Volume 27 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
WANG Dong, WANG Jianfeng, LI Tianbin, et al., 2021. Analysis of three-dimensional movement characteristics of rockfall: A case study at a railway tunnel entrance in the southwestern mountainous area, China. Journal of Geomechanics, 27 (1): 96-104. DOI: 10.12090/j.issn.1006-6616.2021.27.01.010
Citation: WANG Dong, WANG Jianfeng, LI Tianbin, et al., 2021. Analysis of three-dimensional movement characteristics of rockfall: A case study at a railway tunnel entrance in the southwestern mountainous area, China. Journal of Geomechanics, 27 (1): 96-104. DOI: 10.12090/j.issn.1006-6616.2021.27.01.010

Analysis of three-dimensional movement characteristics of rockfall: A case study at a railway tunnel entrance in the southwestern mountainous area, China

doi: 10.12090/j.issn.1006-6616.2021.27.01.010
More Information
  • Received: 2019-10-13
  • Revised: 2020-06-13
  • Published: 2021-02-28
  • High unstable rock masses are widely distributed in the upper part of a railway tunnel entrance in the southwestern mountainous area, which causes serious hazards to the construction of the lower tunnel. The Rockfall Analyst software was used to simulate the three-dimensional movement track of five kinds of high unstable rock masses in the upper part of the tunnel, and it shows that the rockfalls in the study area have the characteristics of high bounce height, fast speed and high impact energy. There is no relation between the bounce height, the movement speed and the mass of rockfall, while the impact energy is proportional to the mass of rockfall. The analysis shows that multiple and comprehensive protective measures should be recommended for the protection of unstable rock masses in this area instead of single protective measure.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • AGLIARDI F, CROSTA G B, 2003. High resolution three-dimensional numerical modelling of rockfalls[J]. International Journal of Rock Mechanics and Mining Sciences, 40(4): 455-471. doi: 10.1016/S1365-1609(03)00021-2
    CHEN Z X, YE X, ZHANG W B, et al, 2019. Formation mechanism analysis and stability evaluation of dangerous rock collapses based on the oblique photography by unmanned aerial vehicles[J]. China Earthquake Engineering Journal, 41(1): 257-267, 270. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZBDZ201901037.htm
    GU H T Z, WANG T W, 1992. Research on prediction method of rockfall trajectory[J]. Railway Engineering(8): 8-13. (in Chinese)
    GUZZETTI F, CROSTA G, DETTI R, et al, 2002. STONE: a computer program for the three-dimensional simulation of rock-falls[J]. Computers & Geosciences, 28(9): 1079-1093.
    HE S M, WU Y, LI X P, 2009. Research on restitution coefficient of rock fall[J]. Rock and Soil Mechanics, 30(3): 623-627. (in Chinese with English abstract) http://www.researchgate.net/publication/290228032_Research_on_restitution_coefficient_of_rock_fall
    HE S M, WANG D P, WU Y, et al, 2015. Formation and evolution mechanism of collapse and rockfall disaster and key technology of disaster reduction[M]. Beijing: Science Press: 6-19. (in Chinese)
    HU C, 2014. Instability mechanism of high steep dangerous rock body and law of motion of rolling stones[D]. Jinan: Shandong University. (in Chinese with English abstract)
    HU J, LI S C, SHI S S, et al, 2018. Model test study of rockfall impacts on tunnel heading slope and discussion of related mechanisms[J]. Rock and Soil Mechanics, 39(7): 2527-2536. (in Chinese with English abstract)
    HUANG R Q, LIU W H, 2009. In-situ test study of characteristics of rolling rock blocks based on orthogonal design[J]. Chinese Journal of Rock Mechanics and Engineering, 28(5): 882-891. (in Chinese with English abstract)
    JIA Y C, XIE M W, CHANG S X, et al, 2017. A model for evaluation of stability of sliding- and falling-type dangerous rock blocks based on natural vibration frequency[J]. Rock and Soil Mechanics, 38(7): 2149-2156. (in Chinese with English abstract) http://www.researchgate.net/publication/321106294_A_model_for_evaluation_of_stability_of_sliding-_and_falling-type_dangerous_rock_blocks_based_on_natural_vibration_frequency
    JIAO P F, 2017. Study on Rockfall hazard assessment of mountainous highway based on the digital image processing[D]. Xi'an: Chang'an University. (in Chinese with English abstract)
    LAN H X, MARTIN C D, LIM C H, 2007. Rockfall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling[J]. Computers & Geosciences, 33(2): 262-279.
    LIU H J, LAN H X, 2012. Rockfall disaster simulation and risk assessment on the Dujiangyan-Wenchuan highway after "5.12" earthquake[J]. Resources Science, 34(2): 345-352. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZY201202021.htm
    LIU H Y, WANG X L, LI L H, et al, 2017. Application of UAV aerial photogrammetry for Rockfall disaster survey[J]. Journal of Engineering Geology, 25(S1): 82-87. (in Chinese with English abstract)
    LIU W H, 2008. Study on stability, movement characteristics and countermeasures of potential unstable rock mass in high-steep slope[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    LV Q, SUN H Y, ZHAI S K, et al, 2003. Evaluation models of rockfall trajectory[J]. Journal of Natural Disasters, 12(2): 79-84. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH200302013.htm
    TANG H M, YI P Y, 2003. Research on dangerous rock movement route[J]. Journal of Chongqing Jianzhu University, 25(1): 17-23. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JIAN200301004.htm
    WANG J C, SUN J H, 2019. Characteristics and stability analysis of rock collapse of low-angled Red-bed slope in East Sichuan[J]. Journal of Geomechanics, 25(6): 1091-1098. (in Chinese with English abstract)
    WANG J, HUANG B L, ZHANG Q, et al, 2020. Study on generalized model of collapse-deposit characteristics of cataclastic and columnar dangerous rock mass[J]. Water Resources and Hydropower Engineering, 51(2): 136-143. (in Chinese with English abstract)
    WANG Y S, YANG G Z, 2010. Rockfall risk assessment for a tunnel portal section[J]. Modern Tunnelling Technology, 47(6): 33-39. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDSD201006007.htm
    WU M, HE W G, ZHANG B, et al, 2017. Investigation of late quaternary activity along Subei fault[J]. China Earthquake Engineering Journal, 39(2): 285-293. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZBDZ201702014.htm
    XIANG X, 2010. Research on motion characteristics and impact force of rockfall[D]. Wuhan: China University of Geosciences (Wuhan). (in Chinese with English abstract)
    XU T H, JIN W X, SUN S Q, et al, 2019. Study on feature of dangerous rock of Purple Mountain in Tibet and its stability and movement characteristics[J]. Water Resources and Hydropower Engineering, 50(1): 169-178. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SJWJ201901022.htm
    YANG H Q, ZHOU X P, 2009. A new approach to calculate trajectory of rockfall[J]. Rock and Soil Mechanics, 30(11): 3411-3416. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-YTLX200911041.htm
    YAO W L, YUE R, 2015. Advance in controversial restitution coefficient study for impact problems[J]. Journal of Vibration and Shock, 34(19): 43-48. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZDCJ201519008.htm
    YE S Q, 2008. Research and mitigation of rockfall hazards at tunnel entrance and exit[D]. Chengdu: Southwest Jiaotong University. (in Chinese with English abstract)
    YE S Q, CHEN H K, TANG H M, 2010. Rockfall mitigation techniques and its characteristics[J]. Highway(7): 80-85. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGL201007020.htm
    ZHANG G C, XIANG X, TANG H M, 2011. Field test and numerical calculation of restitution coefficient of rockfall collision[J]. Chinese Journal of Rock Mechanics and Engineering, 30(6): 1266-1273. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/yslxygcxb201106021
    ZHANG G C, TANG H M, XIANG X, 2012. Characteristic parameters theoretical analysis of rockfall impact on ground[J]. Chinese Journal of Rock Mechanics and Engineering, 31(S1): 2839-2846. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX2012S1030.htm
    ZHANG J J, CHEN L, WANG J C, et al, 2018. Study of disaster-inducing geological conditions of collapse and landslide along Lulang-Tongmai in Se Tibet[J]. Journal of Geomechanics, 24(4): 474-481. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201804012.htm
    陈宙翔, 叶咸, 张文波, 等, 2019. 基于无人机倾斜摄影的强震区公路高位危岩崩塌形成机制及稳定性评价[J]. 地震工程学报, 41(1): 257-267, 270. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201901037.htm
    古贺泰之, 王天威, 1992. 落石运动轨迹预测方法的研究[J]. 铁道建筑(8): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ199208004.htm
    何思明, 吴永, 李新坡, 2009. 滚石冲击碰撞恢复系数研究[J]. 岩土力学, 30(3): 623-627. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200903010.htm
    何思明, 王东坡, 吴永, 等, 2015. 崩塌滚石灾害形成演化机理与减灾关键技术[M]. 北京: 科学出版社: 6-19.
    胡聪, 2014. 高陡边坡危岩体失稳机理及其崩塌滚石运动规律[D]. 济南: 山东大学.
    胡杰, 李术才, 石少帅, 等, 2018. 隧道仰坡落石冲击模型试验研究与机制探讨[J]. 岩土力学, 39(7): 2527-2536. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807025.htm
    黄润秋, 刘卫华, 2009. 基于正交设计的滚石运动特征现场试验研究[J]. 岩石力学与工程学报, 28(5): 882-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905006.htm
    贾艳昌, 谢谟文, 昌圣翔, 等, 2017. 基于固有振动频率的滑移式和坠落式危岩块体稳定性评价模型研究[J]. 岩土力学, 38(7): 2149-2156. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707040.htm
    焦盼飞, 2017. 基于图像处理的边坡崩塌危险性评价研究[D]. 西安: 长安大学.
    刘海洋, 王学良, 李丽慧, 等, 2017. 无人机航空摄影测量技术在崩塌灾害调查中的应用[J]. 工程地质学报, 25(S1): 82-87. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201711001012.htm
    刘洪江, 兰恒星, 2012. "5.12"震后都江堰-汶川公路崩塌灾害模拟及危险性评价[J]. 资源科学, 34(2): 345-352. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201202021.htm
    刘卫华, 2008. 高陡边坡危岩体稳定性、运动特征及防治对策研究[D]. 成都: 成都理工大学.
    吕庆, 孙红月, 翟三扣, 等, 2003. 边坡滚石运动的计算模型[J]. 自然灾害学报, 12(2): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200302013.htm
    唐红梅, 易朋莹, 2003. 危岩落石运动路径研究[J]. 重庆建筑大学学报, 25(1): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200301004.htm
    王健, 黄波林, 张全, 等, 2020. 碎裂化柱状危岩体崩塌-堆积特征概化模型研究[J]. 水利水电技术, 51(2): 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202002016.htm
    王军朝, 孙金辉, 2019. 川东红层缓倾角岩质崩塌特征与稳定性分析[J]. 地质力学学报, 25(6): 1091-1098. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190610&journal_id=dzlxxb
    王玉锁, 杨国柱, 2010. 隧道洞口段危岩落石风险评估[J]. 现代隧道技术, 47(6): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201006007.htm
    吴明, 何文贵, 张波, 等, 2017. 野马河-大雪山断裂肃北段晚第四纪活动特征研究[J]. 地震工程学报, 39(2): 285-293. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201702014.htm
    向欣, 2010. 边坡落石运动特性及碰撞冲击作用研究[D]. 武汉: 中国地质大学(武汉).
    许腾晖, 金文祥, 孙书勤, 等, 2019. 西藏紫金山危岩特征及稳定性和运动特性研究[J]. 水利水电技术, 50(1): 169-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201901022.htm
    杨海清, 周小平, 2009. 边坡落石运动轨迹计算新方法[J]. 岩土力学, 30(11): 3411-3416. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200911041.htm
    姚文莉, 岳嵘, 2015. 有争议的碰撞恢复系数研究进展[J]. 振动与冲击, 34(19): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201519008.htm
    叶四桥, 2008. 隧道洞口段落石灾害研究与防治[D]. 成都: 西南交通大学.
    叶四桥, 陈洪凯, 唐红梅, 2010. 危岩落石防治技术体系及其特点[J]. 公路(7): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201007020.htm
    章广成, 向欣, 唐辉明, 2011. 落石碰撞恢复系数的现场试验与数值计算[J]. 岩石力学与工程学报, 30(6): 1266-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106026.htm
    章广成, 唐辉明, 向欣, 2012. 冲击地面过程中落石特征参量的理论分析[J]. 岩石力学与工程学报, 31(S1): 2839-2846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1030.htm
    张佳佳, 陈龙, 王军朝, 等, 2018. 藏东南鲁朗-通麦崩塌滑坡孕灾地质背景特征研究[J]. 地质力学学报, 24(4): 474-481. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180404&journal_id=dzlxxb
  • 加载中

Catalog

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (510) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return