Volume 24 Issue 6
Dec.  2018
Turn off MathJax
Article Contents
LUO Fei, HE Junlin, ZHU Zhanyuan, et al., 2018. A STUDY ON NONLINEAR CONSTITUTIVE MODEL OF FROZEN SAND CONSIDERING PARTICLE BREAKAGE. Journal of Geomechanics, 24 (6): 871-878. DOI: 10.12090/j.issn.1006-6616.2018.24.06.091
Citation: LUO Fei, HE Junlin, ZHU Zhanyuan, et al., 2018. A STUDY ON NONLINEAR CONSTITUTIVE MODEL OF FROZEN SAND CONSIDERING PARTICLE BREAKAGE. Journal of Geomechanics, 24 (6): 871-878. DOI: 10.12090/j.issn.1006-6616.2018.24.06.091

A STUDY ON NONLINEAR CONSTITUTIVE MODEL OF FROZEN SAND CONSIDERING PARTICLE BREAKAGE

doi: 10.12090/j.issn.1006-6616.2018.24.06.091
More Information
  • Received: 2018-07-08
  • Revised: 2018-10-10
  • Published: 2018-12-01
  • Particle breakage is a basic phenomenon of granular materials under high stress. In order to study the effect of particle breakage on the stress-strain relationship of frozen sand, the frozen sand is regarded as composite particle material, ignoring the melting of ice, considering the change of internal friction angle with stress state, a nonlinear constitutive model considering particle breakage for frozen sand is proposed. Firstly, based on particle analysis before and after the triaxial shearing, the fracture mode and mechanism of frozen sand particles were discussed. Secondly, based on the energy balance equation considering particle breakage, the energy consumption of particle breakage during the triaxial shear test of frozen soil was analyzed. The results show that the energy consumption of particle breakage shows a hyperbolic trend with axial strain. Finally, the volumetric tangent modulus νt in the three-parameter nonlinear model proposed by Shen Zhujiang is modified by the dilatancy equation considering particle breakage, a nonlinear constitutive model considering particle breakage suitable for frozen sand is obtained and the model parameters can be determined by uniaxial compression test and conventional triaxial test. The calculation results of the original model and the modified model are compared with the test results of frozen sand with the test temperature controlled at -6℃ and the confining pressure setting at 1 MPa, 4 MPa, 6 MPa, 8 MPa and 10 MPa, respectively. The comparison results show that the proposed model can better simulate the strain softening characteristics and dilatancy characteristics of frozen sand from low confining pressure to high confining pressure.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    屈智炯.土的细观结构与力学性关系的研究进展[J].水电站设计, 1993, 9(3):77~81. http://www.cqvip.com/Main/Detail.aspx?id=1172182

    QU Zhijiong. Research progress on the relationship between soil microstructure and mechanical properties[J]. Design of Hydroelectric Power Station, 1993, 9(3):77~81. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=1172182
    [2]
    Lee K L, Seed H B. Drained strength characteristics of sands[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(6):117~141. http://cn.bing.com/academic/profile?id=b04cc251d41a643515143f9b4ab4a7b0&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    Vesic A S, Clough G W. Behavior of granular materials under high stresses[J]. Journal of Soil Mechanics & Foundations Div, 1968, 94(3):661~688. http://cn.bing.com/academic/profile?id=9cf8480c204047368e5b4313c99f1286&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    杨礼宁, 姜振泉, 张卫强, 等.高温作用后砂岩力学性质研究[J].地震工程学报, 2016, 38(2):299~302. doi: 10.3969/j.issn.1000-0844.2016.02.0299

    YANG Lining, JIANG Zhenquan, ZHANG Weiqiang, et al. Mechanical properties of sandstone after high temperature[J]. China Earthquake Engineering Journal, 2016, 38(2):299~302. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0844.2016.02.0299
    [5]
    郭庆国.关于粗粒土抗剪强度特性的试验研究[J].水利学报, 1987, (5):59~65. doi: 10.3321/j.issn:0559-9350.1987.05.009

    GUO Qingguo. Experimental study on shear strength characteristics of coarse-grained soil[J]. Journal of Hydraulic Engineering, 1987, (5):59~65. (in Chinese) doi: 10.3321/j.issn:0559-9350.1987.05.009
    [6]
    蒙进, 屈智炯.高压下冰碛土的颗粒破碎及应力应变关系[J].成都科技大学学报, 1989, (1):17~22, 56. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SCLH198901002&dbname=CJFD&dbcode=CJFQ

    MENG Jin, QU Zhijiong. Stress-strain behaviour of glacial till under high confining pressure[J]. Journal of Chengdu University of Science and Technology, 1989, (1):17~22, 56. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SCLH198901002&dbname=CJFD&dbcode=CJFQ
    [7]
    汪稔, 孙吉主.钙质砂不排水性状的损伤-滑移耦合作用分析[J].水利学报, 2002, 33(7):75~78. doi: 10.3321/j.issn:0559-9350.2002.07.013

    WANG Ren, SUN Jizhu. Damage-slide coupled interaction behavior of undrained calcareous sand[J]. Journal of Hydraulic Engineering, 2002, 33(7):75~78. (in Chinese with English abstract) doi: 10.3321/j.issn:0559-9350.2002.07.013
    [8]
    Chavez C, Alonso E E. A constitutive model for crushed granular aggregates which includes suction effects[J]. Soils and Foundations. 2003, 43(4):215~227. doi: 10.3208/sandf.43.4_215
    [9]
    Varadarajan A, Sharma K G, Abbas S M, et al. Constitutive model for rockfill materials and determination of material constants[J]. International Journal of Geomechanics, 2006, 6(4):226~237. doi: 10.1061/(ASCE)1532-3641(2006)6:4(226)
    [10]
    米占宽, 李国英, 陈铁林.考虑颗粒破碎的堆石体本构模型[J].岩土工程学报, 2007, 29(12):1865~1869. doi: 10.3321/j.issn:1000-4548.2007.12.019

    MI Zhankuan, LI Guoying, CHEN Tielin. Constitutive model for rockfill material considering grain crushing[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12):1865~1869. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2007.12.019
    [11]
    迟世春, 贾宇峰.土颗粒破碎耗能对罗维剪胀模型的修正[J].岩土工程学报, 2005, 27(11):1266~1269. doi: 10.3321/j.issn:1000-4548.2005.11.006

    CHI Shichun, JIA Yufeng. Rowe's stress-dilatancy model modified for energy dissipation of particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11):1266~1269. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2005.11.006
    [12]
    Rowe P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1962, 269(1339):500~527. doi: 10.1098/rspa.1962.0193
    [13]
    李兆明.考虑颗粒破碎的粗粒土本构模型[D].大连: 大连理工大学, 2007.

    LI Zhaoming. Constitutive model for coarse granular soil incorporating particle breakage[D]. Dalian: Dalian University of Technology, 2007. (in Chinese with English abstract)
    [14]
    马巍, 吴紫汪, 常小晓, 等.围压作用下冻结砂土微结构变化的电镜分析[J].冰川冻土, 1995, 17(2):152~158. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT502.008.htm

    MA Wei, WU Ziwang, CHANG Xiaoxiao, et al. Analysis of microstructural changes in frozen sandy soil under confining pressures using scaning electronic microscope[J]. Journal of Glaciology and Geocryology, 1995, 17(2):152~158. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT502.008.htm
    [15]
    马玲, 齐吉琳, 余帆, 等.冻结砂土三轴试验中颗粒破碎研究[J].岩土工程学报, 2015, 37(3):544~550. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201503020

    MA Ling, QI Jilin, YU fan, et al. Particle crushing of frozen sand under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3):544~550. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201503020
    [16]
    郑郧, 马巍, 邴慧.冻融循环对土结构性影响的机理与定量研究方法[J].冰川冻土, 2015, 37(1):132~137. http://d.old.wanfangdata.com.cn/Periodical/bcdt201501014

    ZHENG Yun, MA Wei, BING Hui. Impact of freezing and thawing cycles on the structures of soil and a quantitative approach[J]. Journal of Glaciology and Geocryology, 2015, 37(1):132~137. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/bcdt201501014
    [17]
    Legay J M. Du sac de billes au tas de sable Etienne Guyon, Jean-Paul Tioadec Odile Jacob, Paris, 1994, 236 p., 140 F.[J]. Natures Sciences Sociétés, 1997, 5(2):77.
    [18]
    张建民.砂土的可逆性和不可逆性剪胀规律[J].岩土工程学报, 2000, 22(1):12~17. doi: 10.3321/j.issn:1000-4548.2000.01.002

    ZHANG Jianmin. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1):12~17. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2000.01.002
    [19]
    Ueng T S, Chen T J. Energy aspects of particle breakage in drained shear of sands[J]. Géotechnique, 2000, 50(1):65~72. doi: 10.1680/geot.2000.50.1.65
    [20]
    Höeg K, Prévost J H. Soil mechanics and plasticity analysis of strain softening[J]. Géotechnique, 1975, 25(2):279~297. doi: 10.1680/geot.1975.25.2.279
    [21]
    沈珠江.考虑剪胀性的土和石料的非线性应力应变模式[J].水利水运科学研究, 1986, (4):1~14. http://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198604000.htm

    SHEN Zhujiang. A nonlinear dilatant stress-strain model for soil and rock materials[J]. Hydro-Science and Engineering, 1986, (4):1~14. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198604000.htm
  • 加载中

Catalog

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (217) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return