Volume 26 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
WANG Chenghu, GAO Guiyun, WANG Hong, et al., 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests. Journal of Geomechanics, 26 (2): 167-174. DOI: 10.12090/j.issn.1006-6616.2020.26.02.016
Citation: WANG Chenghu, GAO Guiyun, WANG Hong, et al., 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests. Journal of Geomechanics, 26 (2): 167-174. DOI: 10.12090/j.issn.1006-6616.2020.26.02.016

Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests

doi: 10.12090/j.issn.1006-6616.2020.26.02.016
More Information
  • Received: 2019-11-16
  • Revised: 2019-12-27
  • Published: 2020-04-30
  • The compliance of the drilling-rod hydraulic fracturing in-situ stress measurement can affect the determination accuracy of the maximum horizontal principal stress. Utilizing tensile strengths based on the hollow cylinder hydraulic fracturing test to replace reopening pressures to calculate maximum horizontal principal stresses is a very promising option to cut down the negative effects from the drilling-rod test system. Eight hydraulic fracturing in-situ stress measurement tests were conducted in a 65 m-deep borehole in an under-construction railway tunnel in Fujian Province. Seventeen hollow cylinders made from the cores recovered from the same borehole were fractured hydraulically in laboratory. The average tensile strength based on the hollow cylinder hydraulic fracturing test is 8.40 MPa, which is close to 8.22 MPa, that determined by the classic hydraulic fracturing in-situ stress measurement. For the 8 in-situ stress measurements within a very narrow depth range of 20 m, the average value of the minimum horizontal principal stress is 8.41 MPa, and the average value of the maximum horizontal principal stress based on the hollow-cylinder tensile strength is 16.88 MPa, which is close to 16.70 MPa, the average value that calculated by the reopening pressure. The relationship between the three major principal stresses is σH > σV > σh, which is favorable for the strike-slip faulting. Based on the comparative analysis, for the drilling-rod hydraulic fracturing test system, when the test depth is shallow and the system compliance is minor, there are no marked differences in the calculated maximum principal stresses between based on the reopening pressures and the hollow-cylinder-test tensile strengths, which proves that the tensile strengths based on the hollow-cylinder test can be utilized to calculate the maximum horizontal principal stress during the hydraulic fracturing in-situ stress measurement; at the same time, the tensile strength of rock mass in the test interval, determined by the field hydraulic fracturing test with minor test system compliance, is definitely reliable for use.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • AMADEI B, STEPHANSSON O, 1997. Rock stress and its measurement[M]. Dordrecht: Springer.
    CHANG C D, JO Y, OH Y, et al., 2014. Hydraulic fracturing in situ stress estimations in a potential geothermal site, Seokmo Island, South Korea[J]. Rock Mechanics and Rock Engineering, 47(5): 1793-1808. doi: 10.1007/s00603-013-0491-7
    CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865, doi: 10.12090/j.issn.1006-6616.2019.25.05.070. (in Chinese with English abstract)
    COVIELLO A, LAGIOIA R, NOVA R, 2005. On the measurement of the tensile strength of soft rocks[J]. Rock Mechanics and Rock Engineering, 38(4): 251-273. doi: 10.1007/s00603-005-0054-7
    CUISIAT F D, HAIMSON B C, 1992. Scale effects in rock mass stress measurements[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(2): 99-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=40cfdc0171e6a052312aa03354fab8df
    DANESHY A A, 1973. A study of inclined hydraulic fractures[J]. Society of Petroleum Engineers Journal, 13(2): 61-68. http://www.researchgate.net/publication/220010473_a_study_of_inclined_hydraulic_fractures
    HAIMSON B C, CORNET F H, 2003. ISRM suggested methods for rock stress estimation-part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002
    HAIMSON B C, ZHAO Z L, 1991. Effect of borehole size and pressurization rate on hydraulic fracturing breakdown pressure[C]//Proceedings of the the 32nd U.S. symposium on rock mechanics. Norman: American Rock Mechanics Association.
    HUDSON J A, 1970. A critical examination of indirect tensile strength tests for brittle rocks[D]. Minneapolis: University of Minnesota.
    HUDSON J A, HARDY M P, FAIRHURST C, 1973. The failure of rock beams: Part Ⅱ-Experimental studies[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 10(1): 69-82. http://d.old.wanfangdata.com.cn/Conference/WFHYXW629059
    Institute of China Seismological Bureau Crustal Stress, CRIEPI, 1999. Study on the formation and propagation of hydrostatic cracking[M]. Beijing: Earthquake Press. (in Chinese)
    Institute of Crustal Dynamics, China Earthquake Administration, 2013. "Data acquisition and processing code for hydraulic fracturing in-situ stress measurement system." Abbreviated as DADPC for HF: No. 2013SR122558[CP]. 2013-08-30[2013-11-09].
    ITO T, EVANS K, KAWAI K, et al., 1999. Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 36(6): 811-826. doi: 10.1016/S0148-9062(99)00053-4
    ITO T, IGARASHI A, KATO H, et al., 2006. Crucial effect of system compliance on the maximum stress estimation in the hydrofracturing method: Theoretical considerations and field-test verification[J]. Earth, Planets And Space, 58(8): 963-971. doi: 10.1186/BF03352601
    ITO T, SATOH T, KATO H, 2010. Deep rock stress measurement by hydraulic fracturing method taking account of system compliance effect[C]//Proceedings of ISRM international symposium on in-situ rock stress. Beijing: International Society for Rock Mechanics and Rock Engineering.
    JAEGER J C, COOK N G, ZIMMERMAN R W, 2007. Fundamentals of rock mechanics[M]. 4th ed. London: Wiley-Blackwell.
    PERRAS M A, DIEDERICHS M S, 2014. A review of the tensile strength of rock: concepts and testing[J]. Geotechnical and Geological Engineering, 32(2): 525-546. doi: 10.1007/s10706-014-9732-0
    TAN C X, ZHANG P, LU S L, et al., 2019. Significance and role of in-situ crustal stress measuring and real-time monitoring in earthquake prediction research[J]. Journal of Geomechanics, 25(5): 866-876, doi: 10.12090/j.issn.1006-6616.2019.25.05.071. (in Chinese with English abstract)
    WANG C H, 2014. Brief review and outlook of main estimate and measurement methods for in-situ stresses in rock mass[J]. Geological Review, 60(5): 971-996. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201405003
    WANG C H, SONG C K, XING B R, 2012. Compliance of drilling-rod system for hydro-fracturing in situ stress measurement and its effect on measurements at great depth[J]. Geoscience, 26(4): 808-816. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201204024
    WANG C H, WANG R T, WANG C Q, 2017. Development of multiple-diameter core hydraulic fracturing machine to test tensile strength of rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 36(S1): 3321-3331. (in Chinese with English abstract) http://www.researchgate.net/publication/320537052_Development_of_multiple-diameter_core_hydraulic_fracturing_machine_to_test_tensile_strength_of_rocks
    WANG C H, WANG X J, HOU Y H, et al., 2014-04-09. High-pressure fluid control panel for hydraulic fracturing in-situ stress measurement system: CN201320624928.8[P].
    WANG C H, WANG X J, MAO J Z, et al., 2016-01-22. Data acquisition instrument for hydraulic fracturing in-situ stress measurement system: CN201310471715.0[P].
    YAMASHITA F, MIZOGUCHI K, FUKUYAMA E, et al., 2010. Reexamination of the present stress state of the Atera fault system, central Japan, based on the calibrated crustal stress data of hydraulic fracturing tests obtained by measuring the tensile strength of rocks[J]. Journal of Geophysical Research, 115(B4): B04409.
    ZOBACK M D, POLLARD D D, 1978. Hydraulic fracture propagation and the interpretation of pressure-time records for in-situ stress determinations[C]//Proceedings of the 19th U.S. symposium on rock mechanics. Stateline, Reno: American Rock Mechanics Association: 14-22.
    陈群策, 孙东生, 崔建军, 等, 2019.雪峰山深孔水压致裂地应力测量及其意义[J].地质力学学报, 25(5): 853-865, doi: 10.12090/j.issn.1006-6616.2019.25.05.070.
    谭成轩, 张鹏, 路士龙, 等, 2019.原位地应力测量与实时监测在地震预报研究中的作用和意义[J].地质力学学报, 25(5): 866-876, doi: 10.12090/j.issn.1006-6616.2019.25.05.071.
    王成虎, 宋成科, 邢博瑞, 2012.水压致裂应力测量系统柔性分析及其对深孔测量的影响[J].现代地质, 26(4): 808-816. doi: 10.3969/j.issn.1000-8527.2012.04.024
    王成虎, 2014.地应力主要测试和估算方法回顾与展望[J].地质论评, 60(5): 971-996. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201405003
    王成虎, 王显军, 侯砚和, 等, 2014-04-09.水压致裂原地应力测量高压流体控制系统: CN201320624928.8[P].
    王成虎, 王显军, 包林海, 等, 2016-01-22.水压致裂法原地应力测量数据采集系统: CN201310471715.0[P].
    王成虎, 王仁涛, 王春权, 2017.多直径岩芯液压致裂岩石抗拉强度快速试验机研发[J].岩石力学与工程学报, 36(S1): 3321-3331. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2017S1023.htm
    中国地震局地壳应力研究所, 日本电力中央研究所, 1999.水压致裂裂缝的形成和扩展研究[M].北京:地震出版社.
    中国地震局地壳应力研究所, 2013.水压致裂原地应力测量数据采集与分析系统[简称: 水压致裂测试数采分析系统, V1.0]: 2013SR122558 [CP]. 2013-08-30[2013-11-09].
  • 加载中

Catalog

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (300) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return