Volume 26 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
ZHAO Maochun, WU Baoqian, YU Haijun, et al., 2020. Ore-forming fluid fracturing treatment of ore-bearing fractures and the characteristics of the related veins in porphyry deposits. Journal of Geomechanics, 26 (3): 299-315. DOI: 10.12090/j.issn.1006-6616.2020.26.03.028
Citation: ZHAO Maochun, WU Baoqian, YU Haijun, et al., 2020. Ore-forming fluid fracturing treatment of ore-bearing fractures and the characteristics of the related veins in porphyry deposits. Journal of Geomechanics, 26 (3): 299-315. DOI: 10.12090/j.issn.1006-6616.2020.26.03.028

Ore-forming fluid fracturing treatment of ore-bearing fractures and the characteristics of the related veins in porphyry deposits

doi: 10.12090/j.issn.1006-6616.2020.26.03.028
More Information
  • Received: 2020-04-10
  • Revised: 2020-05-10
  • Published: 2020-06-30
  • Veins in porphyry deposits are well developed and their crosscutting relationship is complex. The initial fractures,where the veins fill in,are connected in varying degrees. Mineralization is a process of migration,filling and precipitation of ore-bearing fluid in the existing fractures. During the multi-stage mineralization,if there is no structural stress transformation,it seems that there should not be a large number of multi-stage cutting of veins. However,a large number of veins,which intersect each other,are widely found in porphyry deposits and other hydrothermal deposits. Based on the mechanism of hydraulic fracturing,this paper discusses the fracturing effect of ore-forming fluid on fracture forming. The multi-stage fluid activities result in the well-developed fractures by ore-forming fluid fracturing,which greatly expand the scale and scope of the ore-bearing space. This kind of fractures is an important genetic type of ore-bearing fractures in porphyry deposits. Due to the multistage fluid activities and the rapidity of fracture growth,the cross-cutting between the veins and fractures caused by the fluid fracturing is more common than that caused by the transformation of structural activities on veins. These viewpoints can well explain the frequent and complex cutting and faulting of veins in porphyry deposits.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • BURNHAM C W, 1979. Magmas and hydrothermal fluids[M]//BARNES H L. Geochemistry of hydrothermal Ore deposits. 2nd ed. New York: John Wiley and Sons: 71-136.
    CANNELL J, COOKE D R, WALSHE J L, et al., 2005. Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit[J]. Economic Geology, 100(5):979-1003.
    CANNELL J, COOKE D R, WALSHE J L, et al., 2007. Geology, mineralization, alteration and structural evolution of El Teniente porphyry Cu-Mo deposit-A reply[J]. Economic Geology, 102(6):1171-1180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=792ce0a51a5709cbabe42a17996c5a5e
    CHEN B L, 2001. Calculation of metallogenic depth of lode gold deposits from mineralization structure-dynamics[J]. Chinese Journal of Geology, 36(3):380-384. (in Chinese with English abstract)
    CHEN X H, YANG N, CHEN Z L, et al., 2010. Geological characteristics and metallogenic model of super-large porphyry copper deposit in Aktogai ore field, Kazakhstan[J]. Journal of Geomechanics, 16(4):325-339. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201004001
    GAO H M, YU C W, BAO Z Y, 1994. Dynamics of vein formation in porphyry copper deposits[J]. Geological Review, 40(6):508-512. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/OA000003096
    GAO T Z, YANG M Z, JIN C Z, et al., 1999. Study on fluid and tectonodynamics of quartz vein-type gold deposits in the Mouping-Rushan gold belt, Shandong province, China[J]. Geotectonica et Metallogenia, 23(2):130-136. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx199902005
    GAO Y T, 1989. Production engineering[M]. Beijing:Petroleum Industry Press:1-277. (in Chinese)
    GUSTAFSON L B, HUNT J P, 1975. The porphyry copper deposit at El Salvador, Chile[J]. Economic Geology, 70(5):857-912. doi: 10.2113-gsecongeo.70.5.857/
    HAN S Q, CHEN X H, YANG N, et al., 2010. Geological characteristics and metallogenic model of super-large Kounrad porphyry copper deposit, Kazakhstan[J]. Journal of Geomechanics, 16(2):203-212. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201002009
    HE Z H, GUAN D R, HE W Y, et al., 2016. Exploration model of Beiya superlarge gold-polymetallic deposit, northwestern Yunnan[J]. Mineral Deposits, 35(2):261-282. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201602004
    HOU Z Q, 2004. Porphyry Cu-Mo-Au deposits:some new insights and advances[J]. Earth Science Frontiers, 11(1):131-144. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy200401010
    HOU Z Q, YANG Z M, 2009. Porphyry deposits in continental settings of China:geological characteristics, magmatic-hydrothermal system, and metallogenic model[J]. Acta Geological Sinica, 83(12):1779-1817. (in Chinese with English abstract)
    HU W, HUANG R Q, MCSAVENEY M, et al., 2019. Superheated steam, hot CO2 and dynamic recrystallization from frictional heat jointly lubricated a giant landslide:field and experimental evidence[J]. Earth and Planetary Science Letters, 510:85-93.
    HUANG R S, 2008. Igneous series and epithermal porphyry Cu-Au-Ag mineralization system in the Zijinshan ore field, Fujian Province[J]. Journal of Geomechanics, 14(1):74-86. (in Chinese with English abstract)
    KERRICH R, GOLDFARB R, GROVES D, et al., 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China Series D:Earth Sciences, 43(S1):1-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd8a15e8962d8adb5a9794bdaac3c79b
    KNAPP R B, NORTON D, 1981. Preliminary numerical analysis of processes related to magma crystallization and stress evolution in cooling pluton environments[J]. American Journal of Science, 281(1):35-68. doi: 10.2475-ajs.281.1.35/
    LI W C, XUE Y X, LU Y X, et al., 2014. Metallogenic regularity and porphyry copper deposit in China[M]. Beijing: Geological Publishing House: 1-411. (in Chinese)
    LIU J Z, WANG X J, SUN Y L, et al., 2002. Possibility study on multi-fracture creation during artificial hydraulic fracturing[J]. Petroleum Exploration and Development, 29(3):103-106. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200203033
    MAO J W, ZHANG Z H, WANG Y T, et al., 2012a. Mineral deposits:types, characteristics and explorations[M]. Beijing:Geological Publishing House:1-480. (in Chinese)
    MAO J W, ZHANG Z H, PEI R F, 2012b. Mineral deposit model in China[M]. Beijing:Geological Publishing House:1-560. (in Chinese)
    Mao J W, Luo M C, Xie G Q, et al., 2014. Basic characteristics and new advances in research and exploration on porphyry copper deposits[J]. Acta Geological Sinica, 88(12):2153-2175 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201412002
    NIU C Y, WANG F, QIU J S, et al., 1996. The quantitative model of ore-bearing fissure distribution of the Shaxi porphyry copper-gold deposit, Anhui[J]. Geological Ore-Finding Cluster, 11(2):1-9. (in Chinese with English abstract)
    QU Z Q, WANG W Y, 2009. Oil production engineering[M]. Dongying:China University of Petroleum Press:1-290. (in Chinese)
    REHRIG W A, HEIDRICK T L, 1972. Regional fracturing in Laramide stocks of Arizona and its relationship to porphyry copper mineralization[J]. Economic Geology, 67(2):198-213.
    REN Q J, WU Y B, WU Y C, et al., 1987. Distribution pattern and origin of ore-bearing fissures in the Jinduicheng porphyry molybdenum deposit, Shaanxi Province[J]. Mineral Deposits, 6(3):35-48. (in Chinese with English abstract)
    ROBB L J, 2005. Introduction to ore-forming processes[M]. Malden, MA: Blackwell Publishing: 1-373.
    RUI Z Y, HUANG C K, QI G M, et al., 1984. Porphyry copper (Molybdenum) deposit of China[M]. Beijing:Geological Publishing House:1-350. (in Chinese)
    SUN D S, WANG H C, HOU M, et al., 2006. Factors influencing the effects of hydrofracturing in a low-permeability oilfield and potential evaluation using artificial neural network[J]. Journal of Geomechanics, 12(4):485-491. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200604012
    SUN W D, HUANG R F, LI H, et al., 2015. Porphyry deposits and oxidized magmas[J]. Ore Geology Reviews, 65:97-131. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232405025/
    TANG Y, TANG X, WANG G Y, et al., 2011. Summary of hydraulic fracturing technology in shale gas development[J]. Geological Bulletin of China, 30(2-3):393-399. (in Chinese with English abstract)
    TITLEY S R, HEIDRICK T L, 1978. Intrusion and fracture styles of some mineralized porphyry systems of the Southwestern Pacific and their relationship to plate interaction[J]. Economic Geology, 73(5):891-903.
    TITLEY S R, 1982. Advances in geology of the porphyry copper deposits[M]. Tucson:The University of Arizona Press:560.
    TITLEY S R, THOMPSON R C, HAYNES F M, et al., 1986. Evolution of fractures and alteration in the Sierrita-Esperanza hydrothermal system, Pima County, Arizona[J]. Economic Geology, 81(2):343-370.
    WANG C Y, LI X F, XIAO R, et al., 2012. Types and distribution of veins in Tongchang porphyry copper deposit, Dexing, Jiangxi Province[J]. Mineral Deposits, 31(1):94-100. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201201008
    WANG J X, NIE F J, ZHANG X N, et al., 2015. The El Teniente porphyry Cu-Mo deposit, Chile[J]. Mineral Deposits, 34(1):200-203. (in Chinese) doi: 10.2113-gsecongeo.102.6.1021/
    WANG K, YANG F, LI F, et al., 2016. Study on the hydrothermal alteration and vein systems of the Pulang porphyry copper deposit in Yunnan Province[J]. Geology and Exploration, 52(3):417-428. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201603003
    WANG R, DING Z Y, YIN Y Q, 1979. Fundamental of solid mechanics[M]. Beijing:Geological Publishing House:1-370. (in Chinese)
    WANG Z L, MAO J W, ZHANG Z H, et al., 2006. Geology, time-space Distribution and metallogenic geodynamic evolution of porphyry copper (Molybdenum) deposits in the Tianshan mountains[J]. Acta Geologica Sinica, 80(7):943-955. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200607002
    WANG Z T, 1994. Geology and exploration of large copper deposits[M]. Beijing:Metallurgical Industry Press:1-162. (in Chinese)
    XU X W, NIU L, HONG T, et al., 2019. Tectonic dynamics of fluids and metallogenesis[J]. Journal of Geomechanics, 25(1):1-8. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201901002
    YANG L, LI M H, WU W D, et al., 2013. Analysis of fracture elongation characteristics in fractured oil reservoirs-a case study of limestone reservoirs in block 9 of Karamay oil field[J]. Geological Review, 59(S1):707-708. (in Chinese)
    YANG M G, ZHOU Z Y, HUANG Y Q, 1993. Structural control of porphyry-related copper deposits in Jiangxi province[J]. Journal of Geomechanics, 1993(5):1-23. (in Chinese)
    YANG Y, ZHANG Z, TANG J X, et al., 2015. Mineralization, alteration and vein systems of the Bolong porphyry copper deposit in the Duolong ore concentration area, Tibet[J]. Geology in China, 42(3):759-776. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201503026
    YANG Z M, HOU Z Q, SONG Y C, et al., 2008. Qulong superlarge porphyry Cu deposit in Tibet:geology, alteration and mineralization[J]. Mineral Deposits, 27(3):279-318. (in Chinese with English abstract)
    YAO C L, LU J J, GUO W M, et al., 2007. The latest advances in researches on porphyry copper deposits[J]. Mineral Deposits, 26 (2):221-229. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200702009
    YAO F L, SUN F Y, 2006. Mineral deposits course[M]. Beijing:Geological Publishing House:1-214. (in Chinese)
    YE T Z, LV Z C, PANG Z S, et al., 2014. Metallogenic prognosis theories and methods in explorations areas[M]. Beijing:Geological Publishing House:1-703. (in Chinese)
    YE T Z, WEI C S, WANG Y W, et al., 2017. Metallogenic prognosis theories and methods in exploration areas[M]. Beijing:Geological Publishing House:1-594. (in Chinese)
    ZENG Z P, LIU Z, MA J, et al., 2019. A new method for fracrability evaluation in deep and tight sandstone reservoirs[J]. Journal of Geomechanics, 25(2):223-232. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201902009
    ZHAI Y S, LIN X D, 1993. Study of ore field structure[M]. Beijing:Geological Publishing House:1-214. (in Chinese)
    ZHANG H T, RUI Z Y, 1991. On the genetic classification of mineralized breccias related to porphyry deposits and its geological significance[J]. Mineral Deposits, 10(3):265-271. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ199103008.htm
    ZHANG L, ZHAO X M, LIU C Y, et al., 2008. Deposition confines hydraulic fracture length[J]. Petroleum Exploration and Development, 35(2):201-204. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/syktykf200802011
    ZHANG M L, DONG C L, LIN J H, 2017. The application of geostress layering technology in fracture design optimization[J]. Journal of Geomechanics, 23(3):467-474. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201703014
    ZHANG Y, LIANG G L, WU Q Y, et al., 2010. Characteristics and formation mechanism of the veins in Mengxi porphyry Cu-Mo deposit, eastern Junggar, Xinjiang, China[J]. Acta Petrologica Sinica, 26(10):2997-3006. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201010011
    ZHANG Z, CHEN Y C, TANG J X, et al., 2014. Alteration and vein systems of Duobuza gold-rich porphyry copper deposit, Tibet[J]. Mineral Deposits, 33(6):1268-1286. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201406008
    ZHAO M C, YU X C, WANG Z C, et al., 2017. Structural analysis method of geological body combination and mineral prospecting[J]. Geological Review, 63(6):1535-1548. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201706010
    ZHAO M C, YU X C, WANG Y W, et al., 2019. Genetic mechanism, types and metallogenisis of cooling fissures in magmatic rocks[J]. Journal of Geology, 43(2):175-183. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/jsdz201902001
    ZHAO M C, YU X C, ZHANG Y F, et al., 2020. Conceptual model for genesis of mineralized fissures in porphyry deposits and its geological significance[J]. Mineral Deposits, 39(1):19-41. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/kcdz202001002
    ZHAO X D, ZHAO Y H, ZHU Y P, et al., 2017. Geology, metallogenic features and genesis of the El Teniente porphyry copper-Molybdnum deposit in Central Chile[J]. Geological Bulletin of China, 36(12):2287-2295. (in Chinese with English abstract)
    ZHOU D Q, YANG Q J, 2003. Cognition of hydraulic fracture extension direction which runs parallel to fault[J]. Drilling & Production Technology, 25(6):39-41. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zcgy200306014
    ZHOU Y J, 1985. Alteration and Mineralization zoning of ore deposits in the Yulong porphyry Copper Belt[J]. Mineral Deposits, 4(2):23-30. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ198502002.htm
    ZHU Z C, 1999. Structural geology[M]. 2nd ed. Beijing:China University of China Press:1-261. (in Chinese)
    陈柏林, 2001.从成矿构造动力学探讨脉状金矿床成矿深度[J].地质科学, 36(3):380-384. http://d.old.wanfangdata.com.cn/Periodical/dzkx200103014
    陈宣华, 杨农, 陈正乐, 等, 2010.哈萨克斯坦阿克斗卡超大型斑岩型铜矿田地质特征与成矿模式[J].地质力学学报, 16(4):325-339. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100401&journal_id=dzlxxb
    高合明, 於崇文, 鲍征宇, 1994.斑岩铜矿床中脉体形成的动力学[J].地质论评, 40(6):508-512. http://d.old.wanfangdata.com.cn/Periodical/OA000003096
    高太忠, 杨敏之, 金成洙, 等, 1999.山东牟乳石英脉型金矿流体成矿构造动力学研究[J].大地构造与成矿学, 23(2):130-136. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx199902005
    高荫桐, 1989.采油工程[M].北京:石油工业出版社:1-277.
    韩淑琴, 陈宣华, 杨农, 等, 2010.哈萨克斯坦科翁腊德斑岩型铜矿地质特征与成矿模式[J].地质力学学报, 16(2):203-212. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100208&journal_id=dzlxxb
    和中华, 官德任, 和文言, 等, 2016.滇西北衙超大型金多金属矿床勘查模型[J].矿床地质, 35(2):261-282. http://d.old.wanfangdata.com.cn/Periodical/kcdz201602004
    侯增谦, 2004.斑岩Cu-Mo-Au矿床:新认识与新进展[J].地学前缘, 11(1):131-144. http://d.old.wanfangdata.com.cn/Periodical/dxqy200401010
    侯增谦, 杨志明, 2009.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地质学报, 83(12):1779-1817. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200912002
    黄仁生, 2008.福建紫金山矿田火成岩系列与浅成低温热液:斑岩铜金银成矿系统[J].地质力学学报, 14(1):74-86. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20080107&journal_id=dzlxxb
    李文昌, 薛迎喜, 卢映祥, 等, 2014.中国斑岩铜矿成矿规律及找矿方向[M].北京:地质出版社:1-411.
    刘建中, 王秀娟, 孙玉玲, 等, 2002.人工压裂形成多裂缝的可能性研究[J].石油勘探与开发, 29(3):103-106. http://d.old.wanfangdata.com.cn/Periodical/syktykf200203033
    毛景文, 张作衡, 王义天, 等, 2012a.国外主要矿床类型、特点及找矿勘查[M].北京:地质出版社:1-480.
    毛景文, 张作衡, 裴荣富, 2012b.中国矿床模型概论[M].北京:地质出版社:1-560.
    毛景文, 罗茂澄, 谢桂青, 等.2014.斑岩铜矿床的基本特征和研究勘查新进展[J].地质学报, 88(12):2153-2175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201412002
    牛翠祎, 王峰, 邱检生, 等, 1996.安徽沙溪斑岩型铜金矿床含矿裂隙分布的定量模型[J].地质找矿论丛, 11(2):1-9.
    曲占庆, 王卫阳, 2009.采油工程[M].东营:中国石油大学出版社:1-290.
    任启江, 吴俞斌, 武耀城, 等, 1987.陕西金堆城斑岩钼矿含矿裂隙分布规律与成因[J].矿床地质, 6(3):35-48.
    芮宗瑶, 黄崇轲, 齐国明, 等, 1984.中国斑岩铜(钼)矿床[M].北京:地质出版社:1-350.
    孙东生, 王红才, 侯默, 等, 2006.影响水力压裂效果的因素及人工神经网络评价[J].地质力学学报, 12(4):485-491. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20060412&journal_id=dzlxxb
    唐颖, 唐玄, 王广源, 等, 2011.页岩气开发水力压裂技术综述[J].地质通报, 30(2-3):393-399. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201102026
    王翠云, 李晓峰, 肖荣, 等, 2012.德兴铜厂斑岩铜矿脉体类型、分布规律及其对成矿的指示意义[J].矿床地质, 31(1):94-100. http://d.old.wanfangdata.com.cn/Periodical/kcdz201201008
    王佳新, 聂凤军, 张雪旎, 等, 2015.智利埃尔特尼恩特斑岩型铜-钼矿床[J].矿床地质, 34(1):200-203. http://d.old.wanfangdata.com.cn/Periodical/kcdz201501013
    王仁, 丁中一, 殷有泉, 1979.固体力学基础[M].北京:地质出版社:1-370.
    王志良, 毛景文, 张作衡, 等, 2006.新疆天山斑岩铜钼矿地质特征、时空分布及其成矿地球动力学演化[J].地质学报, 80(7):943-955. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200607002
    王之田, 1994.大型铜矿地质与找矿[M].北京:冶金工业出版社:1-162.
    徐兴旺, 牛磊, 洪涛, 等, 2019.流体构造动力学与成矿作用[J].地质力学学报, 25(1):1-8. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190101&journal_id=dzlxxb
    杨龙, 李民河, 武卫东, 等, 2013.裂缝性油藏压裂裂缝延伸特征分析:以克拉玛依油田九区石炭系油藏为例[J].地质论评, 59(S1):707-708.
    杨明桂, 周子英, 黄永泉, 1993.江西与斑岩有关铜矿床的构造控制作用[J].地质力学学报, 1993(5):1-23. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19930501&journal_id=dzlxxb
    杨毅, 张志, 唐菊兴, 等, 2015.西藏多龙矿集区波龙斑岩铜矿床蚀变与脉体系统[J].中国地质, 42(3):759-776. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201503026
    杨志明, 侯增谦, 宋玉财, 等, 2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿[J].矿床地质, 27(3):279-318. http://d.old.wanfangdata.com.cn/Periodical/kcdz200803002
    姚春亮, 陆建军, 郭维民, 等, 2007.斑岩铜矿若干问题的最新研究进展[J].矿床地质, 26(2):221-229. http://d.old.wanfangdata.com.cn/Periodical/kcdz200702009
    姚凤良, 孙丰月, 2006.矿床学教程[M].北京:地质出版社:1-214.
    叶天竺, 吕志成, 庞振山, 等, 2014.勘查区找矿预测理论与方法[M].北京:地质出版社:1-703.
    叶天竺, 韦昌山, 王玉往, 等, 2017.勘查区找矿预测理论与方法[M].北京:地质出版社:1-594.
    曾治平, 刘震, 马骥, 等, 2019.深层致密砂岩储层可压裂性评价新方法[J].地质力学学报, 25(2):223-232. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190208&journal_id=dzlxxb
    翟裕生, 林新多, 1993.矿田构造学[M].北京:地质出版社:1-214.
    张洪涛, 芮宗瑶, 1991.论与斑岩矿床有关的矿化角砾岩成因类型及其地质意义[J].矿床地质, 10(3):265-271.
    张林, 赵喜民, 刘池洋, 等, 2008.沉积作用对水力压裂裂缝缝长的限制作用[J].石油勘探与开发, 35(2):201-204. http://d.old.wanfangdata.com.cn/Periodical/syktykf200802011
    张美玲, 董传雷, 蔺建华, 2017.地应力分层技术在压裂设计优化中的应用[J].地质力学学报, 23(3):467-474. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170314&journal_id=dzlxxb
    张永, 梁广林, 吴倩怡, 等, 2010.东准噶尔蒙西斑岩铜钼矿床脉体特征及其形成机制[J].岩石学报, 26(10):2997-3006. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010011
    张志, 陈毓川, 唐菊新, 等, 2014.西藏多不杂富金斑岩铜矿床蚀变与脉体系统[J].矿床地质, 33(6):1268-1286. http://d.old.wanfangdata.com.cn/Periodical/kcdz201406008
    赵茂春, 余先川, 王泽传, 等, 2017.地质体组合构造分析方法与找矿[J].地质论评, 63(6):1535-1548. http://d.old.wanfangdata.com.cn/Periodical/dzlp201706010
    赵茂春, 余先川, 王亚伟, 等, 2019.岩浆岩冷缩裂隙形成机制、类型及成矿作用[J].地质学刊, 43(2):175-183. http://d.old.wanfangdata.com.cn/Periodical/jsdz201902001
    赵茂春, 余先川, 张翼飞, 等, 2020.斑岩型矿床容矿裂隙成因的几种概念模型及其意义[J].矿床地质, 39(1):19-41. http://d.old.wanfangdata.com.cn/Periodical/kcdz202001002
    赵晓丹, 赵宇浩, 朱意萍, 等, 2017.智利中部埃尔特尼恩特斑岩型铜钼矿床地质、成矿特征及成因[J].地质通报, 36(12):2287-2295. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201712020
    周道全, 杨全疆, 2003.对水力压裂裂缝延伸方向平行于断层的认识[J].钻采工艺, 25(6):39-41. http://d.old.wanfangdata.com.cn/Periodical/nmgsyhg200301075
    周宜吉, 1985.试论玉龙斑岩铜矿带内矿床的蚀变和矿化分带[J].矿床地质, 4(2):23-30.
    朱志澄, 1999.构造地质学[M].2版.北京:中国地质大学出版社:1-261.
  • 加载中

Catalog

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (508) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return