地质力学学报  2021, Vol. 27 Issue (5): 867-879
引用本文
裴军令, 赵越, 周在征, 杨振宇, 刘晓春, 郑光高, 仝亚博, 李建锋, 侯礼富. 南极新生代海陆格局变迁对全球气候变化的影响[J]. 地质力学学报, 2021, 27(5): 867-879.
PEI Junling, ZHAO Yue, ZHOU Zaizheng, YANG Zhenyu, LIU Xiaochun, ZHENG Guanggao, TONG Yabo, LI Jianfeng, HOU Lifu. Impact of Cenozoic Antarctic continent-ocean configuration patterns on global climate change[J]. Journal of Geomechanics, 2021, 27(5): 867-879.
南极新生代海陆格局变迁对全球气候变化的影响
裴军令1,2,3, 赵越1,2,3, 周在征4, 杨振宇5, 刘晓春1,2,3, 郑光高1,2,3, 仝亚博1,2,3, 李建锋1,2,3, 侯礼富1,2,3    
1. 中国地质科学院地质力学研究所, 北京 100081;
2. 中国地质调查局极地地学研究中心, 北京 100081;
3. 新构造运动与地质灾害重点实验室, 北京 100081;
4. 山东科技大学地球科学与工程学院, 山东 青岛 266590;
5. 首都师范大学资源环境与旅游学院, 北京 100048
摘要:南极大陆记录了新生代以来地质演化中多次重大地质事件,包括大陆生长、裂解和离散、全球冷却和大陆尺度南极冰盖的发展等。尽管非常重要,但至今关于南极大陆新生代地质演化仍有诸多争论。文章主要针对塔斯曼通道和德雷克海峡贯通过程,系统总结并分析了南极洲、南美洲和澳大利亚的构造、岩浆和沉积演化历史。始新世晚期至渐新世早期开始发育的南极环极洋流(ACC)受德雷克海峡和塔斯曼通道扩张程度的控制。综合分析和对比研究表明,~34 Ma全球气候从"暖室"到"冷室"的转变与ACC开始的时间一致,表明构造通道的打开控制了ACC的发育,进而对全球气候产生了重要影响。最后,简要总结了南极作为一个完整的地球系统,其新生代地质演化如何控制海陆格局的变迁,并提出未来研究需要解决的关键问题。
关键词南极    新生代    海陆变迁    全球气候变化    冰盖    
DOI10.12090/j.issn.1006-6616.2021.27.05.070     文章编号:1006-6616(2021)05-0867-13
Impact of Cenozoic Antarctic continent-ocean configuration patterns on global climate change
PEI Junling1,2,3, ZHAO Yue1,2,3, ZHOU Zaizheng4, YANG Zhenyu5, LIU Xiaochun1,2,3, ZHENG Guanggao1,2,3, TONG Yabo1,2,3, LI Jianfeng1,2,3, HOU Lifu1,2,3    
1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
2. Research Center of Polar Geosciences, China Geological Survey, Beijing 100081, China;
3. Key Laboratory of Neotectonic Movement and Geohazard, Beijing 100081, China;
4. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China;
5. College of Resources, Environment and Tourism, Capital Normal University, Beijing 100048, China
Abstract: Antarctica recorded a Cenozoic geologic history of continental growth, breakup and dispersal, global cooling and the development of continental-scale Antarctic ice sheet. Despite the importance of Antarctica, there has not been an integrated view of the Cenozoic tectonic evolution of the region as a whole. In this Review, we identify the Tasmania gateway and Drake Passage, and present their overlapping and interconnected tectonic, magmatic and sedimentary history of Antarctica, South America and Australia. Antarctic Circumpolar Current (ACC), which occurred in the late Eocene to early Oligocene, was most impacted by the opening history of Drake Passage and the Tasmania gateway. Our comprehensive analysis and contrastive study show that the beginning of ACC corresponds to the transition from "warmhouse" to "coolhouse" phase at 34 Ma, indicating the development of ACC was controlled by the tectonic gateways, which in turn affected global climate. We conclude by briefly summarizing the Cenozoic geologic history of the Antarctic system as a whole, and how it provides insight into continent-ocean configuration patterns and what key topics must be addressed by future research are disscussed as well.
Key words: Antarctica    Cenozoic    continent-ocean configuration patterns    global climate change    ice sheet    
0 引言

2020年2月9日,巴西科学家于南极半岛西摩岛(Seymour Island)Marambio Base测得创纪录的20.75 ℃温度(Robinson et al., 2020),笔者作为中国第36次南极科学考察中国-智利联合考察队成员,于2020年2月3—6日在西摩岛、2月7—10日在南极半岛北部开展野外考察,见证了这一历史时刻。南极作为全球变暖在地球上的敏感区和关键区,多个南极相关国际组织将进一步加强合作,保护地球上最后一方净土(Hogg et al., 2020)。

众所周知,地球北极、南极和海拔最高的青藏高原构成的“三极”是地球最主要的冷源(李三忠等,2019),“三极”冰冻圈的联动变化通过影响大尺度环流异常,如厄尔尼诺-南方涛动(El Nino-Southern Oscillation,ENSO)等多种反馈机制,进而引起的全球尺度大气遥相关和大洋温盐环流(Pedro et al., 2018; England et al., 2020),对区域甚至全球水文、生态和气候系统产生影响(Bronselaer et al., 2018)。近年来造成的欧亚冬季低温、中国夏季洪涝灾害、澳大利亚南部夏季干旱等极端气候事件已威胁到人类生存(赵越和刘建民,2008李菲等,2021)。可见,南极地区的地质过程与气候、环境变化将影响到北半球气候系统甚至北极区域气候环境变化(England et al., 2020),比如,南极冰盖融化加剧很可能在未来几十年内引起全球海平面大幅上升(Rignot et al., 2019),南极阿蒙森海冰架(Amundsen Ice Shelf)快速融化通过冰架-海洋相互作用对南大洋产生冷却和淡化效应,进一步驱动南大洋海表降温、海冰扩张等气候现象(Rye et al., 2020)。

然而,至今对南极冰盖诞生、生长及消融的过程、机制并不完全了解。一种观点认为是塔斯曼海峡(Tasman Passage)、德雷克海峡(Drake Passage)通道在34 Ma左右的打开导致了南极环极洋流(the Antarctic Circumpolar Current, ACC)的形成(Barker and Thomas, 2004; Eagles et al., 2006Livermore et al., 2007; 陈廷愚等, 2008; Munday et al., 2015),东南极大陆开始出现山岳冰川,同时改变了新生代全球气候的格局和生物分布(Kennett, 1977; Wilson et al., 2013; Cook et al., 2016; Jovane et al., 2019)。另一种观点认为是CO2浓度从始新世的1000×10-6下降到34~31 Ma的600×10-6以下(Pagani et al., 2005),导致南极稳定的大冰盖出现(Galeotti et al., 2016)。

总之,全球气候变化是海洋-大气相互作用与构造、岩浆活动等多圈层、多因素综合影响的结果,随着时间的推移而进化,地球最终形成了人类居住的宜居星球,地球系统多圈层过去、现在和未来的相互作用将对人类生活产生直接影响。地球周期性变化主要受公转偏心率、地轴斜率和岁差控制,地球内部的作用决定着长期变化及突变事件。现代气候变化受热带驱动和冰盖驱动双重控制,最新研究表明,南、北两极的冰量不仅决定了现今全球的基本气候状态,还影响了天文辐射作用对气候系统的可预测性(Westerhold et al., 2020)。文章总结了新生代以来南极海陆格局变迁与海洋、大气环流形成过程的关联性,进而分析对南极冰盖发展的调控作用,全面地理解南极海洋-陆地-气候变化过程,分析地质事件、极端气候变化、全球气候变化之间关系。

1 前新生代南极大陆演化

南极大陆包括东南极古陆、西南极活动带和罗斯造山带三大构造单元(陈廷愚等, 2008),记录了地球演化中多次重大地质事件,曾经是哥伦比亚、罗迪尼亚、潘基亚超大陆的一部分(图 1)。中晚侏罗世伴随南大西洋、印度洋张开,非洲、印度板块纷纷北向漂移,东南极和非洲之间最老的磁异常为M38(~164 Ma; Müeller and Jokat, 2019)印度板块东南缘与澳大利亚板块之间开始发育裂谷盆地(Stagg et al., 2004),威德尔海(Weddell Sea)裂谷系最古老的160~145 Ma海底磁异常则揭示了非洲和南极之间的裂解,约138 Ma南美和非洲之间开始陆内裂解。晚白垩世初期(~99.6 Ma),南美洲、澳大利亚和南极洲形成了一个非常大规模的“诺亚方舟”(图 2McKenna, 1973)。

成图数据(earth_relief_01m)来源:http://mirrors.ustc.edu.cn/gmt/data/;制图软件为The Generic Mapping Tools(GMT,v6.1.0) Earth relief data with 1 arc-minute resolution (earth_relief_01m) are from the website: http://mirrors.ustc.edu.cn/gmt/data/; Data visualization by The Generic Mapping Tools (GMT, v6.1.0) 图 1 南极及周边现代海陆格局图 Fig. 1 Continent-ocean configuration pattern map of the Circum-Antarctic region

模型主要是根据海洋磁异常条带和破碎带的几何学特征计算出相关洋壳区域的欧拉旋转参数,假定旋转速率恒定,利用Gplates软件对各构造单元的运动学过程进行重建。模型还使用了地质和地球物理数据所记录到的陆内伸展、走滑、挤压等构造事件作为约束条件。同时还利用古地磁数据对模型进行了验证和必要的迭代。斯科舍海(Scotia Sea)地区的重建模型基于van de Lagemaat(2021),制图软件:Gplates和GMT Euler rotation parameters of relevant oceanic crust regions were calculated based on geometric characteristics of marine magnetic anomaly and fracture zones constraints, following the precondition that the stage rotation rate was constant. Gplates software was applied to reconstruct the kinematic process of all tectonic units. The model is also constrained by tectonic events such as intracontinental extensional history, strike-slip and deformation records. Additionally, the paleomagnetic data are used to verify and iterate the model. The reconstruction of the Scotia Sea region is based on van de Lagemaat (2021). Data visualization by Gplates and GMT software. 图 2 晚白垩世以来南极与相邻陆块重建图 Fig. 2 Reconstruction of Antarctica and its surrounding areas since the late Cretaceous

南极-澳大利亚共轭陆缘经历了两期裂谷作用,形成三段共轭陆缘。最新的综合研究根据已有地质和地球物理数据,包括磁性异常、断裂带、共轭地壳域、大陆伸展量、大陆地质、板块边界位置、破裂年龄和地层等多学科证据,对裂谷和破裂的重建进行了总结,为澳大利亚-南极裂解的可行模式提供了强有力的框架(图 2)。多数研究使用最老的洋底磁异常条带记录的磁极性时C34对应的83 Ma作为“真正的”海底扩张出现。~80 Ma时发生的南美和南极相对的板块运动的变化导致威德尔海北部大洋岩石圈和南极半岛大陆地壳之间边界发生汇聚(Lagabrielle et al., 2009; Verard et al., 2012; Eagles and Jokat, 2014)。

西南极构造上属于冈瓦纳古陆靠古太平洋边缘的部分,记录了古太平洋板块和凤凰(Phoenix)板块中生代以来的地质演化事件。沿古太平洋边缘从115~90 Ma与凤凰板块俯冲有关的岩浆活动反映了大陆构造体制的巨大变化(图 2)。约83 Ma时西兰蒂亚大陆(Zealandia)与西南极、澳大利亚之间的海底扩张开始(Eagles et al., 2004)(图 2)。南极半岛是一个长期存在的增生大陆边缘,从124~110 Ma,大洋地壳发生再次俯冲及钙-碱性深成岩产生,与发生在115~96 Ma的麻粒岩相变质岩和碱性花岗岩、镁铁质深成岩混合。在南极半岛的西部保存了早侏罗世—白垩纪中期火山-沉积层序,其厚度大于8 km,该层序不整合于三叠纪增生杂岩上,是世界上最完整的弧前层序之一。白垩纪中期的岩浆活动在冈瓦纳的整个原太平洋边缘广泛存在,沿帕默地(Palmer Land)东部边缘侵入岩存在~125 Ma、~115 Ma和~105 Ma三次明显的岩浆活动(Riley et al., 2018),与沿着西南极边缘发育的安第斯山脉130~105 Ma的三次岩浆事件一致(Paterson and Ducea, 2015)。

南极半岛北部南设得兰群岛(South Shetland Islands)和詹姆斯·罗斯岛(James Ross Island)发育白垩纪地层。南设得兰群岛下白垩统主要是拜尔斯群(Byers Group)的2.7 km厚的弧内地层(Hathway and Lomas, 1998),由玄武岩、硅质火山岩和火山碎屑岩组成。利文斯顿岛(Livingston Island)及拜尔斯半岛(Byers Peninsula)的火山岩时代主要为148~123 Ma、91~88 Ma(郑祥身等, 1989),乔治王岛(King George Island)南部存在91 Ma左右火山岩(胡世玲等,1995高亮等,2015)。詹姆斯罗斯盆地是典型的弧后盆地,主要发育白垩统地层古斯塔夫群(Gustav Group)和马兰比奥群(Marambio Group),古斯塔夫群是一套厚度>2 km的粗粒海相硅质碎屑沉积物和火山岩序列,马兰比奥群是一套厚度>3 km的陆相泥岩、粉砂岩及薄层砾岩,西摩岛可见较为完整的白垩纪—古新世—始新世地层露头,发育有大量植物和动物化石,最近的磁性地层研究显示马兰比奥群年龄约为85~66 Ma(Milanese et al., 2020)。

2 新生代南极海陆格局变迁

白垩纪末南大西洋和印度洋洋盆进一步扩张, 新生代海底磁异常条带保存完整(图 2图 3),为厘定洋壳年龄、解析洋壳结构、恢复板块运动等地质难题提供了直接信息(Gee and Kent, 2007)。澳大利亚与南极板块在79~53 Ma扩张速率比较稳定(图 2图 3),至~50 Ma左右澳大利亚板块快速向北移动,脱离冈瓦纳古陆(Whittaker et al., 2013)。约45 Ma时,南极-澳大利亚板块裂离速度加快,地震和重力数据显示了海底扩张由西向东的过程(图 3),向东传递的海底扩张和裂谷的不对称性在时间上与垂直裂谷转变为倾斜裂谷相一致,也与裂谷作用走向从沿着克拉通到沿着古生代岩石圈的转变一致(Ball et al., 2013)。磁异常重建和塔斯曼西部东南印度脊形成的断裂带说明澳大利亚和南极板块之间35~32 Ma的最后裂解地区位于南塔斯曼高地(图 3)(Scher et al., 2015)。

数据来源于Seton et al., 2012; Müller et al., 2018, 2019; Wessel et al., 2019; van de Lagemaat et al., 2021的重建模型;制图软件:Gplates和GMT Reconstruction data are derived from the global-scale plate motion models by Seton et al., 2012; Müller et al., 2018, 2019; Wessel et al., 2019; Van De Lagemaat et al., 2021; Data visualization by Gplates and GMT software. 图 3 新生代以来南极周边区域海底扩张过程 Fig. 3 Seafloor spreading map around the Antarctic since 65 Ma

70~50 Ma间,南美洲板块绝对运动的方向是南向,之后运动方向由南向运动转为西北西向运动(图 2图 3Doubrovine et al., 2012),根据巴塔哥尼亚(Patagonia)-南极半岛陆桥在49~47 Ma发生沉降,斯科舍海(Scotia Sea)伸展开始于约50 Ma(Livermore et al., 2005)。南极半岛出露的新生代岩浆岩主要是古近纪火山岩和侵入岩,主要分布在南设得兰群岛和亚历山大岛(Alexander Island)。在南设得兰群岛出露的古近纪火山岩以乔治王岛的菲尔德斯半岛(Fildes Peninsula)为代表,以玄武质、玄武安山质和安山质为主,另有少量的英安质亚碱性岩石组合(郑光高等,2015)。纳尔逊岛(Nelson Island)东部火山岩年龄为66~56 Ma,波特半岛(Potter Peninsula)火山岩年龄约为47.6 Ma。在乔治王岛的巴顿半岛(Barton peninsula)和韦弗半岛(Weaver peninsula),玄武质、安山质熔岩和花岗岩体在45 Ma短期时间内喷发和侵入。亚历山大岛北部地区,古近纪花岗岩侵入到增生杂岩中,时代为56 Ma(McCarron and Millar, 1997)。

由于南极岩石露头少、野外工作难度大,古地磁结果缺乏,少量的古地磁极说明至少从白垩纪中期开始南极半岛就一直与东南极洲紧密相连(表 1Watts et al., 1984; Grunow, 1993; Bakhmutov and Shpyra, 2011; Milanese et al., 2017, 2019; Gao et al., 2018)。84 Ma时南极大陆漂移至近极点的位置(图 4),此后其位置相对固定,期间太平洋板块开始俯冲,罗斯海盆(Ross Sea basin)逐渐形成,45 Ma左右开始,南极半岛向南运移,而南美南部向北运移,形成了现有的斯科舍海(图 4)。现今,南美板块和南极板块间的离散方向变为东西向(Eagles and Jokat, 2014郑光高等,2015)。在新生代岩浆活动的同时,南美和南极半岛之间发生伸展扩张,加上斯科舍(Scotia)俯冲带弧后伸展,导致了德雷克海峡在~34 Ma打开(Eagles et al., 2006)。菲尼克斯板块的主俯冲期在约20 Ma结束,局部的俯冲和有限的弧后扩展局限在今天南极半岛的尖端,南设得兰群岛的弧岩浆作用最终在约20 Ma时停止(Fretzdorff et al., 2004)。20 Ma至今各海盆水深有变浅趋势(如罗斯海盆、威德尔海盆和塔斯曼海),~10 Ma时尤为明显,可能与沉积物的充填有关,大西洋扩张速率降至小于40 mm/a,使得南美洲板块继续向西移动(孙运凡等,2013)。4 Ma左右,随着板块俯冲和洋脊扩张作用的停止,已俯冲在南极半岛之下的板块继续下沉,由于缺失扩张脊的推动力,使得下沉板块产生回卷,最终导致布兰斯菲尔德海峡(Bransfield Strait)弧后盆地的打开,形成最深达2000 m的不对称地堑式构造边缘盆地(Larter and Barker, 1991)。

表 1 西南极古地磁数据表 Table 1 Paleomagnetic data from West Antarctica

图 4 白垩纪以来南极古纬度图(参考点:70°S, 65°W) Fig. 4 Paleolatitudes of the Antarctic since the Cretaceousrelative to a reference point on the Antarctic Peninsula (70°S, 65°W)

乔治王岛发育始新世—渐新世—早中新世的连续地层剖面, 主要为一套拉斑玄武岩,夹火山碎屑岩,此前被认为属于岛弧火山岩系列(Birkenmajer and Luzkowska, 1987),但该玄武岩高钾低铝的特征,更符合大陆性质的构造。保存完好的含大量生物化石的海相冰川沉积是研究南极冰盖演化历史的重要证据。中国学者对长城站所在的菲尔德斯半岛出露的含化石沉积、火山碎屑岩地层开展了深入研究(刘小汉和郑祥身,1988沈炎彬,1990宋之深,1997段威武和曹流,1998),构建了该区年代及生物地层层序(刘小汉和郑祥身,1988沈炎彬,1990),重建了古气候与古地理环境(薛耀松等,1996宋之深,1997段威武和曹流,1998)。

罗斯海西南部、南极横断山脉及其周缘内陆盆地是研究南极冰川和气候演化的热点地区,发育有渐新世以来较完整的冰川沉积序列,天狼星组的形成时间和形成环境为该区冰盖演化提供了支撑。埃莫里地堑-普里兹湾海岸地带发育的新生代沉积地层同样记录了南极冰盖及气候演化信息(Hambrey and Mckevel, 2000),中国学者在地层、古生物和古地理等方面取得了研究成果(王自磐,1998)。

3 讨论与结论 3.1 新生代全球气候变化与南极地质过程

最近,根据多年研究积累的2.3万余个数据点重建了新生代高清晰度深海碳氧同位素全球气候参考曲线(Cenozoic Global Reference Benthic Foraminifer Carbon and Oxygen Isotope Dataset,简称CENOGRID)(Westerhold et al., 2020),通过大数据统计判别,划分出热室、温室、冷室和冰室四个状态:热室状态从56 Ma持续到47 Ma;温室包括66~56 Ma、47~34 Ma两个时期;冷室状态从34 Ma到3.3 Ma,以13.9 Ma为界分为两个阶段;冰室状态从3.3 Ma持续至今(图 5)。演化图谱显示温室和热室比冷室和冰室状态地球预测性更强,47 Ma之后,确定性的波动幅度越来越大,直到34 Ma成为不可预测状态(Westerhold et al., 2020)。34 Ma是南极地质演化史上的关键时期,晚始新世塔斯曼陆桥与南极大陆之间裂谷发育、始新世末南极半岛与南美开始分离导致冈瓦纳大陆最终解体(Lyle et al., 2008)、南极绕极环流(ACC)形成(图 2图 3图 5Barker and Thomas, 2004)。

图件根据Zachos et al., 2001; Livermore et al., 2007; Westerhold et al., 2020;2021-2030地球科学发展战略研究组,2021修改,深海氧同位素数据主要由多次大洋钻探计划(ODP)、海洋钻探计划(IODP)积累产生,图中所用数据来源于Westerhold et al., 2020提供的数据库 This Graph is modified after Zachos et al., 2001; Livermore et al., 2007; Westerhold et al., 2020; 2021-2030 Earth Science Development Strategy Research Group, 2021. Deep-sea oxygen isotope data, mainly collected by Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP), mined from the database provided by Westerhold et al., 2020 图 5 新生代南极地质事件与全球气候变化对比 Fig. 5 Cenozoic geological events in the Antarctic compared with global climate changes

不同角度的研究结果认为塔斯曼海峡、德雷克海峡打开时间存在争论。来自地质观测、地球物理等的证据对澳大利亚和南极裂解过程给出不同的解释,时代上从约100 Ma到30 Ma,空间上从西到东分多段(Veevers, 1986; Tikku and Cande, 1999; Tikku and Direen, 2008; Whittaker et al., 2008, 2013; Aitken et al., 2014; Gillard et al., 2015)。南极与南美裂解也存在早始新世、早渐新世、甚至~20 Ma的观点(Lagabrielle et al., 2009; Dalziel, 2014; Eagles and Jokat, 2014)。如根据底栖有孔虫δ18O在34~33 Ma时快速的下降,将德雷克海峡深部洋流贯通时间指向32 Ma(Lawver and Gahagan., 2003; Lagabrielle et al., 2009)或32.8 Ma(ODP Site 1090)(Latimer and Fillipelli, 2002),根据斯科舍海记录的磁异常条带认为最老打开时间为~28.5 Ma(图 3Lodolo et al., 2006; Van De Lagemaat et al., 2021),还有学者根据古生物差异认为徳雷克海峡打开较早, 古新世晚期南美洲和南极半岛之间形成了一个宽且浅的陆表海,阻止了两地间陆生动物交流,但由于残留陆壳的阻碍直到早中新世ACC才形成(图 2Livermore et al., 2004)。虽然海道具体贯通时间与打开规模尚无定论(Pfuhl and McCave., 2005;Scher and Martin., 2006),古新世以来逐渐打开的过程已得到认可(图 5)。

在全球板块重组时期,南美板块西向的绝对运动影响了印度、澳大利亚和太平洋板块(Whittaker et al., 2007; Müller et al., 2016; Torsvik et al., 2017; Vaes et al., 2019),时间与通过澳大利亚和南极洲之间塔斯曼海峡海水贯通时间吻合(Bijl et al., 2013),长时间尺度的全球变冷大约也发生在这一时间(Cramwinckel et al., 2018),并被认为与喜马拉雅山脉和安第斯山脉隆起导致的硅酸盐暴露风化作用增强导致的全球二氧化碳减少有关(Kump et al., 2000)。中始新世山脉隆升及气候变冷的过程中,该时期板块的重组使得德雷克海峡完全打开,强大的ACC形成(Hill et al., 2013; Houben et al., 2019),促进了南极洲的进一步冷却而与温室气体的下降作用关系不大(Sijp et al., 2014),为南极洲的冰川作用提供了先决条件。构造通道的变化影响了中始新世晚期到中新世早期的海洋环流,进而影响全球气候变化(Katz et al., 2011)。早始新世时,乔治王岛地区古生物化石记录了暖温带-亚热带的植被与气候特征,中始新世时为温暖湿润的古气侯环境,植被与现代生长在南美、澳大利亚及新西兰温带或凉温带的常绿或落叶植被接近(沈炎彬,1990段威武和曹流,1998)。120航次钻探获得渐新统最下部筏冰碎屑沉积记录,推测冰盖在始新世末期(~36.0 Ma)已到达海面(Wise et al., 1992),低纬向南极输送热量的能力开始降低,进而造成南极的热隔绝并导致南极冰盖的形成,地球气候系统由温室期转为冰室期,对南极甚至全球气候产生重要的影响(Kennett, 1977; Scher, 2017)。早渐新世来自热带的暖流被南极周围的ACC切断,导致南极区域气候变冷,山岳冰川或东南极冰盖形成(陈廷愚等,2008Munday et al., 2015)。古生物证据证明渐新世气候与始新世相比已经开始变冷,渐趋恶劣环境开始不利于植物生长。34 Ma全球气候系统非线性程度大大增强,预测确定性参数显著降低与南极冰盖同步出现应该具有密切联系。

3.2 新生代南极构造-气候效应

新近纪早期德雷克通道持续打开,使ACC规模扩大和加强(图 2图 3图 5),导致南极与低纬度热水的相互影响越来越弱,开始出现较深的环南极大陆的大洋海水循环(Eagles et al., 2006),约14 Ma南极冰冻圈演化成大规模冰盖,促进全球气候变冷和温盐环流,进而改变了新生代全球气候的格局和生物分布(Kennett et al., 1977; Cook et al., 2016)。在冷室地球第一阶段中(25~14 Ma),气候周期以偏心率为主,倾角周期表现不显著(Westerhold et al., 2020)。早中新世梅尔维尔角组(Melville Piont Formation)发育有一套冰川海相地层,沉积于以海冰为主的浅海、低能环境,说明南极冰盖规模不大,高纬冷源的放大效应还不显著。13.9 Ma之后地轴倾斜度的信号逐渐增强,与南极形成大规模冰盖过程一致,到3.3 Ma成为冰室地球气候系统的主导周期,与北极冰盖形成同步效应(Westerhold et al., 2020)。

发生在始新世和渐新世之交的南极板块与澳大利亚板块、南美板块的裂解事件(图 2图 3)与34 Ma全球气候由暖室进入冷室期转折具有高度一致性;中新世约14 Ma由冷室进入冰室,也对应了德雷克海峡通道完全打开导致ACC成为全球最大规模的环流。可见,新生代以来的全球气候变化与南极的海陆变迁过程关联性强,促进了始/渐新世快速变冷、中中新世转入冰室状态的发生。达到深层海水贯通的ACC与全球多洋盆之间连通形成了著名的横跨大洋的温盐环流,即大洋输送带(Great Ocean Conveyer Belt),调节全球大洋冷热平衡,并阻碍热量向南的输送。

3.3 新近纪以来南极岩浆活动-气候效应

全球气候变化是多因素综合作用的结果,新生代早期的古/始新世极热事件为代表的热室状态、中新世冰室状态中的暖期与温室气体CO2浓度变化直接相关,分别对应了北大西洋火成岩省、哥伦比亚河火山喷发事件(图 5)。65 Ma至今青藏高原深部碳循环与全球大气圈温室气体以及气候变化之间也存在一致现象:55~50 Ma印度板片俯冲起始阶段,岩浆-变质作用导致深部碳库巨量CO2释放;50~25 Ma早期岩浆活动剧烈,大气CO2浓度迅速升高且维持在较高水平,后期岩浆活动趋缓,大气CO2浓度出现缓慢降低的趋势;25 Ma以来岩浆活动规模骤然减小,大气CO2浓度总体保持在较低的水平(Guo et al., 2021)。

詹姆斯罗斯岛、布拉班特岛(Brabant Island)和欺骗岛(Deception Island)发育有新近纪晚期火山岩,由大量的熔岩深成体和成分类似的拉斑玄武岩、碱性玄武岩、夏威夷岩及少量的碧玄岩、橄榄粗安岩等组成。詹姆斯罗斯岛火山群是南极半岛最大的新近纪火山区,岩浆活动的特点是:熔岩充填三角洲、玄武岩熔岩、凝灰岩和火山碎屑角砾岩主要位于冰下环境中,主要岩性是碎屑角砾、枕状熔岩和近地面的熔岩流等。玄武岩的40Ar/39Ar年龄显示形成时间集中在6~4 Ma之间,部分在1.69~0.13 Ma之间(Smellie et al., 2008)。这些岩浆活动对区域气候变化的影响尚不清楚,增加了南极区域古气候记录的不可确定性。

布兰斯菲尔德海峡在约上新世之后的打开致使南设得兰群岛与南极半岛分离(Barker and Burrell, 1982),块体裂解或海峡的打开阻隔了生物间的交流,形成了不同岛屿独特的生物圈。布兰斯菲尔德海峡是处于从裂谷到扩张演化阶段的第四纪弧后盆地,重震联合反演剖面可以发现在布兰斯菲尔德海峡中央盆地多处存在岩浆活动,沿盆地扩张中心海底分布有大量的新鲜火山岩,是海底火山、地震等新构造活动极为活跃的地区(马龙和邢健,2020)。布兰斯菲尔德海峡的新洋壳伴随海底火山作用持续生成,由于海峡盆地整体的左旋走滑运动,导致中部和东部盆地分别处于海底扩张初期和扩张前弧后裂谷阶段,并表现为完全不同的地形地貌、火山活动及沉积特征(Schreider et al., 2014)。南极新近纪晚期古气候的变化与固体地球科学中岩浆活动、海陆格局变迁有机地结合起来(图 5),将为深入开展人类活动对全球气候变化的影响程度提供更完善的证据链。

4 研究展望

南极冰盖封存了40亿年来大陆起源、物质循环、构造活动、环境气候变化、生物进化等多样化记录,尽管人们对南极如何演化的理解有了很大的进步,但在认识南极上仍然存在太多的未知。南极也曾绿意盎然,拥有茂盛的森林,是动物的乐园,深入理解新生代以来南极及周边地块海陆格局变迁对海洋、大气循环的调控机制,探寻新生代以来地质过程与南极冰盖生长的耦合关系,构建南极气候变化与全球气候变化模型,可以查明地质演化对气候变化的驱动过程,更好地预测未来气候变化。

南极绕极环流(ACC)是体积最大的地转流,连接大西洋、印度洋和太平洋(图 1)。它在全球分布中扮演着重要的角色,带动热量、营养物、盐、碳以及大气和海洋之间的气体交换,因此对地球的气候产生了强烈的影响。现在南极海陆格局持续变迁中,未来会影响到ACC的循环路线和强度,海底地震、火山等新构造活动持续活跃,甚至会改变洋底温度,引起温室气体快速大量的释放。

展望未来,确定南极海陆变迁过程,揭示下伏岩石圈与上覆冰盖动态的联系比以往任何时候都更重要,因为现代人为活动造成的全球变暖的速度远远超过了在新生代任何时候的自然气候波动幅度,并且有可能将地球气候从目前的冰室推向热室状态(Westerhold et al., 2020)。在南极这一受人类活动干扰相对较弱的地区开展多圈层相互作用与流固耦合研究十分迫切,涉及水圈-岩石圈流固耦合和化能生命系统效应、水圈-大气圈多尺度能量串级及其气候效应、水圈-大气圈-生物圈耦合及其生态和气候效应等(李三忠等,2019),需要详细的地球物理和地质证据支撑,需要进一步研究具有精准年龄厘定的构造位置、岩浆活动等,为构建可靠的南极演化模型提供关于南极不同组成部分如何以及何时活动的信息。因此,亟需在南极地区开展包括深部动力学、地球关键带、海洋与大气相互作用、冰冻圈与水循环以及资源效应的涉及多学科多圈层的系统研究计划,建设能够实现中国科学家到更多关键区域开展工作的航海、航天、陆地全天候平台,集中国地学科研之力形成南极极端条件下的地学系统理论,为研究全球气候变化提供科学依据。

致谢: 中国第32、33、35、36次南极科学考察队、智利南极研究所给予了野外工作的大力支持,评审专家提出了建设性修改意见,在此表示衷心感谢。

参考文献/References
AITKEN A R A, YOUNG D A, FERRACCIOLI F, et al., 2014. The subglacial geology of Wilkes Land, East Antarctica[J]. Geophysical Research Letters, 41(7): 2390-2400. DOI:10.1002/2014GL059405
BAKHMUTOV V., SHPYRA V., 2011. Palaeomagnetism of late Cretaceous-Paleocene igneousrocks from the western part of the Antarctic Peninsula (argentine IslandsArchipelago)[J]. Geological Quarterly, 55(4): 285-300.
BALL P, EAGLES G, EBINGER C, et al., 2013. The spatial and temporal evolution of strain during the separation of Australia and Antarctica[J]. Geochemistry, Geophysics, Geosystems, 14(8): 2771-2799. DOI:10.1002/ggge.20160
BARKER P F, BURRELL J, 1982. The influence upon Southern Ocean circulation, sedimentation, and climate of the opening of Drake Passage[M]//CRADDOCK C. Antarctic geoscience. Madison: University of Wisconsin.
BARKER P F, THOMAS E, 2004. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current[J]. Earth-Science Reviews, 66(1-2): 143-162. DOI:10.1016/j.earscirev.2003.10.003
BIRKENMAJER K, LUCZKOWSKA E, 1987. Foraminiferal evidence for a Lower Miocene age of glaciomarine and related strata, Moby Dick Group, King George Island (South Shetland Islands, Antarctica)[J]. Bulletin of the Polish Academy of Sciences, Earth Sciences, 35(1): 1-10.
BRONSELAER B, WINTON, M, GRIFFIES, S M, et al., 2018. Change in future climate due to Antarctic meltwater[J]. Nature, 564(7734): 53-58. DOI:10.1038/s41586-018-0712-z
CAMPS P, HENRY B, NICOLAYSEN K, et al., 2007. Statistical properties of paleomagnetic directions in Kerguelen lava flows: Implications for the late Oligocene paleomagnetic field[J]. Journal of Geophysical Research, 112(B6): 1-14.
CHEN T Y, SHEN Y B, ZHAO Y, et al., 2008. Geological development of Antarctica and evolution of Gondwanaland[M]. Beijing: The Commercial Press. (in Chinese)
COOK A J, HOLLAND P R, MEREDITH M P, et al., 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula[J]. Science, 353(6296): 283-286. DOI:10.1126/science.aae0017
CRAMWINCKEL M J, HUBER M, KOCKEN I J, et al., 2018. Synchronous tropical and polar temperature evolution in the Eocene[J]. Nature, 559(7714): 382-386. DOI:10.1038/s41586-018-0272-2
DALZIEL I W D, 2014. Drake Passage and the Scotia arc: A tortuous space-time gateway for the Antarctic Circumpolar Current[J]. Geology, 42(4): 367-368. DOI:10.1130/focus042014.1
DOUBROVINE P V, STEINBERGER B, TORSVIK T H, 2012. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans[J]. Journal of Geophysical Research: Solid Earth, 117(B9): 1-30.
DUAN W W, CAO L, 1998. Late Paleogene palynoflora from Point Hennequin of Admiralty Bay, King George Island, Antarctica and its significance instratigraphy[J]. Chinese Journal of Polar Research, 10(2): 29-35. (in Chinese with English abstract)
EAGLES G, GOHL K, LARTER R D, 2004. High-resolution animated tectonic reconstruction of the South Pacific and West Antarctic Margin[J]. Geochemistry, Geophysics, Geosystems, 5(7): Q07002.
EAGLES G, LIVERMORE R, MORRIS P, 2006. Small basins in the Scotia Sea: The Eocene Drake Passage gateway[J]. Earth andPlanetary Science Letters, 242(3-4): 343-353. DOI:10.1016/j.epsl.2005.11.060
EAGLES G, JOKAT W, 2014. Tectonic reconstructions for paleobathymetry in Drake Passage[J]. Tectonophysics, 611: 28-50. DOI:10.1016/j.tecto.2013.11.021
Earth Science Development Strategy Research Group, 2021-2030, 2021. Earth science development strategy 2021-2030:habitable Earth's past, present and future[M]. Beiing: Science Press. (in Chinese)
ENGLAND M R, POLVANI, L M, SUN L T, et al., 2020. Tropical climate responses to projected Arctic and Antarctic sea-ice loss[J]. Nature Geoscience, 13(4): 275-281. DOI:10.1038/s41561-020-0546-9
FRETZDORFF S, WORTHINGTON T J, HAASE K M, et al., 2004. Magmatism in the Bransfield Basin: Rifting of the South Shetland Arc?[J]. Journal of Geophysical Research: Solid Earth, 109(B12): B12208. DOI:10.1029/2004JB003046
GALEOTTI S, DECONTO R, NAISH T, et al., 2016. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition[J]. Science, 352(6281): 76-80. DOI:10.1126/science.aab0669
GAO L, ZHAO Y, YANG Z Y, et al., 2015. Recent progress of late Cretaceous: Miocene volcanic-sedimentary strata on King George Island, West Antarctic[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(6): 1109-1122. (in Chinese with English abstract)
GAO L, ZHAO Y, YANG Z Y, et al., 2018. New paleomagneticand 40Ar/39Ar geochronological results for the South Shetland Islands, WestAntarctica, and their tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 123(1): 4-30. DOI:10.1002/2017JB014677
GEE J S, KENT D V, 2007. Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale[J]. Treatise on Geophysics, 5: 455-507. DOI:10.1016/B978-044452748-6/00097-3
GILLARD M, AUTIN J, MANATSCHAL G, et al., 2015. Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian-Antarctic magma-poor rifted margins: Constraints from seismic observations[J]. Tectonics, 34(4): 753-783. DOI:10.1002/2015TC003850
GRUNOW, A M., 1993. New paleomagnetic data from the Antarctic Peninsula and theirtectonic implications[J]. Journal of Geophysical Research: Solid Earth, 98(B8): 13815-13833. DOI:10.1029/93JB01089
GUO Z F, WILSON M, DINGWELL D B, et al., 2021. India-Asia collision as a driver of atmospheric CO2 in the Cenozoic[J]. Nature Communications, 12: 3891. DOI:10.1038/s41467-021-23772-y
HAMBREY M J, MCKELVEY B, 2000. Neogene fjordal sedimentation on the western margin of the Lambert Graben, East Antarctica[J]. Sedimentology, 47(3): 577-607. DOI:10.1046/j.1365-3091.2000.00308.x
HATHWAY B, LOMAS S A, 1998. The Jurassic-Lower Cretaceous Byers Group, South Shetland Islands, Antarctica: revised stratigraphy and regional correlations[J]. Cretaceous Research, 19(1): 43-67. DOI:10.1006/cres.1997.0095
HILL D J, HAYWOOD A M, VALDES P J, et al., 40. Paleogeographic controls on the onset of the Antarctic circumpolar current[J]. Geophysical Research Letters, 19: 5199-5204.
HOGG C J, LEA M A, SOLER M G, et al., 2020. Protect the Antarctic Peninsula-before it's too late[J]. Nature, 586(7830): 496-499. DOI:10.1038/d41586-020-02939-5
HOUBEN A J, BIJL P K, SLUIJS A, et al., 2019. Late Eocene Southern Ocean cooling and invigoration of circulation preconditioned Antarctica for full-scale glaciation[J]. Geochemistry, Geophysics, Geosystems, 20(5): 2214-2234.
HU S L, ZHENG X S, DAI C M, et al., 1995. 40Ar/39Ar isochron dating on a microscope scale of A635 basalt from the northern coast of King George Island, Antarctica by using a continuous laser system and a mass-spectrometer[J]. Chinese Science Bulletin, 40(16): 1495-1496. (in Chinese) DOI:10.1360/csb1995-40-16-1495
JOVANE L, FLORINDO F, ACTON G, et al., 2019. Miocene Glacial Dynamics Recorded by Variations in Magnetic Properties in the ANDRILL-2A Drill Core[J]. Journal of Geophysical Research: Solid Earth, 124(3): 2297-2312. DOI:10.1029/2018JB016865
KATZ M E, CRAMER B S, TOGGWEILER J R, et al., 2011. Impact of Antarctic Circumpolar Current Development on Late Paleogene Ocean Structure[J]. Science, 332(6033): 1076-1079. DOI:10.1126/science.1202122
KELLOGG K, REYNOLDS R L, 1978. Paleomagnetic results from the Lassiter Coast, Antarctica, and a test for oroclinal bending of the Antarctic Peninsula[J]. Journal of Geophysical Research: Solid Earth, 83(B5): 2293-2299. DOI:10.1029/JB083iB05p02293
KELLOG K, 1980. Paleomagnetic evidence for oroclinal bending of the southern Antarctic Peninsula[J]. Geological Society of America Bulletin, 91(7): 414-420. DOI:10.1130/0016-7606(1980)91<414:PEFOBO>2.0.CO;2
KENNETT J P, 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography[J]. Journal of Geophysical Research, 82(27): 3843-3860. DOI:10.1029/JC082i027p03843
KRISTJANSSON L, GUDMUNDSSON M T, SMELLIE J L, et al., 2005. Palaeomagnetic, 40Ar/39Ar, and stratigraphical correlation of Miocene-Pliocene basalts in the Brandy Bay area, James Ross Island, Antarctica[J]. Antarctic Science, 17(3): 409-417. DOI:10.1017/S0954102005002853
KUMP L R, BRANTLEY S L, ARTHUR M A, 2000. Chemical weathering, atmospheric CO2, and climate[J]. Annual Review of Earth and Planetary Sciences, 28(1): 611-667. DOI:10.1146/annurev.earth.28.1.611
LAGABRIELLE Y, GODDÉRIS Y, DONNADIEU Y, et al., 2009. The tectonic history of Drake Passage and its possible impacts on global climate[J]. Earth and Planetary Science Letters, 279(3-4): 197-211. DOI:10.1016/j.epsl.2008.12.037
LARTER R D, BARKER P F, 1991. Effects of ridge crest-trench interaction on Antarctic-Phoenix Spreading: Forces on a young subducting plate[J]. Journal of Geophysical Research Atmospheres: Solid Earth, 96(B12): 19583-19607. DOI:10.1029/91JB02053
LATIMER J C, FILIPPELLI G M, 2002. Eocene to Miocene terrigenous inputs and export production: geochemical evidence from ODP Leg177, Site 1090[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 182(3-4): 151-164. DOI:10.1016/S0031-0182(01)00493-X
LAWVER L A, GAHAGAN L M, 2003. Evolution of Cenozoic seaways in the circum-Antarctic region[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 198(1-2): 11-37. DOI:10.1016/S0031-0182(03)00392-4
LI F, GAO Y Q, WAN X, et al., 2021. Earth's 'three-poles' climate change under global warming[J]. Transactions of Atmospheric Sciences, 44(1): 1-11. (in Chinese with English abstract)
LI S Z, SUO Y H, WANG G Z, et al., 2019. Tripole on seafloor and tripole on Earth surface: dynamic connections[J]. Marine Geology & Quaternary Geology, 39(5): 1-22. (in Chinese with English abstract)
LIU X H, ZHENG X S, 1988. Geology of volcanic rocks on Fildes Peninsula, King George Island, West Antarctica[J]. Antarctic Research, 1(1): 25-35. (in Chinese with English abstract)
LIVERMORE R, EAGLES G, MORRIS P, et al., 2004. Shackleton Fracture Zone: No barrier to early circumpolar ocean circulation[J]. GEOLOGY, 32(9): 797-800. DOI:10.1130/G20537.1
LIVERMORE R, HILLENBRAND C D, MEREDITH M, et al., 2007. Drake Passage and Cenozoic climate: An open and shut case?[J]. Geochemistry Geophysics Geosystems, 8(1): Q01005.
LODOLO E, DONDA F, TASSONE A, 2006. Western Scotia Sea margins: Improved constraints on the opening of the Drake Passage[J]. Journal of Geophysical Research: Solid Earth, 111(B6): B06101.
LYLE M, BARRON J, BRALOWER T J, et al., 2008. Pacific Ocean and Cenozoic evolution of climate[J]. Reviews of Geophysics, 46(2): RG2002.
MA L, XING J, 2020. Structure inversion and its tectonic interpretation in bransfield strait and the adjacent area, Antarctic[J]. Oceanologia et Limnologia Sinica, 51(2): 265-273. (in Chinese with English abstract)
MCCARRON J J, MILLAR I L, 1997. The age and statigraphy of fore-arc magmatism on Alexander Island, Antarctica[J]. Geological Magazine, 134(4): 507-522. DOI:10.1017/S0016756897007437
MCKENNA M C, 1973. Sweepstakes, filters, corridors, Noah's Arks, and beached viking funeral ships in palaeogeography[M]//TARLING DH, RUNCORN SK. Implications of continental drift to the earth sciences. New York: Academic Press: 295-308.
MILANESEF, RAPALINIA, SLOTZNICKSP, et al., 2019. Late cretaceouspaleogeography of the Antarctic Peninsula: New paleomagnetic pole from the James Ross Basin[J]. Journal of South American Earth Sciences, 91: 131-143. DOI:10.1016/j.jsames.2019.01.012
MILANESE F N, OLIVERO E B, KIRSCHVINK J L, et al., 2017. Magnetostratigraphy of the Rabot formation, upper cretaceous, James Ross Basin, Antarctic Peninsula[J]. Cretaceous Research, 72: 172-187. DOI:10.1016/j.cretres.2016.12.016
MILANESE F N, OLIVERO E B, SLOTZNICK S P, et al., 2020. Coniacian-Campanian magnetostratigraphy of the Marambio Group: The Santonian-Campanian boundary in the Antarctic Peninsula and the complete Upper Cretaceous-Lowermost Paleogene chronostratigraphical framework for the James Ross Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 555: 109871. DOI:10.1016/j.palaeo.2020.109871
MÜLLER R D, SETON M, ZAHIROVIC S, et al., 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 44: 107-138. DOI:10.1146/annurev-earth-060115-012211
MÜLLER R D, CANNON J, QIN X D, et al., 2018. GPlates: Building a Virtual Earth Through Deep Time[J]. Geochemistry, Geophysics, Geosystems, 19(7): 2243-2261. DOI:10.1029/2018GC007584
MÜLLER R D, ZAHIROVIC S, WILLIAMS S E, et al., 2019. A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic[J]. Tectonics, 38(6): 1884-1907. DOI:10.1029/2018TC005462
MUNDAY D R, JOHNSON H L, MARSHALL D P, 2015. The role of ocean gateways in the dynamics and sensitivity to wind stress of the early Antarctic Circumpolar Current[J]. Paleoceanography, 30(3): 284-302. DOI:10.1002/2014PA002675
PAGANI M, ZACHOS J C, FREEMAN K H, et al., 2005. Marked decline in atmospheric carbon dioxide concentrations during the paleogene[J]. Science, 309(5734): 600-603. DOI:10.1126/science.1110063
PATERSON S R, DUCEA M N, 2015. Arc magmatic tempos: gathering the evidence[J]. Elements, 11(2): 91-98. DOI:10.2113/gselements.11.2.91
PEDRO J B, JOCHUMM, BUIZERT C, et al., 2018. Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling[J]. Quaternary Science Reviews, 192: 27-46. DOI:10.1016/j.quascirev.2018.05.005
PFUHL H A, MCCAVE I N, 2005. Evidence for late Oligocene establishment of the Antarctic Circumpolar Current[J]. Earth and Planetary Science Letters, 235(3-4): 715-728. DOI:10.1016/j.epsl.2005.04.025
POBLETE F, ARRIAGADA C, ROPERCH P, et al., 2011. Paleomagnetism and tectonics of the South Shetland Islands and the northern Antarctic Peninsula[J]. Earth Planetary Science Letters, 302(3-4): 299-313. DOI:10.1016/j.epsl.2010.12.019
RIGNOT E, MOUGINOT J, SCHEUCHL B, et al., 2019. Four decades of Antarctic Ice Sheet mass balance from 1979-2017[J]. Proceedings of the National Academy of Sciencesof the United States of America, 116(4): 1095-1103. DOI:10.1073/pnas.1812883116
RILEY T R, BURTON-JOHNSON A, FLOWERDEW M J, et al., 2018. Episodicity within a mid-Cretaceous magmatic flare-up in West Antarctica: U-Pb ages of the Lassiter Coast intrusive suite, Antarctic Peninsula, and correlations along the Gondwana margin[J]. GSA Bulletin, 130(7-8): 1177-1196. DOI:10.1130/B31800.1
ROBINSON S A, KLEKOCIUK A R, KING D H, et al., 2020. The 2019/2020 summer of Antarctic heatwaves[J]. Global Change Biology, 26(6): 3178-3180. DOI:10.1111/gcb.15083
RYE C D, MARSHALL J, KELLEY M, et al., 2020. Antarctic glacial melt as a driver of recent Southern Ocean climate trends[J]. Geophysical Research Letters, 47(11): e2019GL086892.
SCHER H D, MARTIN E E, 2006. Timing and climatic consequences of the opening of Drake Passage[J]. Science, 312(5772): 428-430. DOI:10.1126/science.1120044
SCHER H D, WHITTAKER J M, WILLIAMS S E, et al., 2015. Onset of Antarctic circumpolar current 30 million years ago as Tasmanian Gateway aligned with westerlies[J]. Nature, 523(7562): 580-583. DOI:10.1038/nature14598
SCHER H D, 2017. Carbon-ocean gateway links[J]. Nature Geoscience, 10(3): 164-165. DOI:10.1038/ngeo2895
SCHREIDER A A, SCHREIDER A A, EVSENKO E I, 2014. The stages of the development of the basin of the Bransfield Strait[J]. Oceanology, 54(3): 365-373. DOI:10.1134/S0001437014020234
SETON M, Müller R D, Zahirovic S, et al., 2012. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 113(3-4): 212-270. DOI:10.1016/j.earscirev.2012.03.002
SHEN Y B, 1990. Progress in Stratigraphy and Palaeontology of FildesPeninsula, King GeorgeIsl and, Antarctica[J]. Acta PalaeontologicaSinica, 29(2): 129-139. (in Chinese with English abstract)
SMELLIE J L, JOHNSON J S, MCINTOSH W C, et al., 2008. Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula[J]. Palaeogeography Palaeoclimatology Palaeoecology, 260(1-2): 122-148. DOI:10.1016/j.palaeo.2007.08.011
SONG Z S, 1997. Research on Tertiary palynoflora from the petrified forest member of King George Island, Antarctica[J]. Acta Micropalaeontologica Sinica, 14(3): 255-272. (in Chinese with English abstract)
STAGG H M J, COLWEL J B, DIREEN N G, et al., 2004. Geology of the Continental Margin of Enderby and Mac. Robertson Lands, East Antarctica: Insights from a Regional Data Set[J]. Marine Geophysical Researches, 25(3): 183-219.
SIJP W P, ANNA S, DIJKSTRA H A, et al., 2014. The role of ocean gateways on cooling climate on long time scales[J]. Global and Planetary Change, 119: 1-22. DOI:10.1016/j.gloplacha.2014.04.004
TIKKU A A, CANDES C, 1999. The oldest magnetic anomalies in the Australian-Antarctic Basin: Are they isochrons?[J]. Journal of Geophysical Research: Solid Earth, 104(B1): 661-677. DOI:10.1029/1998JB900034
TIKKU A A, DIREEN N G, 2008. Comment on "Major Australian-Antarctic Plate Reorganization at Hawaiian-Emperor Bend Time"[J]. Science, 321(5888): 490.
TORSVIK T H, DOUBROVINE P V, STEINBERGER B, et al., 2017. Pacific plate motion change caused the Hawaiian-Emperor Bend[J]. Nature Communications, 8(1): 1-12. DOI:10.1038/s41467-016-0009-6
VAN DE LAGEMAAT S H A, SWART M L A, VAES B, et al., 2021. Subduction initiation in the Scotia Sea region and opening of the Drake Passage: When and why?[J]. Earth-Science Reviews, 215: 103551. DOI:10.1016/j.earscirev.2021.103551
VAES B, VAN HINSBERGEN D J, BOSCHMAN L M, 2019. Reconstruction of subduction and back-arc spreading in the NW Pacific and Aleutian Basin: Clues to causes of Cretaceous and Eocene plate reorganizations[J]. Tectonics, 38(4): 1367-1413. DOI:10.1029/2018TC005164
VEEVERS J J, 1986. Breakup of Australia and Antarctica estimated as mid-Cretaceous (95±5 Ma) from magnetic and seismic data at the continental margin[J]. Earth and Planetary Science Letters, 77(1): 91-99. DOI:10.1016/0012-821X(86)90135-4
VÉRARD C, FLORES K, STAMPFLIG, 2012. Geodynamic reconstructions of the South America-Antarctica plate system[J]. Journal of Geodynamics, 53: 43-60. DOI:10.1016/j.jog.2011.07.007
WANG Z P, 1998. Ecology features of coastal saline lakes related to environmental evolution in the area of Antarctic continental ice edge[J]. Chinese Journal of Polar Research, 10(1): 17-25. (in Chinese with English abstract)
WATTSDR, WATTSGC, BRAMALLA, 1984. Cretaceous and early Tertiary paleomagnetic results from the Antarctic Peninsula[J]. Tectonics, 3(3): 333-346. DOI:10.1029/TC003i003p00333
WESSEL P, LUIS J F, UIEDA L, et al., 2019. The generic mapping tools version 6[J]. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564. DOI:10.1029/2019GC008515
WESTERHOLD T, MARWAN N, DRURY A D, et al., 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 369(6509): 1383-1387. DOI:10.1126/science.aba6853
WHITTAKER J M, GONCHAROV A, WILLIAMS S E, et al., 2013. Global sediment thickness data set updated for the Australian-Antarctic Southern Ocean[J]. Geochemistry, Geophysics, Geosystems, 14(8): 3297-3305. DOI:10.1002/ggge.20181
WHITTAKER R J, TRIANTIS K A, LADLE R J, 2008. ORIGINAL ARTICLE: A general dynamic theory of oceanic island biogeography[J]. Journal of Biogeography, 35(6): 977-994. DOI:10.1111/j.1365-2699.2008.01892.x
WILSON D S, POLLARD D, DECONTO R M, et al., 2013. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene[J]. Geophysical Research Letters, 40(16): 4305-4309. DOI:10.1002/grl.50797
WISE S W J, BREZA J R, HARWOOD D M, et al., 1992. Paleogene glacial history of Antarctica in light of leg 120 drilling results[M]//WISE S W JR, SCHLISH R, PALMER A A. Proceedings of the ocean drilling program, scientific results. Texas: College Station, 120: 1001-1029.
XUE Y S, SHEN Y B, ZHUO E J, 1996. Petrological characteristics of the sedimentary volcaniclastic rocks of the Fossil Hill Formation (Eocene) in King George Island, West Antarctica[J]. Antarctic Research, 8(4): 31-40, 42-46. (in Chinese with English abstract)
ZACHOS J, PAGANI M, SLOAN L, et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292(5517): 686-693. DOI:10.1126/science.1059412
ZHAO Y, LIU J M, 2008. New progress of oil and gas geology in arctic: sidelights of the 33rd International Geological Congress[J]. Journal of Geomechanics, 14(3): 292. (in Chinese)
ZHENG G G, LIU X C, ZHAO Y, 2015. Mesozoic-Cenozoic tectonom-agmatic evolution of the Antarctic Peninsula and its correlation with Patagonia of southernmost South America[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(6): 1090-1102. (in Chinese with English abstract)
ZHENG X S, LIU X H, YANG R Y, 1988. The petrological characteristics of Tertiary volcanic rocks near the Chinese Great Wall Station, west Antarctica[J]. Acta Petrologica Sinica, 4(1): 34-47. (in Chinese with English abstract)
2021-2030地球科学发展战略研究组, 2021. 2021-2030地球科学发展战略: 宜居地球的过去、现在与未来[M]. 北京: 科学出版社.
陈廷愚, 沈炎彬, 赵越, 等, 2008. 南极洲地质发展与冈瓦纳古陆演化[M]. 北京: 商务印书馆.
段威武, 曹流, 1998. 南极乔治王岛海军湾亨内克角早第三纪晚期孢粉化石及其地层学意义[J]. 极地研究, 10(2): 29-35.
高亮, 赵越, 杨振宇, 等, 2015. 西南极乔治王岛白垩纪末-中新世火山-沉积地层研究新进展[J]. 矿物岩石地球化学通报, 34(6): 1109-1122. DOI:10.3969/j.issn.1007-2802.2015.06.004
胡世玲, 郑祥身, 戴憧谟, 等, 1995. 南极乔治王岛北海岸A635玄武岩激光质谱微区40Ar/39Ar等时年龄[J]. 科学通报, 40(16): 1495-1496. DOI:10.3321/j.issn:0023-074X.1995.16.017
李菲, 郜永祺, 万欣, 等, 2021. 全球变暖与地球"三极"气候变化[J]. 大气科学学报, 44(1): 1-11.
李三忠, 索艳慧, 王光增, 等, 2019. 海底"三极"与地表"三极": 动力学关联[J]. 海洋地质与第四纪地质, 39(5): 1-22.
刘小汉, 郑祥身, 1988. 西南极乔治王岛菲尔德斯半岛火山岩地质初步研究[J]. 南极研究, 1(1): 25-35.
马龙, 邢健, 2020. 南极布兰斯菲尔德海峡及邻区地壳结构反演及构造解析[J]. 海洋与湖沼, 51(2): 265-273.
沈炎彬, 1990. 南极乔治王岛菲尔德斯半岛地层、古生物研究新见[J]. 古生物学报, 29(2): 129-139.
宋之深, 1997. 南极乔治王岛第三纪石化林段孢粉植物群研究[J]. 微体古生物学报, 14(3): 255-272.
王自磐, 1998. 南极大陆冰缘环境变迁与沿海盐湖生态特征[J]. 极地研究, 10(1): 17-25.
薛耀松, 沈炎彬, 卓二军, 1996. 南极乔治王岛始新统化石山组沉积火山碎屑岩特征[J]. 南极研究, 8(4): 31-40, 42-46.
赵越, 刘建民, 2008. 北极油气地质的新进展: 第33届国际地质大会侧记[J]. 地质力学学报, 14(3): 292. DOI:10.3969/j.issn.1006-6616.2008.03.012
郑光高, 刘晓春, 赵越, 2015. 南极半岛中新生代构造岩浆演化及与南美巴塔哥尼亚对比[J]. 矿物岩石地球化学通报, 34(6): 1090-1102. DOI:10.3969/j.issn.1007-2802.2015.06.002
郑祥身, 刘小汉, 杨瑞英, 1988. 西南极长城站地区第三系火山岩岩石学特征[J]. 岩石学报, 4(1): 34-47. DOI:10.3321/j.issn:1000-0569.1988.01.004