102(B8): 18255-18265. doi: 10.1029/96JB03442
    JAMTVEIT B, BEN-ZION Y, RENARD F, et al., 2018. Earthquake-induced transformation of the lower crust[J]. Nature, 556(7702): 487-491. doi: 10.1038/s41586-018-0045-y
    JONES L M, HAN W B, HAUKSSON E, et al., 1984. Focal mechanisms and aftershock locations of the Songpan earthquakes of August 1976 in Sichuan, China[J]. Journal of Geophysical Research: Solid Earth, 89(B9): 7697-7707. doi: 10.1029/JB089iB09p07697
    KORSUNOVA L P, KHEGAI V V, MIKHAILOV Y M, et al., 2013. Regularities in the manifestation of earthquake precursors in the ionosphere and near-surface atmospheric electric fields in Kamchatka[J]. Geomagnetism and Aeronomy, 53(2): 227-233. doi: 10.1134/S0016793213020084
    KURZ J H, JAHR T, JENTZSCH G, 2004. Earthquake swarm examples and a look at the generation mechanism of the vogtland/western bohemia earthquake swarms[J]. Physics of the Earth and Planetary Interiors, 142(1-2): 75-88. doi: 10.1016/j.pepi.2003.12.007
    LENG J G, YANG K M, YANG Y, 2011. Relationship between natural gas accumulation and overpressure in Xujiahe formation, Xiaoquan-Fenggu structural belt, western Sichuan depression[J]. Petroleum Geology and Experiment, 33(6): 574-579, 586. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201106006.htm
    LI M J, ZHOU J, LU Y, et al., 2017. Limit drainage radius for different types of wells in a shale reservoir[J]. Chemistry and Technology of Fuels and Oils, 53(4): 548-556. doi: 10.1007/s10553-017-0835-1
    LI T, CAI M F, ZHANG S Q, et al., 2015. Mining-induced seimicity in China[J]. Seismological Research of Northeast China, 21(3): 1-26. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DDYJ200503000.htm
    LI X T, SHI W R, GUO M Y, et al., 2014. Characteristics of marine shale gas reservoirs in Jiaoshiba area of Fuling shale gas field[J]. Journal of Oil and Gas Technology, 36(11): 11-15. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-JHSX201411003.htm
    LI Y D, ZHANG L, ZHANG K, et al., 2017. Research on the atmospheric electric field abnormality near the ground surface before ""5.12"" Wenchuan earthquake[J]. Plateau and Mountain Meteorology Research, 37(1): 49-53. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SCCX201701008.htm
    LIANG G H, 2016. Summary of research on earthquake and metallogenic process[J]. Gold Science and Technology, 24(6): 8-14. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HJKJ201606003.htm
    LIANG G H, 2017. Preliminary study of the relationship between cryptoexplosion and ore-forming process from Wenchuan earthquake[J]. Acta Petrologica Sinica, 33(2): 326-338. (in Chinese with English abstract) http://www.researchgate.net/publication/319077599_Preliminary_study_of_the_relationship_between_cryptoexplosion_and_ore-forming_process_from_Wenchuan_earthquake
    LIU B J, QU G S, SUN M X, et al., 2011. Crustal structures and tectonics of Tangshan earthquake area: results from deep seismic reflection profiling[J]. Seismology and Geology, 33(4): 901-912. (in Chinese with English abstract) http://www.researchgate.net/publication/289119221_Crustal_structures_and_tectonics_of_Tangshan_earthquake_area_Results_from_deep_seismic_reflection_profiling
    LIU W P, ZHANG C L, GAO G D, et al., 2017. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 38(2): 175-184. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201702005.htm
    LIU W Y, LI L H, WU J H. 1996. Discussion on the Genesis of the Tangshan Earthquake of MS 7.8 in 1978 from the Geochemical Perspective[J]. Geochemistry, 5: 66-69. (in Chinese with English abstract)
    LV Z Y, QIU X L, LV J S, et al., 2020. Crustal structure beneath the east side of Pearl River Estuary from onshore-offshore seismic experiment[J]. International Geology Review, 62(7-8): 1057-1069. doi: 10.1080/00206814.2018.1553114
    MA X H, YANG Y, WEN L, et al., 2019. Distribution and exploration direction of medium-and large-sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 46(1): 1-15. doi: 10.1016/S1876-3804(19)30001-1
    MANDAL P, 2019. A possible origin of intraplate earthquakes in the Kachchh rift zone, India, since the 2001 Mw7.7 Bhuj earthquake[J]. Journal of Asian Earth Sciences, 170: 56-72. doi: 10.1016/j.jseaes.2018.10.006
    MARAPULETS Y, RULENKO O. 2019. Joint Anomalies of High-Frequency Geoacoustic Emission and Atmospheric Electric Field by the Ground-Atmosphere Boundary in a Seismically Active Region (Kamchatka)[J]. Atmosphere, 10(5): 267-282. doi: 10.3390/atmos10050267
    MARZOCCHI W, LOMBARDI A M, CASAROTTI E, 2014. The establishment of an operational earthquake forecasting system in Italy[J]. Seismological Research Letters, 85(5): 961-969. doi: 10.1785/0220130219
    OHTSUKI O Y H, 2005. Earthquake light: 1995 Kobe earthquake in Japan[J]. Atmospheric Research, 76: 438-444. doi: 10.1016/j.atmosres.2004.11.018
    OLSEN K M, BANGS N L, TRÉHU A M, et al., 2020. Thick, strong sediment subduction along south-central Chile and its role in great earthquakes[J]. Earth and Planetary Science Letters, 538: 116195. doi: 10.1016/j.epsl.2020.116195
    PINKSTON F W M, FLEMINGS P B, 2019. Overpressure at the Macondo Well and its impact on the Deepwater Horizon blowout[J]. Scientific Reports, 9(1): 7047. doi: 10.1038/s41598-019-42496-0
    POPE M C, READ J F, BAMBACH R, et al., 1997. Late Middle to Late Ordovician seismites of Kentucky, southwest Ohio and Virginia: sedimentary recorders of earthquakes in the Appalachian basin[J]. GSA Bulletin, 109(4): 489-503. doi: 10.1130/0016-7606(1997)109<0489:LMTLOS>2.3.CO;2
    REYNERS M, EBERHART-PHILLIPS D, STUART G, 2007. The role of fluids in lower-crustal earthquakes near continental rifts[J]. Nature, 446(7139): 1075-1078. doi: 10.1038/nature05743
    RUIZ S, KLEIN E, CAMPO F D, et al., 2016. The seismic sequence of the 16 September 2015 Mw8.3 Illapel, Chile, earthquake[J]. Seismological Research Letters, 87(4): 789-799. doi: 10.1785/0220150281
    SHANG Y J, LIU J Q, LIU D A, et al., 2015. Observation of explosion pits and test results of ejecta above a rock avalanche triggered by the Wenchuan earthquake, China[J]. Geomorphology, 231: 162-168. doi: 10.1016/j.geomorph.2014.11.025
    SOKOS E, GALLOVIČ F, EVANGELIDIS C P, et al., 2020. The 2018 Mw6.8 Zakynthos, Greece, earthquake: Dominant strike-slip faulting near subducting slab[J]. Seismological Research Letters, 91(2A): 721-732. doi: 10.1785/0220190169
    TETTEH J T, CUDJOE S E, ARYANA S A, et al., 2021. Investigation into fluid-fluid interaction phenomena during low salinity waterflooding using a reservoir-on-a-chip microfluidic model[J]. Journal of Petroleum Science and Engineering, 196: 108074. doi: 10.1016/j.petrol.2020.108074
    TINGAY M, HEIDBACH O, DAVIES R, et al., 2008. Triggering of the Lusi mud eruption: Earthquake versus drilling initiation[J]. Geology, 36(8): 639-642. doi: 10.1130/G24697A.1
    VAN LOON A J, PISARSKA-JAMROŻY M, NARTIŠS M, et al., 2016. Seismites resulting from high-frequency, high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift[J]. Journal of Palaeogeography, 5(4): 363-380. doi: 10.1016/j.jop.2016.05.002
    VAROTSOS P, ALEXOPOULOS K, 1984. Physical properties of the variations of the electric field of the earth preceding earthquakes. Ⅱ. Determination of epicenter and magnitude[J]. Tectonophysics, 110(1-2): 99-125. doi: 10.1016/0040-1951(84)90060-X
    WANG B S, GE H K, YANG W. 2012. Transmitting seismic station monitors fault zone at depth[J]. Eos Transactions American Geophysical Union, 93(5): 49-50. doi: 10.1029/2012EO050001
    WANG H, LI H B, SI J L, et al., 2015. Progress in the study of the Wenchuan earthquake faulting[J]. Acta Geoscientica Sinica, 36(3): 257-269. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201503001.htm
    WANG S X, JIANG F Y, HAO M, et al., 2013. Investigation of features of present 3D crustal movement in eastern edge of Tibet plateau[J]. Chinese Journal of Geophysics, 56(10): 3334-3345. (in Chinese with English abstract)
    WU H Z, YE T R, ZHAO D, et al., 2015. Fine characterization technique and its application to channel sandstone in continental tight gas reservoirs of western Sichuan Depression[J]. Oil & Gas Geology, 36(2): 230-239. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-SYYT201502008.htm
    WURMSTICH B, MORGAN F D, 1994. Modeling of streaming potential responses caused by oil well pumping[J]. Geophysics, 59(1): 46-56. doi: 10.1190/1.1443533
    XU T J, CHENG B J, YIAN L I, et al., 2017. Reservoir brittleness and fracture prediction of Member 4, Leikoupo Formation in Jinma-Yazihe nappe tectonic belt, Longmen Mountain[J]. Petroleum geophysical exploration, 2017, 52(3): 562-572. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ201703020.htm
    YE J Q, SU J R, CHEN H, 2008. Predominant period of the Wenchuan Ms 8.0 earthquake motion[J]. Journal of Seismological Research, 31(S1): 498-504. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ2008S1015.htm
    YUAN S Y, RAN Q Q, XU Z S, et al., 2007. Strategy of high-efficiency development for volcanic gas reservoirs[J]. Acta Petrolei Sinica, 28(1): 73-77. (in Chinese with English abstract) doi: 10.1111/j.1745-7254.2007.00475.x
    YUE Z Q, 2013. Cause and mechanism of highly compressed and dense methane gas mass for Wenchuan earthquake and associated rock-avalanches and surface co-seismic ruptures[J]. Earth Science Frontiers, 20(6): 15-20. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201306003.htm
    ZHANG M, WEN L X, 2015. Seismological evidence for a low-yield nuclear test on 12 May 2010 in North Korea[J]. Seismological Research Letters, 86(1): 138-145. doi: 10.1785/02201401170
    ZHANG Y N, DENG J R, KE B, et al., 2018. Experimental study on explosion pressure and rock breaking characteristics under liquid carbon dioxide blasting[J]. Advances in Civil Engineering, 2018: 7840125. http://www.researchgate.net/publication/327266753_Experimental_Study_on_Explosion_Pressure_and_Rock_Breaking_Characteristics_under_Liquid_Carbon_Dioxide_Blasting
    ZHAO D P, KANAMORI H, NEGISHI H, et al., 1996. Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter[J]. Science, 274(5294): 1891-1894. doi: 10.1126/science.274.5294.1891
    ZHAO L F, XIE X B, WANG W M, et al., 2014. The 12 February 2013 North Korean underground nuclear test[J]. Seismological Research Letters, 85(1): 130-134. doi: 10.1785/0220130103
    ZHAO Z W, XIE J R, LI N, et al., 2013. Gas exploration potential of the 1st, 3rd and 5th members of Xujiahe Fm reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 33(6): 23-28. (in Chinese with English abstract)
    Harms U, 1994. 德国7公里超深钻(KTB)的新成果: 华力西基底中的流体及其通道[J]. 程小久, 译. 地质科学译丛, (2): 91-93.
    陈涛, 张效信, 张学民, 等, 2021. 利用区域大气静电场监测网临震预估地震灾害[J]. 地球物理学报, 64(4): 1045-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202104002.htm
    高家乙, 刘晓锋, 闫睿, 2020. 河南平顶山平煤矿区天然地震、爆破、塌陷时频特征分析[J]. 地震地磁观测与研究, 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DZGJ202003009.htm
    郝建国, 1988. 近地表大气电场异常与地震[J]. 地震学报, 10(2): 206-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198802008.htm
    冷济高, 杨克明, 杨宇, 2011. 川西坳陷孝泉-丰谷构造带须家河组超压与天然气成藏关系研究[J]. 石油实验地质, 33(6): 574-579, 586. doi: 10.3969/j.issn.1001-6112.2011.06.004
    李铁, 蔡美峰, 张少泉, 等, 2005. 我国的采矿诱发地震[J]. 东北地震研究, 21(3): 1-26. doi: 10.3969/j.issn.1674-8565.2005.03.001
    李湘涛, 石文睿, 郭美瑜, 等, 2014. 涪陵页岩气田焦石坝区海相页岩气层特征研究[J]. 石油天然气学报, 36(11): 11-15. doi: 10.3969/j.issn.1000-9752.2014.11.004
    李一丁, 张亮, 张琨, 等, 2017. ""5.12""汶川地震前近地面大气电场异常研究[J]. 高原山地气象研究, 37(1): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201701008.htm
    梁光河, 2017. 从汶川地震探讨隐爆与成矿过程[J]. 岩石学报, 33(2): 326-338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702002.htm
    刘保金, 曲国胜, 孙铭心, 等, 2011. 唐山地震区地壳结构和构造: 深地震反射剖面结果[J]. 地震地质, 33(4): 902-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201104016.htm
    刘文平, 张成林, 高贵冬, 等, 2017. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J]. 石油学报, 38(2): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702005.htm
    刘武英, 李龙海, 吴建华, 等, 1996. 从地球化学角度讨论1976年唐山7.8级地震的成因[J]. 地质地球化学, (5): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199605020.htm
    王焕, 李海兵, 司家亮, 等, 2015. 汶川地震断裂作用研究新认识[J]. 地球学报, 36(3): 257-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201503001.htm
    王双绪, 蒋锋云, 郝明, 等, 2013. 青藏高原东缘现今三维地壳运动特征研究[J]. 地球物理学报, 56(10): 3334-3345. doi: 10.6038/cjg20131010
    武恒志, 叶泰然, 赵迪, 等, 2015. 川西坳陷陆相致密气藏河道砂岩储层精细刻画技术及其应用[J]. 石油与天然气地质, 36(2): 230-239. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502008.htm
    徐天吉, 程冰洁, 闫丽丽, 等. 2017. 龙门山金马-鸭子河推覆构造带雷四段储层脆性与裂缝预测[J]. 石油地球物理勘探, 52(3): 562-572. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201703020.htm
    叶建庆, 苏金蓉, 陈慧, 2008. 汶川8.0级地震动卓越周期分析[J]. 地震研究, 31(S1): 498-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ2008S1015.htm
    袁士义, 冉启全, 徐正顺, 等, 2007. 火山岩气藏高效开发策略研究[J]. 石油学报, 28(1): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200701013.htm
    岳中琦, 2013. 汶川地震与山崩地裂的极高压甲烷天然气成因和机理[J]. 地学前缘, 20(6): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306003.htm
    赵正望, 谢继容, 李楠, 等, 2013. 四川盆地须家河组一、三、五段天然气勘探潜力分析[J]. 天然气工业, 33(6): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201306005.htm
  • 加载中

Catalog

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (361) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return