地质力学学报  2021, Vol. 27 Issue (4): 596-613
引用本文
郑范博, 王国光, 倪培. 花岗伟晶岩型稀有金属矿床流体成矿机制研究进展[J]. 地质力学学报, 2021, 27(4): 596-613.
ZHENG Fanbo, WANG Guoguang, NI Pei. Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits[J]. Journal of Geomechanics, 2021, 27(4): 596-613.
花岗伟晶岩型稀有金属矿床流体成矿机制研究进展
郑范博, 王国光, 倪培    
内生金属矿床成矿机制研究国家重点实验室, 南京大学地球科学与工程学院, 江苏 南京 210023
摘要:随着战略性新兴产业的快速发展,稀有金属等关键金属资源的地位日益不可或缺。花岗伟晶岩是最重要的稀有金属矿床成因类型,该类型矿床的成矿流体特征和成因机制是矿床学的热门研究话题。文章主要对花岗伟晶岩型矿床的成矿流体特征和成矿机制进行了探讨。花岗伟晶岩型稀有金属矿床成矿流体普遍富集挥发分(B、P、F和H2O)和成矿元素,具有低黏度、低成核率、强元素溶解能力和强迁移性。花岗伟晶岩型稀有金属矿床成矿流体形成温压条件存在争议,部分研究者认为形成于高温高压条件,也有研究者认为可能形成于过冷却条件下,温度可能低至350℃。花岗质岩浆高度结晶分异演化和富成矿元素地壳物质小比例深熔是形成成矿花岗伟晶岩的两种主要机制。流体不混溶和组成带纯化是岩浆热液演化过程中稀有金属进一步富集的重要手段。中国规模最大的甲基卡花岗伟晶岩型锂矿是研究该类矿床的理想实验室。
关键词花岗伟晶岩型矿床    稀有金属    成矿流体    成矿机制    
DOI10.12090/j.issn.1006-6616.2021.27.04.050     文章编号:1006-6616(2021)04-0596-18
Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits
ZHENG Fanbo, WANG Guoguang, NI Pei    
State key Laboratory for Mineral Deposits Research, Institute of Geo-fluids, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
Abstract: Strategic rare metals have irreplaceable important use to emerging industry development. Granitic pegmatite is the main source of rare metals, and their fluid characteristics and metallogenic mechanism are hot topics. This paper mainly focuses on fluid properties and metallogenic mechanism of granitic pegmatite-type rare metal deposits. Ore-forming fluids of the granitic pegmatite-type rare metal deposits are generally enriched in volatile (B, P, F and H2O) and ore-forming elements, with low viscosity, low nucleation rate, but strong element solubility and mobility. The ore-forming fluids of the granitic pegmatite-type rare metal deposit were argued to be captured under the condition of high temperature and high pressure, or the temperature of as low as 350℃ under the condition of supercooling. The high crystallization differentiation evolution of granitic magma and the small proportion of crustal material rich in ore-forming elements are the two main mechanisms for the formation of ore-forming granitic pegmatite. Fluid immiscibility and constitutional zone refining are important means for further enrichment of rare metals in the process of magmatic hydrothermal evolution. The largest Jiajika granitic pegmatite-type lithium deposit in China is an ideal laboratory to study this kind of deposit.
Key words: granitic pegmatite-type deposit    rare element    ore-forming fluids    metallogenic mechanism    
0 引言

战略性关键金属对于新能源领域、高性能材料、生物技术、信息技术、高端装备、绿色环保以及航空航天等战略新兴产业具有不可替代的用途,属于高科技发展的核心资源(Linnen et al., 2012陈骏,2019蒋少涌等,2019毛景文等,2019翟明国等,2019侯增谦等,2020)。战略性关键金属包括稀有金属、稀土金属、稀散金属和部分稀贵金属。稀有金属包括锂、铍、铌、钽、铷、铯、锆、铪、钨、锡等;稀土金属为镧系元素以及性质相近的钪、钇;稀散元素为镓、锗、硒、镉、铟、蹄、铼和铊;部分稀贵金属包括铂族元素、铬、钴等。文中主要关注与花岗伟晶岩关系密切的稀有金属矿产资源。

在地球科学领域中,流体包括气体、液体、熔体和地球中受构造应力作用而移动的物体(卢焕章,2019)。流体具有流动性、压缩性和压力传递作用,这些力学属性为成矿作用研究提供了基础(徐兴旺等,2019)。成矿流体是金属富集、迁移和沉淀过程中的重要介质。流体包裹体作为保存在晶体中的记录原始成矿流体信息最直接的证据,是获取成矿过程中温度、压力和成分等信息的关键媒介(Roedder, 1984Bodnar, 2003; 卢焕章等,2004倪培等,2018王国光等,2020)。与稀有金属矿产有关的花岗伟晶岩型矿床成矿流体来源、成分、温压条件和演化过程仍存在争议(Norton, 1973Stewart, 1978; 王联魁等, 1999, 2000李健康,2006Simmons and Webber, 2008; London, 2014, 2015, 2018Shaw et al., 2016Thomas and Davidson, 2016Lv et al., 2018Thomas et al., 2019张辉等,2019)。文章以成矿流体为核心内容,回顾花岗岩伟晶岩型稀有金属矿床流体性质和成因机制的研究进展,指出目前研究存在的问题,并且进一步提出相关研究展望。

1 花岗伟晶岩型稀有金属矿床基本特征 1.1 定义及分类

花岗伟晶岩是指具有骨架、文象或其他矿物晶体定向生长的粗粒花岗岩。伟晶岩内的矿物颗粒往往比较粗大,并且常呈现从边缘向核部颗粒逐渐粗大的趋势。伟晶岩中标志性的结构为普遍发育特征性文象结构(图 1),并且矿物晶体具有定向生长的习性,而且伟晶岩内常常发育显著的矿物组合空间分带(London,2018)。尽管稀有金属矿床常与伟晶岩有关,值得指出的是,伟晶岩中仅有极少部分发育稀有金属矿化,矿化伟晶岩仅占伟晶岩总量的1%~2%(Černý,1991aLondon and Kontak, 2012)。伟晶岩有多种分类方案,其中London(2008)将伟晶岩划分为简单伟晶岩和稀有金属伟晶岩,前者主要与长石和石英等非金属矿产有关,后者为稀有金属的重要母岩。应用最为广泛的为Černý(1991b)Černý and Ercit(2005)的方案,他们将伟晶岩分为LCT(锂铯钽)族和NYF(铌钇氟)族。LCT族伟晶岩富集Li、Be、Ta>Nb、Cs、B、F、P、Mn、Ga、Rb、Sn和Hf(Černý,1991bBradley et al., 2017),主要与S型花岗岩有关,少量与Ⅰ型花岗岩有关(Černý and Ercit,2005Simmons and Webber, 2008);NYF族伟晶岩富集Nb > Ta、Y、F、Be、Sn、B、Ti、REE、Zr、Th、U和Sc(Černý,1991bRakovan,2008),与A型花岗岩有关(Černý and Ercit,2005)。LCT族伟晶岩通常是板块汇聚造山过程中岩浆活动的产物(Černý,1991bTkachev,2011McCauley and Bradley, 2014Tkachev et al., 2018)。此外,LCT族伟晶岩年龄分布的主峰与超大陆聚合的时代一致(McCauley and Bradley, 2014王汝成等,2021)。如2368 Ma、1800 Ma、962 Ma、529~485 Ma和371~274 Ma的LCT族伟晶岩出现的主峰分别与Sclavia and Superia、Nuna、Rodinia、Gondwana、Pangea超大陆聚合时代一致(McCauley and Bradley, 2014)。LCT族伟晶岩提供了全世界约二分之一的Li(Benson et al., 2017),十分之一的Be,大量的Ta和几乎全部的Cs(Bradley et al., 2017)。

Qtz—石英;Kfs—钾长石 Qtz-quartz; Kfs-K-feldspar 图 1 典型稀有金属花岗伟晶岩的文象结构(样品为新疆大红柳滩锂矿手标本) Fig. 1 Representative photo of rare metal pegmatites showing graphic texture(The sample is a hand specimen from the Dahongliutan lithium deposit, Xinjiang)
1.2 产状

花岗伟晶岩脉通常产于母岩花岗岩内部或顶部片麻岩、角闪岩、片岩中,大多数分布在与母岩花岗岩相距数千米范围内(London, 2015, 2018),有时可达10 km(Baker, 1998)。伟晶岩群的演化和矿化程度往往具有空间分带特征,靠近母岩的伟晶岩演化程度较低,矿化较弱,仅发育造岩矿物;远端的伟晶岩演化程度更高,矿化更强,更倾向于含有锂辉石、绿柱石等稀有金属独立矿物,形成具有重要经济意义的稀有金属矿体(London,2018)。另外,随着距母岩花岗岩距离的增加,伟晶岩脉数目一般会逐渐减少(London,2018)。不仅伟晶岩脉群在整个区域上具有带状分布特征,而且单个伟晶岩脉内也常见带状分布特征(Cameron,1949)。伟晶岩脉通常受围岩构造、组构和层理控制,大小不一,呈脉状、囊状、透镜状、管状、不规则状产出,一般与围岩接触关系明显(Simmons and Webber, 2008)。

1.3 单个花岗伟晶岩脉内部分带

通常单个花岗伟晶岩脉具有显著的内部分带特征(图 2)。Cameron(1949)总结了大量资料,提出了广为接受的伟晶岩空间分带模型。从外部到中心,依次发育边缘带、外部带、中间带和内核。边缘带的厚度不大,矿物颗粒细小,主要为长石和石英。外侧带矿物颗粒较粗,主要由长石和石英组成,具有文象结构或花岗结构。中间带主要矿物颗粒粗大,一般由微斜长石组成,有时由长石和石英组成,厚度较大。内核带由石英块体组成。此外,伟晶岩往往结构复杂,常发育后期的裂隙充填体和交代体。Norton(1983)修改了上述模型,提出最后形成的内核带为富钠长石和锂云母或锂辉石。London and Morgan(2017)实验模拟验证了在纯石英结晶之后确实可以形成钠长石-锂云母组合。LCT族伟晶岩矿床中加拿大Tanco矿床发育良好的空间分带(Černý and Ercit,2005)。Li矿体主要发育在上过渡带,Cs矿体产出在铯镏石带,Ta矿体产出在细晶钠长石带和中过渡带。相似地,超大型Greenbushes伟晶岩矿床中Ta矿化和Li矿化发生在不同位置(Linnen et al., 2012)。中国可可托海3号脉由外向内根据矿物组合特征划分为9个结构带(邹天人和李庆昌,2006),依次为文象、变文象伟晶岩带,糖晶状钠长石带,块体微斜长石带,白云母-石英带,叶钠长石-锂辉石带,石英-锂辉石带,白云母-薄片钠长石带,锂云母-薄片钠长石带,块体微斜长石核和块体石英核,构成同心环状结构分带。但不是所有的LCT族伟晶岩矿床都有良好的内部分带。Swanson(2012)报道了美国北卡罗来纳州和南卡罗来纳州的锂辉石伟晶岩矿床,发现该区域的伟晶岩含有中粗粒锂辉石、斜长石、钾长石、石英、白云母,以及少量的副矿物如绿柱石、锡石等,但是没有显著的空间分带性。Barros et al.(2020)发现爱尔兰东南部的Leinster钠长石-锂辉石伟晶岩为弱分带至均质化。另外,中国四川甲基卡也归类为非显著空间分带性的伟晶岩型矿床(London,2018)。

UST(unidirectional solidification texture)—单向固结组构,位于中间带 UST-unidirectional solidification texture, located in the intermediate zone 图 2 美国加利福尼亚州圣迭戈县帕洛马山附近一条完整的伟晶岩岩脉部分(29 cm厚;London,2018) Fig. 2 A complete section of a pegmatite dike from near Palomar Mountain, San Diego County, California, USA(29 cm-thickness; London, 2018)
2 花岗伟晶岩型稀有金属矿床的成矿流体特征

花岗伟晶岩型矿床的成矿流体成分和物理性质是正确理解成矿机制的关键要素。成矿流体中的挥发分(B、P、F和H2O)是稀有金属在溶液中迁移的络合剂,控制着元素的迁移和沉淀;成矿元素含量的变化对于精确理解成矿机制至关重要;成矿流体的物理性质如黏度是理解伟晶岩型矿床成矿机制非常重要的参数。

2.1 成矿流体挥发分

稀有金属倾向于与F和Cl等形成络合物在岩浆热液体系迁移(Salvi et al., 2000; Veksler, 2004; Thomas et al., 2009, 2011a; Zaraisky et al., 2010; Veksler et al., 2012; Timofeev et al., 2015; Harlaux et al., 2017)。然而,花岗伟晶岩型稀有金属矿床成矿流体挥发分(B、P、F和H2O)含量仍存在争议。部分学者通过全岩分析、模拟计算和实验岩石学研究指出,挥发分含量相对较低,只含有3%~6%H2O(London, 1992Nabelek et al., 2010)。Morgan and London(1987)通过对加拿大Tanco稀有金属花岗伟晶岩研究,估算了成矿流体中含有655×10-6的B,1419×10-6的F。Stilling et al.(2006)基于对Tanco稀有金属花岗伟晶岩的整体轮廓进行了计算机3D重建,计算了其整体成分,提出Tanco稀有金属花岗伟晶岩含有0.07%的B2O3、0.12%的F、0.86%的P2O5和0.28%的H2O。London (2014)使用成分类似伟晶岩的富锂流纹质玻璃进行结晶实验,发现产物存在类似于花岗伟晶岩的结构,因此,认为伟晶岩中挥发分(B、P和F)含量<2%,H2O含量为4.5%~5.1%。

然而,另外一些学者通过包裹体研究发现花岗伟晶岩型稀有金属矿床成矿流体可能含有极高的挥发分。如Badanina et al.(2004)对俄罗斯Khangilay杂岩体中Li-F稀有金属花岗岩开展了熔体包裹体成分分析工作,报道最高程度演化的熔体中挥发分质量百分数可以达到11%(H2O: 8.6%;F: 1.6%;B2O3: 1.5%)。Thomas and Davidson(2012)总结了一些伟晶岩矿床中的熔体包裹体数据,表明成矿流体中H2O的含量主要在8.1%~26.2%之间。Borisova et al.(2012)使用LA-ICP-QMS对Ehrenfriedersdorf伟晶岩的石英中的富晶体包裹体进行的初步分析研究发现B含量可达16500×10-6熊欣等(2019)运用扫描电镜-能谱仪对甲基卡花岗伟晶岩型锂矿锂辉石中的包裹体(图 3)固相矿物进行鉴定发现存在磷灰石和萤石,表明成矿流体中富P和F。Li et al.(2019)通过稀有金属矿物在热液金刚石压腔(HDAC)水溶液中的结晶实验研究表明,成矿流体可能富含H2O。Nabelek et al. (2010)根据实验研究表明,溶解的H2O可以提高成核所需的自由能、降低黏度,在伟晶岩形成中起着关键作用。Maneta and Baker (2014)在水饱和、含锂条件下实验性地产生了石英-长石共生的文象结构。

VCO2—气相二氧化碳;LCO2—液相二氧化碳;LH2O—液相水;S—固相;V—气相
a—甲基卡锂辉石中的富晶体包裹体; b—甲基卡锂辉石中富CO2 FIA (Fluid Inclusion Assemblage, 流体包裹体组合); c—甲基卡锂辉石中的富晶体FIA; d—大红柳滩锂辉石中的富晶体FIA
VCO2-Gas phase carbon dioxide; LCO2-Liquid phase carbon dioxide; LH2O-Liquid phase water; S-Solid phase; V-Gas phase 图 3 花岗伟晶岩型锂矿锂辉石中典型的包裹体照片 Fig. 3 Typical inclusions in the spodumene from the granitic pegmatite-type lithium-bearing ore. (a) Crystal-rich inclusion hosted in the spodumene from Jiajika; (b) CO2-rich Fluid Inclusion Assemblage hosted in the spodumene from Jiajika; (c) Crystal-rich Fluid Inclusion Assemblage hosted in the spodumene from Jiajika; (d) Crystal-rich Fluid Inclusion Assemblage hosted in the spodumene from Dahongliutan

除了挥发分B、P、F和H2O外,成矿流体中也常见碳酸盐矿物、CO2等挥发分。如London(1986)在Tanco伟晶岩中发现扎布耶石(Li2CO3),Thomas and Davidson(2016)在德国Ehrenfriedersdorf伟晶岩石英中的熔体包裹体中发现气相成分为CO2Li and Chou(2017)运用激光拉曼对甲基卡锂辉石中的富晶体包裹体研究发现,包裹体中的固相矿物除了硅酸盐矿物(方石英、锂辉石、锂绿泥石)外还含有扎布耶石(Li2CO3)和方解石,室温下,流体相中含10%~80%体积百分比的CO2,这些结果表明,富晶体包裹体代表了一种捕获富含碳酸盐和硅酸盐的流体。因此,成矿流体可能是富碳酸盐和硅酸盐的流体。

花岗伟晶岩型稀有金属矿床成矿流体中的挥发分(B、P、F和H2O)可显著降低花岗伟晶岩结晶温度、成核速率和黏度,并且明显提高了成矿流体中稀有金属元素和大离子亲石元素的浓度(Manning, 1981Dingwell et al., 1996Maneta et al., 2015)。London et al.(1989)研究表明在200 MPa条件下,挥发分可以使成矿流体的固相线降低到450 ℃,比简单含水花岗岩固相线低200 ℃以上。Thomas et al.通过对花岗伟晶岩中的包裹体研究表明成矿流体具有超强稀有金属元素溶解能力和强迁移性(Thomas and Davidson, 2016; Thomas et al., 2019)。

2.2 成矿流体金属含量

通过稀有金属含量的研究可以准确了解花岗伟晶岩型稀有金属矿床成矿机制,但其含量目前仍存在争议,一些学者认为成矿流体中具有极高的金属含量。如Webster et al. (1997)针对德国Ehrenfriedersdorf Sn-W矿床的伟晶岩中石英斑晶开展了熔体包裹体电子探针和二次离子质谱分析,发现熔体包裹体有高含量的Sn、F、P、Li、Rb、Cs、Nb、Ta、Be,部分熔体包裹体中Sn含量高达1000×10-6~2000×10-6,比无矿火成岩高出2个数量级。Thomas et al.(2011b)在德国Ehrenfriedersdorf伟晶岩中的熔体包裹体中测得Be含量为1234×10-6~11025×10-6Borisova et al.(2012)使用激光烧蚀等离子体四级杆质谱仪对Ehrenfriedersdorf伟晶岩的石英中的富晶体包裹体进行的初步分析研究发现Li含量可达28400×10-6,Ta含量可达1720×10-6。Thomas et al.基于熔体包裹体的研究表明,成矿流体包含大量的稀有金属元素,具有超强的元素溶解和迁移能力,Be含量高达11600×10-6,Sn含量高达6865×10-6,Ta含量高达3236×10-6,Li含量高达28405×10-6(图 4a4bThomas and Davidson, 2016; Thomas et al., 2019)。Li and Chou(2017)运用激光拉曼对甲基卡锂辉石中的富晶体包裹体研究发现,包裹体中的固相矿物含有扎布耶石(Li2CO3)和锂绿泥石,表明成矿流体可能含有极高浓度的Li等金属。

a—Ehrenfriedersdorf花岗岩-伟晶岩系统石英中熔体包裹体中Be质量浓度-H2O浓度图;b—Ehrenfriedersdorf花岗岩-伟晶岩系统石英中熔体包裹体中CA浓度-H2O浓度图(该图表明在临界条件下,某些元素在超临界流体或熔体中的溶解度非常高);c—假二元硅酸盐熔体-H2O系统中A型和B型熔体包裹体温度-H2O浓度图;d—5个不同伟晶岩石英中熔体包裹体的结果绘制的假二元溶线
CA代表Be、Sn、As、P、Cl、Ta;CA-crit代表在临界H2O浓度下的CA浓度;H2O-crit代表临界H2O浓度);TC代表临界温度
(a) Be concentration versus H2O concentration plot in melt inclusions in the Ehrenfriedersdorf granite-pegmatite system. (b)CAversus H2O concentration plot in melt inclusions hosted in quartz in the Ehrenfriedersdorf granite-pegmatite system. (c) Relationship of type-A and type-B melt in clusions in a temperature versus H2O concentration plot of the pseudo-binary silicate melt-H2O system. (d)Results of melt inclusions in quartz of five different pegmatites plot a pseudo-binary solvus(The figure b shows that certain elements have very high solubility in supercritical fluids or melts under critical conditions; CA represents Be, Sn, As, P, Cl, Ta; CA-crit represents the concentration of CA at the critical H2O concentration; H2O-critre represents critical H2O concentration; TC represents critical temperature) 图 4 假二元硅酸盐熔体-H2O系统的温度-H2O浓度图(Thomas and Davidson, 2016) Fig. 4 Temperature versus H2O concentration plot of the pseudo-binary silicate melt-H2O system (Thomas and Davidson, 2016).

然而,部分学者认为成矿流体中稀有金属含量相对较低。如Morgan and London(1987)通过对加拿大Tanco稀有金属花岗伟晶岩研究,估计成矿流体中含有Li 3523×10-6、Be 169×10-6、Rb 5525×10-6、Cs 3036×10-6、Nb 56×10-6、Ta 300×10-6London (2014)根据熔体组成为10×10-6 Be的花岗岩熔体和矿物-熔体分配系数DBe=0.25,对Be富集进行了瑞利分馏测试计算,结果显示在结晶度达到99.9%时Be丰度仅达到1778×10-6;同时发现在14种最富含绿柱石的伟晶岩中,Be的平均丰度仅为205×10-6

2.3 成矿流体的黏度

流体的黏度对成岩成矿流体迁移非常重要,流体的黏度越大越难迁移。London(2009)认为成矿流体H2O含量较低,黏度在700 ℃时大约为105 Pa·s,在过冷到450 ℃时黏度会更大(108 Pa·s),这种黏度相当于常温下的沥青。然而,Thomas et al.(2011c)在距离母岩花岗岩很远的地方观察到了只有几厘米宽的伟晶岩(例如挪威Froland伟晶岩),认为高度黏稠、H2O不饱和、过冷、迅速结晶的成矿流体从花岗岩源区长距离(高达10 km)的迁移几乎不可能,与距离母岩较远的地方出现的细脉伟晶岩事实不符。Thomas and Davidson(2012)研究表明,花岗伟晶岩稀有金属矿床成矿流体黏度较低,在任何给定的温度条件下,花岗岩熔体大约比形成的相应伟晶岩熔体的黏度高1万倍。Li and Chou(2017)对甲基卡伟晶岩锂辉石中的富晶体包裹体研究发现,其成分看起来接近于具有低黏度、高元素扩散性和传质能力的含水硅酸盐液体,使得稀有金属元素的浓度极高。

影响成矿流体黏度的因素很多,包括流体组成、温度、压力等。Audétat and Keppler (2004)通过实验表明流体的黏度只随着硅酸盐含量的增加而缓慢增加。含20%硅酸盐的流体在800 ℃时的黏度等于纯水在室温下的黏度(10-3 Pa·s)。含有50%硅酸盐的流体在相同条件下的黏度为0.8×10-1 Pa·s,与橄榄油在室温下的黏度相当。Nabelek et al.(2010)研究表明H2O可显著降低流体黏度。Thomas and Davidson(2012)通过对含水量不同的熔体黏度计算发现,含水越多熔体黏度越低。此外,Sowerby and Keppler(2002)认为大量的F、B、P和碱(Li、Na) 可显著降低流体黏度。

2.4 成矿流体的温压条件

成矿流体的温压条件是理解成矿流体演化的重要因素。不同学者运用矿物温度计法、稳定同位素法和流体包裹体温压计法等方法获得的花岗伟晶岩稀有金属矿床成矿温压范围较广,争议较大(图 5)。传统观点认为在锂铝硅酸盐相图中,假设伟晶岩形成于平衡条件,锂辉石形成于温度为600 ℃压力超过350 MPa的高温高压条件(Linnen et al., 2012)。吴长年等(1994)运用包裹体温度计法对阿尔泰伟晶岩锂辉石中的包裹体研究表明,其均一温度为480~550 ℃,据富CO2流体包裹体等容线估算的形成压力为200~360 MPa。Kontak et al. (2002)根据已获得的加拿大新斯科舍省Peggys Cove伟晶岩形成压力330~350 MPa,对石英宿主的流体包裹体均一温度进行压力校准获得伟晶岩流体包裹体捕获温度为600~650 ℃。Ackerman et al. (2007)基于对捷克斯洛伐克Vlastějovice伟晶岩中包裹体等容线计算,结合细晶花岗岩的水饱和固相线和长石温度计重建了伟晶岩型锂矿的结晶温压条件:温度为500~570 ℃,压力为310~430 MPa。Simmons et al. (2016)运用石榴子石-黑云母温压计法和矽线石、石英、白云母、黑云母和碱性长石矿物组合推断了美国Mt Mica伟晶岩形成的温压条件:温度为630~650 ℃,压力为300 MPa。Li and Chou(2017)运用热液金刚石压腔(在接近锂辉石形成条件的温度和压力下)对甲基卡锂辉石中富晶体包裹体均一实验发现,均一温度为500~720 ℃;通过富晶体包裹体均一时热液金刚石压腔水介质的压力估计包裹体内压为300~500 MPa。Li et al.(2019)也通过稀有金属矿物在热液金刚石压腔水溶液中的结晶实验研究表明,锂辉石结晶温度为530~700 ℃,结晶压力为300~500 MPa。黄永胜等(2016)运用英国Linkam公司的THMSG600冷热台对新疆阿尔泰伟晶岩研究表明,该地区三叠纪伟晶岩早期结构带中的CO2-NaCl-H2O流体包裹体均一温度为400~581 ℃,利用含CO2包裹体等容线相交法确定流体捕获压力为235~308 MPa。Mulja and Williams-Jones(2018)通过流体包裹体研究结合斜长石-石榴子石-白云母-黑云母地质温压计和接触变质组合的多平衡模型对加拿大魁北克稀有金属花岗伟晶岩研究表明,锂辉石形成温度为450~480 ℃,压力为350 MPa。Xiong et al.(2019)通过Linkam THMS600冷热台对扎乌龙花岗伟晶岩锂矿中的富晶体包裹体均一实验表明,均一温度为500~580 ℃,结合PVT相图估算压力为310~480 MPa。

图 5 世界主要伟晶岩矿床形成的温压条件 Fig. 5 Temperature and pressure conditions of main pegmatite deposits in the world

然而,部分学者认为花岗伟晶岩型锂矿形成温度较低。如London(1986)对加拿大Tanco伟晶岩中的富晶体流体包裹体和相平衡研究表明,包裹体均一于375~450 ℃,根据CO2包裹体和H2O包裹体等容线交点估算压力为260~290 MPa。Chakoumakos and Lumpkin (1990)通过伟晶岩液相线、固相线和矿物组合,包裹体等容线,围岩变质条件,伟晶岩矿物平衡综合评估了美国新墨西哥州Harding伟晶岩的P-T路径,表明其形成温度为300~650 ℃,压力为300~350 MPa。Morgan VI and London (1999)运用长石温度计法对美国加利福尼亚州Ramona伟晶岩研究表明,其形成于375~425 ℃。Sirbescu and Nabelek(2003)对美国南达科他州Tin Mountain伟晶岩中流体包裹体研究表明,其均一温度为260~420 ℃,同时据包裹体等容线估算压力在120~420 MPa之间。

3 花岗伟晶岩型稀有金属矿床成矿机制 3.1 花岗伟晶岩成因

关于花岗伟晶岩型稀有金属矿床的成因存在花岗岩浆高程度结晶分异(图 6)和富集稀有金属源区小比例深熔两种流行的观点。一些学者认为花岗伟晶岩型稀有金属矿床成矿流体是花岗岩浆高度分异结晶形成的残余熔体(Norton, 1973; Raimbault et al., 1995; Černý and Ercit, 2005; Hulsbosch et al., 2014; London, 2014; 吴福元等,2015; Knoll et al., 2018Roda-Robles et al., 2018)。花岗伟晶岩熔体从源区上升侵位结晶分异过程中,长石中K/Rb比值逐渐降低,钾长石和白云母中的Li、Rb、Cs增高,绿柱石中Na/Li比值降低,但是Cs含量升高,铌铁矿族矿物的Nb/Ta比值升高(Černý, 1989)。Roda-Robles et al. (2012)通过对西班牙Pinilla de Fermoselle花岗伟晶岩系统的研究也发现在岩浆分异演化过程中,长石、云母和电气石中Li、Be和Sr都有系统性变化,Li和Be随着演化程度的增加而增加,Sr随着演化程度增加而降低;同时发现云母和钾长石中的Rb、Cs和Ba也有系统性变化,Rb和Cs随着演化程度的增加而增加,Ba随着演化程度增加而降低。电气石中的Nb和Ta随着演化程度的增加而增加,Zn则显示相反的变化趋势。

图 6 花岗岩和花岗伟晶岩关系示意图(London,2008) Fig. 6 Schematic diagram of the relationship between granite and granitic pegmatite (London, 2008)

但是,有学者指出在全球范围内发现的几个伟晶岩矿田和花岗岩侵入体之间缺乏空间、时间和成分的关系。如加拿大Tanco伟晶岩、澳大利亚Greenbush伟晶岩和中国可可托海3号伟晶岩,其成矿母岩花岗岩至今未发现和证实(Lv et al., 2018张辉等,2019)。另外有学者提出了源区富集的观点,该观点强调地表风化作用导致源区富集稀有金属和B、Li等助熔成分(Stewart, 1978; Kontak et al., 2005; Simmons and Webber, 2008; Melleton et al., 2012; Deveaud et al., 2015; Shaw et al., 2016; Müller et al., 2017; Fuchsloch et al., 2018; Konzett et al., 2018; Gourcerol et al., 2019)。例如,在麻粒岩相变质过程中,区域剪切带可能引导富含稀有金属和助熔元素的流体。这种流体可能会促进地壳深部的部分熔融,从而形成富含稀有金属的熔体(Cuney and Barbey, 2014)。

3.2 稀有金属富集作用 3.2.1 流体不混溶作用

许多学者通过研究发现流体不混溶作用对稀有金属的富集至关重要(Jahns and Burnham, 1969Veksler and Thomas, 2002Thomas and Davidson, 2016Fan et al., 2020)。Warren and Pincus (1940)提出成网组分和变网组分之间为了电荷平衡而竞争非桥氧可引起不混溶作用。传统观点认为伟晶岩是缓慢冷却的结果,而且伟晶岩形成过程中可以出现熔体和流体共存(Jahns and Burnham, 1969)。Roedder (1992)综述了自然界岩浆环境的熔融包裹体,提出岩浆演化过程中存在硅酸盐熔体到富水硅酸盐熔体再到晚期水质流体的转变过程,并且进一步提出不混溶作用可能在岩浆演化过程中普遍存在。Veksler and Thomas (2002)利用冷封快速淬火高压釜开展了0.1~0.2 GPa压力水饱和条件下的实验研究,发现在高B、P和F(每种质量含量为5%)条件下硅酸盐熔体、低密度溶液和高盐度熔体共存。Veksler (2004)实验研究也证实花岗伟晶岩形成过程存在液态不混溶。Badanina et al.(2004)对俄罗斯Khangilay杂岩体中Li-F稀有金属花岗岩开展了熔体包裹体研究,发现高演化伟晶岩的成分与低演化熔体成分无法用分离结晶作用解释,而可能是晚阶段残留熔体不混溶的结果。在不混溶作用中,铝硅酸盐熔体相富含K,超高盐度的流体相富含Na,这也与钠化花岗岩位于上部的地质事实相吻合。Borisova et al. (2012)认为伟晶岩形成过程中发生了熔体和流体相的不混溶。Thomas et al.发现德国Ehrenfriedersdorf伟晶岩石英中存在成分互补的两种类型包裹体(Thormes et al., 2011a, 2019; Thomas and Davidson, 2016):A型熔体包裹体(贫H2O-过铝质包裹体)和B型熔体包裹体(富H2O-过碱质包裹体),对其进行加压均一化实验,发现它们沿硅酸盐熔体-H2O体系的假二元溶解曲线分布(图 4c),因此,认为它们是由熔体-熔体不混溶产生的共轭熔体。此外,Thomas and Davidson(2016)对5个花岗伟晶岩稀有金属矿床系统(Ehrenfriedersdorf、Zinnwald、Königshain、Malkhan和Tanco)进行综合比较,表明其都具有相似的熔体-熔体不混溶模式(图 4d)。Ballouard et al.(2020)对南非纳马夸兰中元古代奥兰治河伟晶岩带中的稀有金属伟晶岩研究表明,在伟晶岩相关稀有金属矿床的形成过程中,熔体-熔体和熔体-流体不混溶和交代作用起着重要作用。Fan et al.(2020)研究了西藏西昆仑白龙山花岗伟晶岩的全岩和矿物(如白云母和锂辉石)的主量、微量元素和锂同位素组成,表明贫锂和富锂伟晶岩是花岗岩浆演化后期熔体-流体分离的产物。贫锂伟晶岩形成于贫H2O富硅酸盐熔体系统,而富锂伟晶岩产生于富H2O贫硅酸盐熔体(超临界流体)系统。熔体-流体分离可导致显著的锂同位素分馏,7Li富集在强结合的残余硅酸盐熔体中,6Li倾向于流体中较弱的水合键;或者,富含6Li的富锂伟晶岩可能是由6Li在超临界或近临界流体中的优先富集引起的。超临界流体出溶在锂同位素分馏和稀有金属成矿中起着重要作用。

此外,某些自然矿床在构造、地质和地球化学方面也显示出流体不混溶。陈毓川等(2003)对新疆阿尔泰成矿带地质特征和成矿规律进行总结时发现,发生流体不混溶的岩体的围岩都具有良好的封闭作用。李建康(2006)对甲基卡矿区研究发现,甲基卡二云母花岗岩内部的伟晶岩脉与岩体接触关系明显,呈现出贯入式特点,二云母花岗岩和伟晶岩微量和稀土元素组成表现出一定的突变性,指示甲基卡矿床为岩浆液态不混溶成因。廖芝华等(2019)对可尔因二云母花岗岩体和伟晶岩地球化学特征研究,结果显示二云母花岗岩与伟晶岩间存在Al2O3、Na2O和Si2O、K2O相分离的现象;二云母花岗岩与伟晶岩Li、Be、Nb、Ta等稀有元素含量,F、B等挥发分含量,ΣREE、ΣCe/ΣY、(La/Yb)N、(Gd/Yb)N、δEu等具有突变现象。这些特征表明伟晶岩为二云母花岗岩液态不混溶形成。

3.2.2 过冷却条件下的组成带纯化模型

London (1992)提出的新成因模型认为,伟晶岩形成过程未必极其富水,强调过冷却作用和非平衡结晶是伟晶岩重要机制。由于过冷却效应的存在,相对应的富挥发分硅酸盐熔体可以维持低至500 ℃,甚至350 ℃。花岗伟晶岩型稀有金属矿床成矿过程中需要稀有金属矿物达到饱和。如Stewart (1978)Maneta et al. (2015)确定,含水花岗岩熔体在Li2O含量大约为1.5%时会饱和形成透锂长石、锂辉石和锂霞石。然而,达到经济意义的伟晶岩Li2O平均含量接近0.5% (Stewart, 1978),Maneta et al. (2015)用该值模拟伟晶岩中锂铝硅酸盐的结晶,发现当与饱和值比较时,很明显锂铝硅酸盐未达到饱和,不应该在结晶开始就存在,但是在熔体充分过冷却时,锂铝硅酸盐会在熔体结晶开始时结晶。London(2018)总结发现形成稀有金属花岗伟晶岩的熔体中稀有金属的丰度大多低于含水花岗岩系统固相线处的饱和值,因此,形成花岗伟晶岩型矿床的熔体在结晶开始前通过明显的液相线过冷在稀有元素矿物中达到饱和。

London(2014, 2018)提出了组成带纯化富集(constitutional zone refining;图 7)来解释花岗岩伟晶岩的内部结构和矿物学演化,其认为在熔体过冷到远低于其液相线和固相线温度时,组成带纯化富集作用开始时,在伟晶岩从脉体边缘向核部结晶,结晶前缘会形成一层边界层流体,亲石元素通过边界层流体先结晶,稀有金属物质在边界层流体中逐渐聚集,直至伟晶岩脉结晶最后阶段,稀有金属沉淀形成花岗伟晶岩型稀有金属矿床。边界层中诸如H2O、B、P和F等挥发分的积累增强了元素的横向扩散。富挥发分边界层被认为有利于伟晶岩内部大块晶体的生成。过冷却条件下组成带纯化模型主要表现在伟晶岩组构、矿物生长习性和矿物组合分带等伟晶岩显著特征方面。矿物学分带普遍表现为斜长石主要在外部带,钾长石主要在中间带,石英集中于最后形成的内核,稀有金属矿物集中于中间带和内核。

a—在组成带纯化作用时,相容的组分从大块熔体中溶解,通过边界层附着在成岩矿物的表面上;b—由于挥发分降低了固相温度,增强了组分的混相性,被排除的稀有金属组分在边界层液体中富集;c—一旦熔体的成分被耗尽,边界层液体就会发生结晶,导致在生长的矿物(云母、电气石)的成分发生突变 图 7 花岗伟晶岩浆组成带纯化示意图(London, 2014, 2018) Fig. 7 Schematic diagram of the constitutional zone refining of granitic pegmatite magma(London, 2014, 2018). (a) During the constitutional zone refining, the compatible components dissolve from the bulk melt and attach to the surface of the diagenetic mineral through the boundary layer. (b) Because the volatiles decrease the solid temperature and enhance the miscibility of the components, the excluded rare metal components are enriched in the boundary layer liquid. (c) Once the composition of the melt is exhausted, the boundary layer liquid will crystallize, resulting in a mutation in the composition of the growing minerals (mica, tourmaline)
4 甲基卡花岗伟晶岩型锂矿

稀有金属锂是最重要的关键金属之一,被广泛应用于新能源汽车、电池、航空航天、可控核聚变、玻璃陶瓷、医药、润滑脂等领域(Linnen et al., 2012)。随着战略性新兴产业的发展,尤其是新能源汽车需求量的增加,极大地刺激了全球各国对锂资源的需求。中国国务院办公厅印发的《新能源汽车产业发展规划(2021—2035)》提及:“到2025年,中国新能源汽车销售总量达到汽车新车销售总量的20%左右,到2035年,纯电动汽车成为新销售车辆的主流”。作为新能源电动汽车的核心材料,中国对锂的需求量也将随着新能源汽车量的增多而加大。

锂资源主要来源有花岗伟晶岩型锂矿、盐湖卤水型锂矿和沉积岩型锂矿(Kesler et al., 2012Li et al., 2015刘丽君等,2017Benson et al., 2017Bowell et al., 2020)。各类型锂矿在全球分布广泛(图 8),盐湖卤水型锂矿主要分布智利、玻利维亚、阿根廷和中国等国家;花岗伟晶岩型锂矿主要分布在澳大利亚、中国、南非和加拿大等国家;沉积型锂矿全球分布较少,可开采的主要矿物为贾达尔石(羟硼硅钠锂石),主要在塞尔维亚。

1—甲基卡;2—可尔因;3—阿尔泰;4—大红柳滩;5—Zavitskoye;6—Goltsovoer;7—Tastyq;8—Vishnvakovskoe;9—Lakha;10—Ural mining;11—Ullava lantta;12—Minade Barroso;13—Guarda;14—Zinnwald;15—Winneba;16—Manono-Kitolo;17—Kamativi;18—Bikita;19—Cape Cross-Brandberg-Uis;20—Rubicon Mine;21—Greenbushes;22—MountCaitlin;23—Mount Marion;24—Kemerton;25—Tanco;26—Quebec;27—Kings Mtn;28—Aracuai;29—Sao Joaodel Rei;30—扎布耶碳酸盐型盐湖;31—西台吉乃尔硫酸盐型盐湖;32—东台吉乃尔硫酸盐型盐湖;33—Salton sea;34—Silver Peak;35—Searles;36—Uyuni;37—Atacama;38—Jadar;39—Mcdermitt 1-Jiajika; 2-Keryin; 3-Altay; 4-Dahongliutan; 5-Zavitskoye; 6-Goltsovoer; 7-Tastyq; 8-Vishnvakovskoe; 9-Lakha; 10-Ural mining; 11-Ullava lantta; 12-Minade Barroso; 13-Guarda; 14-Zinnwald; 15-Winneba; 16-Manono-Kitolo; 17-Kamativi; 18-Bikita; 19-Cape Cross-Brandberg-Uis; 20-Rubicon Mine; 21-Greenbushes; 22-MountCaitlin; 23-Mount Marion; 24-Kemerton; 25-Tanco; 26-Quebec; 27-Kings Mtn; 28-Aracuai; 29-Sao Joaodel Rei; 30-Zabuye carbonate-type salt lake; 31-West Taiji'naier sulfate-type salt lake; 32-East Taiji'naier sulfate-type salt lake; 33-Salton sea; 34-Silver Peak; 35-Searles; 36-Uyuni; 37-Atacama; 38-Jadar; 39-Mcdermitt 图 8 世界主要锂矿床分布图 Fig. 8 Distribution of major lithium deposits in the world

盐湖卤水型锂矿虽然储量巨大,但其品位低。中国盐湖卤水型锂矿近80%分布在青藏高原的盐湖中(王秋舒,2016),开发条件差,且大多数Mg/Li值较高,提锂技术尚未完全成熟,开发利用困难。沉积岩型锂矿储量较小,品位中等,锂主要赋存于锂蒙脱石等黏土矿物中(Bowell et al., 2020)。同时国内的沉积型锂矿多数与铝土矿、煤伴生,尚没有独立开发利用(于沨等,2019)。花岗伟晶岩型锂矿品位高、易开采,锂主要赋存于锂辉石、透锂长石、锂云母中。中国花岗伟晶岩型锂矿主要分布在松潘-甘孜巨型硬岩型锂矿带和阿尔泰造山带,这是锂资源的最重要来源。目前新疆阿尔泰锂资源面临枯竭问题,松潘-甘孜造山带内的花岗伟晶岩型锂矿将成为国内今后锂资源开发的重要基地。甲基卡花岗伟晶岩型锂矿位于中国西部大型松潘-甘孜锂矿带内(许志琴等,2018),是目前亚洲规模最大的硬岩型锂矿,具有规模大、品位高、矿种多、埋藏浅、选矿性能好等特点(王登红和付小方,2013付小方等,2014)。该矿是由S型花岗岩高度结晶分异使得锂元素富集的产物(梁斌等,2016代鸿章等,2018李贤芳等,2020Zhang et al., 2021)。因此,文中以甲基卡花岗伟晶岩型锂矿为例,探讨花岗伟晶岩型稀有金属矿床流体成矿机制研究目前存在的问题。

甲基卡花岗伟晶岩型锂矿矿区整体呈片麻岩穹窿构造(许志琴等, 2019, 2020)。矿区出露地层为三叠系西康群砂页岩经多阶段区域变质和接触变质作用而形成的黑云母石英片岩、二云母石英片岩和红柱石十字石石英片岩等中浅变质岩系(熊欣等,2019)。矿区出露的唯一侵入岩体为马颈子二云母花岗岩岩体,位于矿区南部,该岩体的LA-ICP-MS锆石U-Pb法年龄为223±1 Ma (郝雪峰等,2015),属于印支晚期的产物(熊欣等,2019)。矿区具有一定规模的伟晶岩共509条,其中矿(化)脉占62%(付小方等,2017)。空间上,花岗伟晶岩脉自侵入体接触带向外大致出现微斜长石型伟晶岩带(Ⅰ)→微斜长石-钠长石型伟晶岩带(Ⅱ)→钠长石型伟晶岩带(Ⅲ)→钠长石-锂辉石型伟晶岩带(Ⅳ)→锂(白)云母型伟晶岩带(Ⅴ)→石英脉带等不规则分带,稀有金属在空间上大致具有Be→Li→Nb+Ta→Cs+Rb的分带性变化(付小方等,2017Huang et al., 2020; 图 9)。

图 9 甲基卡稀有金属矿田地质简图(Huang et al., 2020) Fig. 9 Geological sketch of the Jiajika rare metal ore field(Huang et al., 2020)

尽管已对甲基卡锂矿开展了较多的研究,但是甲基卡锂矿的流体成矿机制仍存在如下问题,①与经典伟晶岩型锂矿如加拿大Tanco、新疆可可托海3号脉花岗伟晶岩型锂矿相比,甲基卡花岗伟晶岩型锂矿单个矿脉内部分带不明显(付小方等,2017)。因此,甲基卡花岗伟晶岩型了锂矿被London (2018)归类为矿脉内部无显著分带的伟晶岩矿床。②甲基卡花岗伟晶岩型锂矿发育大量 < 5 mm的细粒度的锂辉石,被称为细晶锂辉石(付小方等,2017刘善宝等,2019)。甲基卡花岗伟晶岩型锂矿大量的细晶锂辉石与粗晶、巨晶锂辉石的成因联系不清。③相关学者对甲基卡花岗伟晶岩型锂矿做了较多的成矿流体研究,揭示出甲基卡花岗伟晶岩型锂矿发育丰富的熔体和流体包裹体,是开展岩浆-热液过渡研究的理想对象。已有报道中甲基卡花岗伟晶岩型锂矿锂辉石中的富晶体包裹体均一温度较高(Li and Chou, 2017),这与甲基卡花岗伟晶岩锂矿富含挥发分,可能形成于过冷却条件相矛盾。④甲基卡花岗伟晶岩型锂矿成因机制目前仍不明确。一些学者认为甲基卡花岗伟晶岩型锂矿是液态不混溶作用形成(李建康,2006付小方等,2017)。但是,由于伟晶岩矿床中大量发育次生流体包裹体,流体包裹体与熔体包裹体是否为流体不混溶作用产物仍存在巨大争议。因此,甲基卡这种特殊的花岗伟晶岩型锂矿的成矿控制因素、成矿过程、成矿机制有待深入研究。

5 总结和展望

稀有金属是一类重要的关键金属。花岗伟晶岩是稀有金属赋存的重要岩石类型之一。花岗伟晶岩型稀有金属矿床成矿流体富集挥发分(B、P、F和H2O)和稀有金属元素,这使得该类矿床成矿流体黏度降低,迁移性增强。此外,挥发分可与稀有金属结合形成络合物,增强稀有金属元素的溶解能力。花岗伟晶岩型稀有金属矿床成矿流体形成的温压条件变化较大,可能形成于高温高压条件,也可能形成于过冷却条件。花岗伟晶岩型稀有金属矿床成矿流体形成机制主要有两种,分别为花岗质岩浆高度结晶分异演化和富成矿元素地壳物质小比例深熔。流体不混溶和组成带纯化作用可能促进稀有金属超常富集。

目前对于花岗伟晶岩型稀有金属矿床的相关研究所取得的认识方面还存在不足,需要进一步研究来完善。以下为将来稀有金属伟晶岩型矿床成矿流体研究的几个重点方向:

(1) 天然样品在形成后会受到多期热液改造事件,造成了原生包裹体识别困难。阴极发光成像技术可以清晰地识别出不同热液事件的叠加关系,进而可帮助判断包裹体是否为原生包裹体还是后期叠加的次生包裹体。因此,基于阴极发光成像技术的详细显微岩相学是开展伟晶岩流体包裹体研究的重要手段。

(2) 花岗伟晶岩型稀有金属矿床矿物捕获的包裹体挥发分含量高,内压较高,常温下进行均一化容易爆裂,因此需要在施加合适外压的热液金刚石压腔中进行。

(3) 以往对花岗伟晶岩型稀有金属矿床成矿中的包裹体研究主要是以显微激光拉曼探针定性和半定量研究,或者针对子矿物开展电子探针分析,缺乏开展系统的单个包裹体LA-ICP-MS成分分析。通过对甲基卡花岗伟晶岩型锂矿开展单个包裹体LA-ICP-MS成分分析,可快捷、高效、准确获得多种元素信息,为成矿过程示踪带来一系列关键证据。

(4) 目前相关学者主要集中于明显分带的伟晶岩研究,对于分带性不明显的锂辉石伟晶岩矿床研究较少,需要深入研究成矿流体与成矿机制。

致谢: 感谢吕古贤教授和张宝林教授约稿撰写本文。感谢四川省地质调查院付小方教授级高级工程师在野外采样中提供的帮助。感谢南京大学许志琴院士、李广伟教授、郑碧海博士和中国科技大学李万才博士在研究中提供的帮助。感谢审稿专家和编辑部提供的指导和修改意见。

参考文献/References
ACKERMAN L, ZACHARIAS J, PUDILOVÁ M, 2007. P-T and fluid evolution of barren and lithium pegmatites from Vlastějovice, Bohemian Massif, Czech Republic[J]. International Journal of Earth Sciences, 96(4): 623-638. DOI:10.1007/s00531-006-0133-3
AUDÉTAT A, KEPPLER H, 2004. Viscosity of fluids in subduction zones[J]. Science, 303(5657): 513-516. DOI:10.1126/science.1092282
BADANINA E V, VEKSLER I V, THOMAS R, et al., 2004. Magmatic evolution of Li-F, rare-metal granites: a case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia)[J]. Chemical Geology, 210(1-4): 113-133. DOI:10.1016/j.chemgeo.2004.06.006
BAKER D R, 1998. The escape of pegmatite dikes from granitic plutons; constraints from new models of viscosity and dike propagation[J]. The Canadian Mineralogist, 36(2): 255-263.
BALLOUARD C, ELBURG M A, TAPPE S, et al., 2020. Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa)[J]. Ore Geology Reviews, 116: 103252. DOI:10.1016/j.oregeorev.2019.103252
BARROS R, KAETER D, MENUGE J F, et al., 2020. Controls on chemical evolution and rare element enrichment in crystallising albite-spodumene pegmatite and wallrocks: Constraints from mineral chemistry[J]. Lithos, 352-353: 105289. DOI:10.1016/j.lithos.2019.105289
BENSON T R, COBLE M A, RYTUBA J J, et al., 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J]. Nature Communications, 8(1): 270. DOI:10.1038/s41467-017-00234-y
BODNAR R J, SAMSON I, ANDERSON A, et al., 2003. Reequilibration of fluid inclusions[J]. Fluid inclusions: Analysis and interpretation, 32: 213-230.
BORISOVA A Y, THOMAS R, SALVI S, et al., 2012. Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite-leucogranite melt and fluid inclusions: new evidence for melt-melt-fluid immiscibility[J]. Mineralogical Magazine, 76(1): 91-113. DOI:10.1180/minmag.2012.076.1.91
BOWELL R J, LAGOS L, HOYOS C R D L, et al., 2020. Classification and characteristics of natural lithium resources[J]. Elements, 16(4): 259-264. DOI:10.2138/gselements.16.4.259
BRADLEY D C, MCCAULEY A D, STILLINGS L L, 2017. Mineral-deposit model for lithium-cesium-tantalum pegmatites[R]. US Geological Survey.
CAMERON E N, 1949. Internal structure of granitic pegmatites[J]. Econ. Geol., Monograph, 2: 115.
ČERNÝ P, 1989. Contrasting geochemistry of two pegmatite fields in Manitoba: products of juvenile Aphebian crust and polycyclic Archean evolution[J]. Precambrian Research, 45(1-3): 215-234. DOI:10.1016/0301-9268(89)90041-7
ČERNÝ P P, 1991a. Rare-element granitic pegmatites. Part Ⅱ: Regional to global environments and petrogenesis[J]. Geoscience Canada, 18(2): 68-81.
ČERNÝ P P, 1991b. Rare-element granitic pegmatites. Part Ⅰ: anatomy and internal evolution of pegmatitic deposits[J]. Geoscience Canada, 18(2): 49-67.
ČERNÝ P P, ERCIT T S, 2005. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 43(6): 2005-2026. DOI:10.2113/gscanmin.43.6.2005
CHAKOUMAKOS B C, LUMPKIN G R, 1990. Pressure-temperature constraints on the crystallization of the Harding pegmatite, Taos County, New Mexico[J]. The Canadian Mineralogist, 28(2): 287-298.
CHEN J, 2019. Supernormal enrichment and mineralization and high efficiency utilization of critical metals[J]. Science & Technology Review, 37(24): 1. (in Chinese)
CUNEY M, BARBEY P, 2014. Uranium, rare metals, and granulite-facies metamorphism[J]. Geoscience Frontiers, 5(5): 729-745. DOI:10.1016/j.gsf.2014.03.011
CHEN Y C, YE Q T, WANG J B, et al., 2003. Geology of ore deposits, metallogenic regularity and technoeconomic evaluation on the altay metallogenic belt, Xinjiang Area, China[M]. Beijing: Geological Publishing House. (in Chinese)
DAI H Z, WANG D H, LIU L J, 2018. Geochronology, geochemistry and their geological significances of No.308 pegmatite vein in the Jiajika deposit, western Sichuan, China[J]. Earth Science, 43(10): 3664-3681. (in Chinese with English abstract)
DEVEAUD S, MILLOT R, VILLAROS A, 2015. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas[J]. Chemical Geology, 411: 97-111. DOI:10.1016/j.chemgeo.2015.06.029
DINGWELL D B, HESS K U, KNOCHE R, 1996. Granite and granitic pegmatite melts: volumes and viscosities[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 65-72. DOI:10.1017/S0263593300006489
FAN J J, TANG G J, WEI G J, et al., 2020. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet[J]. Lithos, 352-253: 105236.
FU X F, HOU L W, WANG D H, et al., 2014. Achievements in the investigation and evaluation of spodumene resources at Jiajika in Sichuan, China[J]. Geological Survey of China, 1(3): 37-43. (in Chinese with English abstract)
FU X F, HOU L W, LIANG B, 2017. Jiajika-type granitic pegmatite type lithium deposit: metallogenic model and three-dimensional prospecting model[M]. Beijing: Science Press. (in Chinese)
FUCHSLOCH W C, NEX P A M, KINNAIRD J A, 2018. Classification, mineralogical and geochemical variations in pegmatites of the Cape Cross-Uis pegmatite belt, Namibia[J]. Lithos, 296-299: 79-95. DOI:10.1016/j.lithos.2017.09.030
GOURCEROL B, GLOAGUEN E, MELLETON J, et al., 2019. Re-assessing the European lithium resource potential-A review of hard-rock resources and metallogeny[J]. Ore Geology Reviews, 109: 494-519. DOI:10.1016/j.oregeorev.2019.04.015
HAO X F, FU X F, LIANG B, et al., 2015. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance[J]. Mineral Deposits, 34(6): 1199-1208. (in Chinese with English abstract)
HARLAUX M, MERCADIER J, BONZI W M E, et al., 2017. Geochemical signature of magmatic-hydrothermal fluids exsolved from the Beauvoir rare-metal granite (Massif Central, France): Insights from LA-ICPMS analysis of primary fluid inclusions[J]. Geofluids, 2017: 1925817.
HOU Z Q, CHEN J, ZHAI M G, 2020. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 65(33): 3651-3652. (in Chinese with English abstract) DOI:10.1360/TB-2020-1417
HUANG T, FU X F, GE L Q, et al., 2020. The genesis of giant lithium pegmatite veins in Jiajika, Sichuan, China: Insights from geophysical, geochemical as well as structural geology approach[J]. Ore Geology Reviews, 124: 103557. DOI:10.1016/j.oregeorev.2020.103557
HUANG Y S, ZHANG H, LV Z H, et al., 2016. Research on emplacement depths of Permian and Triassic pegmatites in Altay, Xinjiang, China: indications from fluid inclusions[J]. Acta Mineralogica Sinica, 36(4): 571-585. (in Chinese with English abstract)
HULSBOSCH N, HERTOGEN J, DEWAELE S, et al., 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J]. Geochimica et Cosmochimica Acta, 132: 349-374. DOI:10.1016/j.gca.2014.02.006
JAHNS R H, BURNHAM C W, 1969. Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology, 64(8): 843-864. DOI:10.2113/gsecongeo.64.8.843
JIANG S Y, WEN H J, XU C, et al., 2019. Earth sphere cycling and enrichment mechanism of critical metals: major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China, 33(2): 112-118. (in Chinese with English abstract)
KESLER S E, GRUBER P W, MEDINA P A, et al., 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 48: 55-69. DOI:10.1016/j.oregeorev.2012.05.006
KNOLL T, SCHUSTER R, HUET B, et al., 2018. Spodumene pegmatites and related leucogranites from the Austroalpine Unit (eastern Alps, central Europe): field relations, petrography, geochemistry, and geochronology[J]. The Canadian Mineralogist, 56(4): 489-528. DOI:10.3749/canmin.1700092
KONTAK D J, DOSTAL J, KYSER T K, et al., 2002. A petrological, geochemical, isotopic and fluid-inclusion study of 370 Ma pegmatite-aplite sheets, Peggys Cove, Nova Scotia, Canada[J]. The Canadian Mineralogist, 40(5): 1249-1286. DOI:10.2113/gscanmin.40.5.1249
KONTAK D J, CREASER R A, HEAMAN L M, et al., 2005. U-Pb tantalite, Re-Os molybdenite, and 40Ar/39Ar muscovite dating of the Brazil Lake pegmatite, Nova Scotia: a possible shear-zone related origin for an LCT-type pegmatite[J]. Atlantic Geology, 41(1): 17-29.
KONZETT J, SCHNEIDER T, NEDYALKOVA L, et al., 2018. Anatectic granitic pegmatites from the eastern alps: a case of variable rare-metal enrichment during high-grade regional metamorphism-i: mineral assemblages, geochemical characteristics, and emplacement ages[J]. The Canadian Mineralogist, 56(4): 555-602. DOI:10.3749/canmin.1800008
LI J K, 2006. Mineralizing mechanism and continental geodynamics of typical pegmatite deposits in Western Sichuan, China[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
LI J K, ZOU T R, LIU X F, et al., 2015. The metallogenetic regularities of lithium deposits in China[J]. Acta Geologica Sinica (English Edition), 89(2): 652-670. DOI:10.1111/1755-6724.12453
LI J K, CHOU I M, 2017. Homogenization experiments of crystal-rich inclusions in spodumene from Jiajika Lithium Deposit, China, under elevated external pressures in a hydrothermal diamond-anvil cell[J]. Geofluids, 2017: 1-12.
LI J K, CHOU I M, LIU Y C, et al., 2019. Crystallization experiments of rare metal minerals in aqueous solution in a hydrothermal diamond-anvil cell[J]. The Canadian Mineralogist, 57(5): 761-763. DOI:10.3749/canmin.AB00015
LI X F, TIAN S H, WANG D H, et al., 2020. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: Evidence from zircon U-Pb dating, Hf-O isotope and geochemistry[J]. Mineral Deposits, 39(2): 273-304. (in Chinese with English abstract)
LIANG B, FU X F, TANG Y, et al., 2016. Granite geochemical characteristics in Jiajika rare metal deposit, western Sichuan[J]. Journal of Guilin University of Technology, 36(1): 42-49. (in Chinese with English abstract)
LIAO Z H, ZHOU Z G, ZHANG H P, 2019. Evidence for the geochemical characteristics of liquid immiscibility in the Keryin rare metal deposit[J]. Acta Geologica Sichuan, 39(S1): 60-69. (in Chinese)
LINNEN R L, LICHTERVELDE M V, ČERN Ý P, 2012. Granitic pegmatites as sources of strategic metals[J]. Elements, 8(4): 275-280. DOI:10.2113/gselements.8.4.275
LIU L J, WANG D H, LIU X F, et al., 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 44(2): 263-278. (in Chinese with English abstract)
LIU S B, YANG Y Q, WANG D H, et al., 2019. Discovery and significance of granite type lithium industrial orebody in Jiajika orefield, Sichuan province[J]. Acta Geologica Sinica, 93(6): 1309-1320. (in Chinese with English abstract)
LONDON D, 1986. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase-equilibrium experiments[J]. American Mineralogist, 71(3-4): 376-395.
LONDON D, MORGAN G B, HERVIG R L, 1989. Vapor-undersaturated experiments with Macusani glass+H2O at 200 MPa, and the internal differentiation of granitic pegmatites[J]. Contributions to Mineralogy and Petrology, 102(1): 1-17. DOI:10.1007/BF01160186
LONDON D, 1992. The application of experimental petrology to the genesis and crystallization of granitic pegmatites[J]. The Canadian Mineralogist, 30(3): 499-540.
LONDON D, 2008. Pegmatites: the canadian mineralogist special publication 10[J]. Mineralogical Association of Canada, Quebec, Canada: 347.
LONDON D., 2009. The origin of primary textures in granitic pegmatites[J]. Can. Mineral, 47: 697-724. DOI:10.3749/canmin.47.4.697
LONDON D, KONTAK D J, 2012. Granitic pegmatites: scientific wonders and economic bonanzas[J]. Elements, 8(4): 257-261. DOI:10.2113/gselements.8.4.257
LONDON D, 2014. A petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos, 184-187: 74-104. DOI:10.1016/j.lithos.2013.10.025
LONDON D, 2015. Reply to Thomas and Davidson on ""A petrologic assessment of internal zonation in granitic pegmatites"" (London, 2014a)[J]. Lithos, 212-215: 469-484. DOI:10.1016/j.lithos.2014.11.025
LONDON D, MORGAN G B, 2017. Experimental crystallization of the Macusani obsidian, with applications to lithium-rich granitic pegmatites[J]. Journal of Petrology, 58(5): 1005-1030. DOI:10.1093/petrology/egx044
LONDON D, 2018. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 101: 349-383. DOI:10.1016/j.oregeorev.2018.04.020
LU H Z, 2004. Fluid inclusion[M]. Beijing: Science Press. (in Chinese)
LU H Z, 2019. Geofluids and across earth sphere structures[J]. Journal of Geomechanics, 25(6): 1003-1012. (in Chinese with English abstract)
LV Z H, ZHANG H, TANG Y, et al., 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope[J]. Ore Geology Reviews, 95: 161-181. DOI:10.1016/j.oregeorev.2018.02.022
MÜLLER A, ROMER R L, PEDERSEN R B, 2017. The Sveconorwegian pegmatite province-thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 55(2): 283-315. DOI:10.3749/canmin.1600075
MANETA V, BAKER D R, 2014. Exploring the effect of lithium on pegmatitic textures: An experimental study[J]. American Mineralogist, 99(7): 1383-1403. DOI:10.2138/am.2014.4556
MANETA V, BAKER D R, MINARIK W, 2015. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts[J]. Contributions to Mineralogy and Petrology, 170(1): 4. DOI:10.1007/s00410-015-1158-z
MANNING D A C, 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb[J]. Contributions to Mineralogy and Petrology, 76(2): 206-215. DOI:10.1007/BF00371960
MAO J W, YUAN S D, XIE G Q, et al., 2019. New advances on metallogenic studies and exploration on critical minerals of China in 21st century[J]. Mineral Deposits, 38(5): 935-969. (in Chinese with English abstract)
MCCAULEY A, BRADLEY D C, 2014. The global age distribution of granitic pegmatites[J]. The Canadian Mineralogist, 52(2): 183-190. DOI:10.3749/canmin.52.2.183
MELLETON J, GLOAGUEN E, FREI D, et al., 2012. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic?[J]. The Canadian Mineralogist, 50(6): 1751-1773. DOI:10.3749/canmin.50.6.1751
MORGAN G B, LONDON D, 1987. Alteration of amphibolitic wallrocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba[J]. American Mineralogist, 72(11-12): 1097-1121.
MORGAN VI G B, LONDON D, 1999. Crystallization of the Little Three layered pegmatite-aplite dike, Ramona district, California[J]. Contributions to Mineralogy and Petrology, 136(4): 310-330. DOI:10.1007/s004100050541
MULJA T, WILLIAMS-JONES A E, 2018. The physical and chemical evolution of fluids in rare-element granitic pegmatites associated with the Lacorne pluton, Québec, Canada[J]. Chemical Geology, 493: 281-297. DOI:10.1016/j.chemgeo.2018.06.004
NABELEK P I, WHITTINGTON A G, SIRBESCU M L C, 2010. The role of H2O in rapid emplacement and crystallization of granite pegmatites: resolving the paradox of large crystals in highly undercooled melts[J]. Contributions to Mineralogy and Petrology, 160(3): 313-325. DOI:10.1007/s00410-009-0479-1
NI P, CHI Z, PAN J Y, et al., 2018. The characteristics of ore-forming fluids and mineralization mechanism in hydrothermal deposits: a case study of some typical deposits in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 37(3): 369-394, 560. (in Chinese with English abstract)
NORTON J J, 1973. LITHIUM, CESIUM, AND RUBIDIUM[J]. Geological Survey Professional Paper, (820): 365.
NORTON J J, 1983. Sequence of mineral assemblages in differentiated granitic pegmatites[J]. Economic Geology, 78(5): 854-874. DOI:10.2113/gsecongeo.78.5.854
RAIMBAULT L, CUNEY M, AZENCOTT C, et al., 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central[J]. Economic Geology, 90(3): 548-576. DOI:10.2113/gsecongeo.90.3.548
RAKOVAN J, 2008. NYF-Type Pegmatite[J]. Rocks & Minerals, 83(4): 351-353.
RODA-ROBLES E, PESQUERA A, GIL-CRESPO P, et al., 2012. From granite to highly evolved pegmatite: A case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain)[J]. Lithos, 153: 192-207. DOI:10.1016/j.lithos.2012.04.027
RODA-ROBLES E, VILLASECA C, PESQUERA A, et al., 2018. Petrogenetic relationships between Variscan granitoids and Li-(F-P)-rich aplite-pegmatites in the Central Iberian Zone: Geological and geochemical constraints and implications for other regions from the European Variscides[J]. Ore Geology Reviews, 95: 408-430. DOI:10.1016/j.oregeorev.2018.02.027
ROEDDER E, 1984. Fluid inclusions. Reviews in mineralogy[M]. Washington D C: Mineralogical Society of America, 644.
ROEDDER E, 1992. Fluid inclusion evidence for immiscibility in magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 56(1): 5-20. DOI:10.1016/0016-7037(92)90113-W
SALVI S, FONTAN F, MONCHOUX P, et al., 2000. Hydrothermal mobilization of high field strength elements in alkaline igneous systems: evidence from the Tamazeght Complex (Morocco)[J]. Economic Geology, 95(3): 559-576.
SHAW R A, GOODENOUGH K M, ROBERTS N M W, et al., 2016. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 281: 338-362. DOI:10.1016/j.precamres.2016.06.008
SIMMONS W B S, WEBBER K L, 2008. Pegmatite genesis: state of the art[J]. European Journal of Mineralogy, 20(4): 421-438. DOI:10.1127/0935-1221/2008/0020-1833
SIMMONS W, FALSTER A, WEBBER K, et al., 2016. Bulk composition of Mt. Mica pegmatite, Maine, USA: implications for the origin of an LCT type pegmatite by anatexis[J]. The Canadian Mineralogist, 54(4): 1053-1070. DOI:10.3749/canmin.1600017
SIRBESCU M L C, NABELEK P I, 2003. Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota-Evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 67(13): 2443-2465. DOI:10.1016/S0016-7037(02)01408-4
SOWERBY J R, KEPPLER H, 2002. The effect of fluorine, boron and excess sodium on the critical curve in the albite-H2O system[J]. Contributions to Mineralogy and Petrology, 143(1): 32-37. DOI:10.1007/s00410-001-0334-5
STEWART D B, 1978. Petrogenesis of lithium-rich pegmatites[J]. American Mineralogist, 63(9-10): 970-980.
STILLING A, ČERN Ý P, VANSTONE P J, 2006. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance[J]. The Canadian Mineralogist, 44(3): 599-623. DOI:10.2113/gscanmin.44.3.599
SWANSON S E, 2012. Mineralogy of spodumene pegmatites and related rocks in the tin-spodumene belt of North Carolina and South Carolina, USA[J]. The Canadian Mineralogist, 50(6): 1589-1608. DOI:10.3749/canmin.50.6.1589
THOMAS R, DAVIDSON P, BADANINA E, 2009. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: implications for pegmatite-forming melt systems[J]. Mineralogy and Petrology, 96(3): 129-140. DOI:10.1007/s00710-009-0053-6
THOMAS R, DAVIDSON P, BEURLEN H, 2011a. Tantalite-(Mn) from the Borborema Pegmatite Province, northeastern Brazil: conditions of formation and melt-and fluid-inclusion constraints on experimental studies[J]. Mineralium Deposita, 46(7): 749-759. DOI:10.1007/s00126-011-0344-9
THOMAS R, WEBSTER J D, DAVIDSON P, 2011b. Be-daughter minerals in fluid and melt inclusions: implications for the enrichment of Be in granite-pegmatite systems[J]. Contributions to Mineralogy and Petrology, 161(3): 483-495. DOI:10.1007/s00410-010-0544-9
THOMAS R, DAVIDSON P, SCHMIDT C, 2011c. Extreme alkali bicarbonate-and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark[J]. Contributions to Mineralogy and Petrology, 161(2): 315-329. DOI:10.1007/s00410-010-0533-z
THOMAS R, DAVIDSON P, 2012. Water in granite and pegmatite-forming melts[J]. Ore Geology Reviews, 46: 32-46. DOI:10.1016/j.oregeorev.2012.02.006
THOMAS R, DAVIDSON P, 2016. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state-Consequences for the formation of pegmatites and ore deposits[J]. Ore Geology Reviews, 72: 1088-1101. DOI:10.1016/j.oregeorev.2015.10.004
THOMAS R, DAVIDSON P, APPEL K, 2019. The enhanced element enrichment in the supercritical states of granite-pegmatite systems[J]. Acta Geochimica, 38(3): 335-349. DOI:10.1007/s11631-019-00319-z
TKACHEV A V, 2011. Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time[J]. Geological Society, London, Special Publications, 350(1): 7-23. DOI:10.1144/SP350.2
TKACHEV A V, RUNDQVIST D V, VISHNEVSKAYA N A, 2018. Comparison of supercontinent cycles in the metallogeny of rare earth elements[J]. Doklady Earth Sciences, 480(2): 730-734. DOI:10.1134/S1028334X18060302
TIMOFEEV A, MIGDISOV A A, WILLIAMS-JONES A E, 2015. An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature[J]. Geochimica et Cosmochimica Acta, 158: 103-111. DOI:10.1016/j.gca.2015.02.015
VEKSLER I V, THOMAS R, 2002. An experimental study of B-, P-and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa[J]. Contributions to Mineralogy and Petrology, 143(6): 673-683. DOI:10.1007/s00410-002-0368-3
VEKSLER I V, 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies[J]. Chemical Geology, 210(1-4): 7-31. DOI:10.1016/j.chemgeo.2004.06.002
VEKSLER I V, DORFMAN A M, DULSKI P, et al., 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite[J]. Geochimica et Cosmochimica Acta, 79: 20-40. DOI:10.1016/j.gca.2011.11.035
WANG D H, FU X F, 2013. A breakthrough has been made in the prospecting of the peripheral lithium deposit in Jieka, Sichuan[J]. Rock and Mineral Analysis, 32(6): 987. (in Chinese)
WANG D H, WANG C H, SUN Y, et al., 2017. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China[J]. Geological Survey of China, 4(5): 1-8. (in Chinese with English abstract)
WANG G G, NI P, PAN J Y, 2020. Fluid characteristics of granite-related ore forming systems[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 39(3): 463-471. (in Chinese with English abstract)
WANG L K, WANG H F, HUANG Z L, 1999. The geochemical indicatrixes of the REE in Li-F granite liquid segregation[J]. Acta Petrologica Sinica, 15(2): 170-180. (in Chinese with English abstract)
WANG L K, WANG H F, HUANG Z L, 2000. Geochemical indicators of trace element in Li-F granite liquid segregation[J]. Acta Petrologica Sinica, 16(2): 145-152. (in Chinese with English abstract)
WANG Q S, 2016. Analysis of global lithium resources exploration and development, supply and demand situation[J]. China Mining Magazine, 25(3): 11-15, 24. (in Chinese with English abstract)
WANG R C, WU B, XIE L, et al., 2021. Global tempo-spatial distribution of rare-metal mineralization and continental evolution[J]. Acta Geologica Sinica, 95(1): 182-193. (in Chinese with English abstract)
WARREN B E, PINCUS A G, 1940. Atomic consideration of immiscibility in glass systems[J]. Journal of the American Ceramic Society, 23(10): 301-304. DOI:10.1111/j.1151-2916.1940.tb14194.x
WEBSTER J D, THOMAS R, RHEDE D, et al., 1997. Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids[J]. Geochimica et Cosmochimica Acta, 61(13): 2589-2604. DOI:10.1016/S0016-7037(97)00123-3
WU C N, ZHU J C, LIU C S, et al., 1994. A study on the inclusions in Spodumenes from Altai pegmatite, Xinjiang[J]. Geotectonica et Metallogenia, 18(4): 353-362. (in Chinese with English abstract)
WU F Y, LIU Z C, LIU X C, et al., 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and Plateau uplift[J]. Acta Petrologica Sinica, 31(1): 1-36. (in Chinese with English abstract)
XU X W, NIU L, HONG T, et al., 2019. Tectonic dynamics of fluids and metallogenesis[J]. Journal of Geomechanics, 25(1): 1-8. (in Chinese with English abstract)
XIONG X, LI J K, WANG D H, et al., 2019. Fluid characteristics and evolution of the Zhawulong granitic pegmatite lithium deposit in the Ganzi-Songpan region, Southwestern China[J]. Acta Geologica Sinica (English Edition), 93(4): 943-954. DOI:10.1111/1755-6724.13851
XIONG X, LI J K, WANG D H, et al., 2019. A study of solid minerals in melt inclusions and fluid inclusions from the Jiajika pegmatite-type lithium deposit[J]. Acta Petrologica et Mineralogica, 38(2): 241-253. (in Chinese with English abstract)
XU Z Q, WANG R C, ZHAO Z B, et al., 2018. On the Structural Backgrounds of the Large-scale ""Hard-rock Type"" Lithium Ore Belts in China[J]. Acta Geologica Sinica, 92(6): 1091-1106. (in Chinese with English abstract)
XU Z Q, FU X F, ZHAO Z B, et al., 2019. Discussion on relationships of gneiss dome and Metallogenic regularity of pegmatite-type lithium deposits[J]. Earth Science, 44(5): 1452-1463. (in Chinese with English abstract)
XU Z Q, WANG R C, ZHU W B, et al., 2020. Scientific drilling project of granite-pegmatite-type lithium deposit in western Sichuan: scientific problems and significance[J]. Acta Geologica Sinica, 94(8): 2177-2189. (in Chinese with English abstract)
YU F, WANG D H, YU Y, et al., 2019. The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J]. Rock and Mineral Analysis, 38(3): 354-364. (in Chinese with English abstract)
ZARAISKY G P, KORZHINSKAYA V, KOTOVA N, 2010. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 500℃ and 50 to 100 MPa[J]. Mineralogy and Petrology, 99(3): 287-300. DOI:10.1007/s00710-010-0112-z
ZHAI M G, WU F Y, HU R Z, et al., 2019. Critical metal mineral resources: current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 33(2): 106-111. (in Chinese with English abstract)
ZHANG H, LV Z H, TANG Y, 2019. Metallogeny and prospecting model as well as prospecting direction of pegma-tite-type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 38(4): 792-814. (in Chinese with English abstract)
ZHANG H J, TIAN S H, WANG D H, et al., 2021. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China[J]. Ore Geology Reviews, 134: 104139. DOI:10.1016/j.oregeorev.2021.104139
ZOU T R, LI Q C, 2006. Rare and rare earth metallic deposits in Xinjiang, China[M]. Beijing: Geological Publishing House. (in Chinese)
陈骏, 2019. 关键金属超常富集成矿和高效利用[J]. 科技导报, 37(24): 1.
陈毓川, 叶庆同, 王京彬, 等, 2003. 中国新疆阿尔泰成矿带矿床地质、成矿规律与技术经济评价[M]. 北京: 地质出版社.
代鸿章, 王登红, 刘丽君, 等, 2018. 川西甲基卡308号伟晶岩脉年代学和地球化学特征及其地质意义[J]. 地球科学, 43(10): 3664-3681.
付小方, 侯立玮, 王登红, 等, 2014. 四川甘孜甲基卡锂辉石矿矿产调查评价成果[J]. 中国地质调查, 1(3): 37-43.
付小方, 侯立玮, 梁斌, 2017. 甲基卡式花岗伟晶岩型锂矿床: 成矿模式与三维勘查找矿模型[M]. 北京: 科学出版社.
郝雪峰, 付小方, 梁斌, 等, 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义[J]. 矿床地质, 34(6): 1199-1208.
侯增谦, 陈骏, 翟明国, 2020. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 65(33): 3651-3652.
黄永胜, 张辉, 吕正航, 等, 2016. 新疆阿尔泰二叠纪、三叠纪伟晶岩侵位深度研究: 来自流体包裹体的指示[J]. 矿物学报, 36(4): 571-585.
蒋少涌, 温汉捷, 许成, 等, 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向[J]. 中国科学基金, 33(2): 112-118.
李建康, 2006. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景[D]. 北京: 中国地质大学(北京).
李贤芳, 田世洪, 王登红, 等, 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证据[J]. 矿床地质, 39(2): 273-304.
梁斌, 付小方, 唐屹, 等, 2016. 川西甲基卡稀有金属矿区花岗岩岩石地球化学特征[J]. 桂林理工大学学报, 36(1): 42-49. DOI:10.3969/j.issn.1674-9057.2016.01.007
廖芝华, 周中国, 张洪平, 2019. 可尔因稀有金属矿床液态不混溶作用的地球化学特征证据[J]. 四川地质学报, 39(S1): 60-69.
刘丽君, 王登红, 刘喜方, 等, 2017. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 44(2): 263-278.
刘善宝, 杨岳清, 王登红, 等, 2019. 四川甲基卡矿田花岗岩型锂工业矿体的发现及意义[J]. 地质学报, 93(6): 1309-1320. DOI:10.3969/j.issn.0001-5717.2019.06.011
卢焕章, 2004. 流体包裹体[M]. 北京: 科学出版社.
卢焕章, 2019. 地球中的流体和穿越层圈构造[J]. 地质力学学报, 25(6): 1003-1012.
毛景文, 袁顺达, 谢桂青, 等, 2019. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J]. 矿床地质, 38(5): 935-969.
倪培, 迟哲, 潘君屹, 等, 2018. 热液矿床的成矿流体与成矿机制: 以中国若干典型矿床为例[J]. 矿物岩石地球化学通报, 37(3): 369-394, 560.
王登红, 付小方, 2013. 四川甲基卡外围锂矿找矿取得突破[J]. 岩矿测试, 32(6): 987. DOI:10.3969/j.issn.0254-5357.2013.06.023
王国光, 倪培, 潘君屹, 2020. 花岗质岩石相关成矿系统的流体作用[J]. 矿物岩石地球化学通报, 39(3): 463-471.
王联魁, 王慧芬, 黄智龙, 1999. Li-F花岗岩液态分离的稀土地球化学标志[J]. 岩石学报, 15(2): 170-180.
王联魁, 王慧芬, 黄智龙, 2000. Li-F花岗岩液态分离的微量元素地球化学标志[J]. 岩石学报, 16(2): 145-152.
王秋舒, 2016. 全球锂矿资源勘查开发及供需形势分析[J]. 中国矿业, 25(3): 11-15, 24. DOI:10.3969/j.issn.1004-4051.2016.03.003
王汝成, 邬斌, 谢磊, 等, 2021. 稀有金属成矿全球时空分布与大陆演化[J]. 地质学报, 95(1): 182-193.
吴长年, 朱金初, 刘昌实, 等, 1994. 阿尔泰伟晶岩锂辉石中包裹体研究[J]. 大地构造与成矿学, 18(4): 353-362.
吴福元, 刘志超, 刘小驰, 等, 2015. 喜马拉雅淡色花岗岩[J]. 岩石学报, 31(1): 1-36.
熊欣, 李建康, 王登红, 等, 2019. 川西甲基卡花岗伟晶岩型锂矿床中熔体、流体包裹体固相物质研究[J]. 岩石矿物学杂志, 38(2): 241-253. DOI:10.3969/j.issn.1000-6524.2019.02.008
徐兴旺, 牛磊, 洪涛, 等, 2019. 流体构造动力学与成矿作用[J]. 地质力学学报, 25(1): 1-8.
许志琴, 王汝成, 赵中宝, 等, 2018. 试论中国大陆""硬岩型""大型锂矿带的构造背景[J]. 地质学报, 92(6): 1091-1106. DOI:10.3969/j.issn.0001-5717.2018.06.001
许志琴, 付小方, 赵中宝, 等, 2019. 片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨[J]. 地球科学, 44(5): 1452-1463.
许志琴, 王汝成, 朱文斌, 等, 2020. 川西花岗-伟晶岩型锂矿科学钻探: 科学问题和科学意义[J]. 地质学报, 94(8): 2177-2189. DOI:10.3969/j.issn.0001-5717.2020.08.001
于沨, 王登红, 于扬, 等, 2019. 国内外主要沉积型锂矿分布及勘查开发现状[J]. 岩矿测试, 38(3): 354-364.
翟明国, 吴福元, 胡瑞忠, 等, 2019. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 33(2): 106-111.
张辉, 吕正航, 唐勇, 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 38(4): 792-814.
邹天人, 李庆昌, 2006. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社.