地质力学学报  2021, Vol. 27 Issue (2): 304-316
引用本文
林旭, 刘静, 吴中海, 李长安, 刘海金. 渤海钻孔物源示踪和河流沉积物扩散研究: 碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束[J]. 地质力学学报, 2021, 27(2): 304-316.
LIN Xu, LIU Jing, WU Zhonghai, LI Changan, LIU Haijin. Study on borehole provenance tracing and fluvial sediment diffusion in the Bohai Sea: Double constraints from detrital zircon U-Pb age and in-situ geochemical element of apatite grains[J]. Journal of Geomechanics, 2021, 27(2): 304-316.
渤海钻孔物源示踪和河流沉积物扩散研究: 碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束
林旭1, 刘静2, 吴中海3, 李长安4, 刘海金5    
1. 三峡大学土木与建筑学院, 湖北 宜昌 443002;
2. 天津大学地球系统科学学院, 天津 300072;
3. 中国地质科学院地质力学研究所, 北京 100081;
4. 中国地质大学 (武汉) 地球科学学院, 湖北 武汉 430074;
5. 东华理工大学地球科学学院, 江西 南昌 330013
摘要:锆石和磷灰石是河流沉积物中常见的副矿物,由于各自的U-Pb年龄组成和原位地球化学元素组成在不同区域内存在显著差异,是进行河流物源示踪研究的理想矿物。基于此,利用在环渤海湾盆地主要汇入河流已发表的碎屑锆石U-Pb年龄,结合盆地晚第四纪钻孔的近地表碎屑物质的锆石U-Pb年龄,综合Kolmogorov-Smirnov统计方法的多维判别图(MDS),系统对比分析了辽东湾、渤海中央盆地和莱州湾的物质来源。结果显示,辽东湾的物质主要来自辽河;渤海中央盆地和莱州湾的碎屑物质主要来自黄河。同时,利用激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS),对黄河下游(n=70)、胶东半岛的威海湾(n=120)、银滩湾(n=60)的现代河流沉积物和海岸砂开展了碎屑磷灰石微区原位(in situ)主微量元素分析。结果发现黄河与威海湾、银滩湾的碎屑物质不存在物源关系,结合该区域碎屑钾长石原位主微量元素的已有分析结果,进一步说明黄河与胶东半岛的海湾内的碎屑物质不存在物源关系。新的研究结果表明,将碎屑锆石、磷灰石原位地球化学分析相结合有助于更精准地判定河流的物源关系。
关键词渤海    胶东半岛    锆石    U-Pb年龄    磷灰石    物源示踪    
DOI10.12090/j.issn.1006-6616.2021.27.02.028     文章编号:1006-6616(2021)02-0304-13
Study on borehole provenance tracing and fluvial sediment diffusion in the Bohai Sea: Double constraints from detrital zircon U-Pb age and in-situ geochemical element of apatite grains
LIN Xu1, LIU Jing2, WU Zhonghai3, LI Changan4, LIU Haijin5    
1. College of Civil Engineering and Architecture, Three Gorges University, Yichang 443002, Hubei, China;
2. School of Earth System Science, Tianjin University, Tianjin 300072, China;
3. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
4. School of Earth Sciences, China University of Geosciences(Wuhan), Wuhan 430074, Hubei, China;
5. School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China
Abstract: Bohai Bay Basin, located in the North China Craton, are surrounded by the Yanshan Mountains to the north, the Taihang Mountains to the west, the Jiaodong and Liaodong peninsulas to the south and east, respectively. The Yellow River, combined with the Liaohe, Luanhe and Haihe rivers, produces a huge amount of detrital sediments to the Bohai Bay Basin each year. However, it has not been clear whether the sediments have been transported to the Bohai Sea and the gulf of Jiaodong Peninsula. In addition, there is no definite result suggesting that these sediments are related to the provenance in the gulf of Jiaodong Peninsula. Zircon and apatite are common accessory minerals in the river sediments. The zircon U-Pb age and the in-situ geochemical data of apatite grains show significant differences in different regions, making them the ideal minerals for the provenance study. In this case, we used the published detrital zircon U-Pb ages from the major inflow rivers of the Bohai Bay Basin, combining with the drilling cores zircon U-Pb ages and integrating with the multi-dimensional identification (MDS) of kolmogorov-smirnov statistical method, to systematically identify the potential source areas in the Liaodong Bay, Bohai Central Basin and Laizhou Bay. The results show that the detrital sediments in the Liaodong Bay mainly came from the Liaohe River, while that in the Bohai Central Basin and Laizhou Bay from the Yellow River. The Yellow River plays a major role in the material composition of the central and western parts of the Bohai Sea. At the same time, we carried out the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on the detrital apatite grains from the lower reaches of the Yellow River (n=70), and the Weihai Bay (n=120) and Yintan Bay (n=60) from the Jiaodong Peninsula. The results show that there is no provenance relationship between them. Combined with the in-situ geochemical analysis results of detrital K-feldspar in this area, it further indicates that there is no provenance relationship between the Yellow River and the gulf of Jiaodong Peninsula. Therefore, the combination of in-situ geochemical analysis of detrital zircon and apatite helps to accurately determine the provenance relationship.
Key words: Bohai Sea    Jiaodong Peninsula    zircon    U-Pb ages    apatite    provenance    
0 引言

渤海湾盆地位于华北克拉通内部,被燕山、太行山、鲁中山区、胶东和辽东半岛围限,自中生代以来受西太平洋板块向东亚大陆俯冲的远程效应影响(Li et al., 2019),成为典型的陆内裂谷盆地(Allen et al., 1997; Qi and Yang, 2010);同时也是黄河穿过三门峡东流入渤海所经过的大型沉积盆地(Liu et al., 2019; Xiao et al., 2020),加上发源于燕山、太行山以及胶东和辽东半岛的诸多河流的汇入,在盆地内堆积了巨厚(>10000 m) 的碎屑沉积物,随着第四纪海水的侵入(吴忱, 2008; Yi et al., 2016),渤海开始出现在渤海湾盆地的东部,而堆积其内的碎屑物质是否随着洋流扩散到黄海一直是国内外学者关注的热点问题(Saito et al., 2001; 陈丽蓉, 2008; Liu et al., 2009; 王昆山等, 2010; Milliman and Farnsworth, 2013; Choi et al., 2013; 韩宗珠等, 2013; 王利波等, 2014; Rao et al., 2015; 郭飞等, 2016; 蓝先洪等, 2016; Qiao et al., 2017; 郑世雯等, 2017; Hu et al., 2018; 刘希青等, 2018; 张连杰等, 2019; 林旭等, 2020a),同时也是全球大陆边缘“源-汇”过程与陆海相互作用研究的重要组成部分(Yang et al., 2003; 王昆山等, 2010; Huang et al., 2020)。但目前对渤海的碎屑沉积物是以近源河流为主还是远源河流占主导,以及这些河流物质是否扩散到黄海等问题,一直没有定论。

位于渤海内的钻孔物质详细记录了流入河流的物源信息。此外,胶东半岛位于渤海和黄海之间,其海湾近岸碎屑物质是验证渤海碎屑物质向黄海扩散的理想载体(刘金庆等, 2016; Hu et al., 2018; Huang et al., 2020; 林旭等, 2020a)。因而,将这些沉积区(汇)与潜在物源区(源)进行比较,是厘定上述分歧的关键所在。沉积物的全岩(bulk) 组成受多种因素的相互作用控制,包括源区基岩组成、化学风化强度、沉积物颗粒大小、输移机制和成岩作用等,因而得到的结果大多是均一化的物源信息(Liu et al., 2017; 赵希涛等, 2017; 程瑜等, 2018; Guo et al., 2020; 林旭等2020b)。随着激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS) 被广泛用于原位(in situ) 单颗粒矿物成分分析,弥补了传统物源示踪分析方法的不足(Bracciali et al., 2013; Johnson et al., 2018; Monnier et al., 2018; Fyhn et al., 2019; O′Sullivan et al., 2020)。锆石(ZrSiO4)是河流沉积物中常见的副矿物,其U-Pb年龄谱对比被广泛应用于物源示踪研究(Yang et al., 2009; Kon et al., 2014; Liu et al., 2017; Fyhn et al., 2019; 叶亚康, 2019)。磷灰石[Ca5(PO4)3(OH, F, Cl)] 是地球岩石圈各类岩石中广泛存在的副矿物(丁波等, 2019),由于不同岩石类型的磷灰石具有不同的主量(CaO, P2O5)和微量元素含量(包括稀土元素REE, Sr, Y等;曾令森, 2012),因而是开展原位(in situ) 主、微量元素分析的理想矿物,被广泛用于物源示踪研究(Belousova et al., 2002; Morton and Yaxley, 2007; Bruand et al., 2017; Malusà et al., 2017; Hu et al., 2019; O′Sullivan et al., 2020)。所以,文章利用环渤海湾盆地主要注入河流碎屑锆石U-Pb年代学结果(林旭等, 2020a),对碎屑磷灰石主、微量元素进行分析,再结合区域内已有研究结果,系统判别渤海内的钻孔和其主要流入河流,以及胶东半岛海湾内的沉积物质和这些河流是否存在物源关系,为中国北部陆架海物质扩散研究提供对比数据。

1 地质背景 1.1 渤海湾盆地

渤海湾盆地是在华北克拉通基底上发育的中—新生代断陷、坳陷叠合盆地(Allen et al., 1997; Qi and Yang, 2010; Li et al., 2012a图 1)。燕山运动后华北克拉通东部受西太平洋板块俯冲影响较大,导致其内岩石圈挤压、隆升、侵蚀,以及岩石圈减薄,出现拉张断陷,形成渤海湾盆地的雏形,同时堆积了暗色砂泥岩、红色砂泥岩和中—酸性火山岩,最大厚度可达4000 m (朱夏和徐旺, 1990)。第四系(平原组) 地层分布稳定,厚度变化不大,一般为300~400 m,靠近沉积中心有加厚的趋势,岩性主要以灰黄色—土黄色粘土、砂质粘土、粉砂、泥质砂为主(吴忱, 2008; 邱燕等, 2016)。

1—9河流碎屑锆石(Nie et al., 2015; 林旭等, 2020a);①—③碎屑钾长石(林旭等, 2020a);A—D碎屑磷灰石(此次研究);CK3—渤海湾钻孔(Xiao et al., 2020),JY268—辽东湾钻孔(Huang et al., 2020),T80、S1—渤海中央盆地钻孔(李孟芸, 2017; Huang et al., 2020),T87—莱州湾钻孔(Huang et al., 2020) Fluvial detrital zircon data 1-8 were quoted from Lin et al., 2020a, data 9 from Nie et al., 2015. ①-③ represent the in-situ geochemical analysis of detrital K-feldspar (Lin et al., 2020a); A-D represent the study of in-situ geochemistry of detrital apatite (in this study); Figures CK3, JY268, T80, S1 and T87 represent the boreholes located in the Bohai Bay, Liaodong Bay, Bohai Central Basin and Laizhou Bay, respectively (Li, 2017; Huang et al., 2020; Xiao et al., 2020) 图 1 渤海湾盆地地理位置图 Fig. 1 Geographical location map of the Bohai Bay Basin.

第四纪初期,海水从南部侵入渤海湾盆地,古渤海初步形成(吴忱, 2008; Yi et al., 2016)。现今渤海是一个典型的半封闭浅海陆架,由辽东湾、渤海湾、莱州湾组成(赵希涛等, 1979)。辽东湾位于渤海北部,最大水深32 m,湾顶与辽河下游冲积平原相连,沉积了辽河携带的泥沙,表层沉积物主要是淤泥和细粉砂(图 2)。渤海湾位于渤海西部,水深一般小于20 m,表层沉积物以砂质为主。黄河在渤海西部汇入其内,由河口向外输送的泥沙,受潮流和沿岸流的作用,分三股扩张。第一股平均粒径>0.025 mm的砂质泥沙沿黄河三角洲随沿岸流及潮流向西北运移;第二股平均粒径是<0.015 mm的极细颗粒,受潮流及余流作用向东北移动。第三股向西南移动,进入莱州湾,到烟台龙口一带为止(吴忱, 2008)。莱州湾位于渤海南部,大部分水深在10 m以内,最深处18 m。海底底质以粉砂占优势。渤海中央盆地位于三个海湾与渤海海峡之间,水深20~25 m,渤海和黄海之间的潮流贯穿盆地中央,海底沉积物经过潮流冲刷分选,以细砂为主。渤海海峡指辽东半岛老铁山与山东半岛登州头之间的水域,最北的老铁山水道是海峡的主要通道,水深50~65 m,表层沉积物为细砂、粉砂质淤泥和贝壳砂。在晚更新世时期(20~15 ka),中国东部陆架海发生约150~160 m的海平面下降,此时的黄河深入到发生海退的大陆架上(赵希涛等, 1979)。

图 2 渤海湾盆地海底地貌类型图(据吴忱, 2008修改) Fig. 2 Submarine geomorphologic map of the Bohai Bay Basin (modified after Wu, 2008)

从北到南流入渤海的河流主要有辽河、滦河、永定河、滹沱河、漳河、黄河等(图 1),这些河流每年向渤海输入大量泥沙,成为渤海泥沙的主要来源。其中辽河和滦河每年向渤海分别输入大约3.5×107 t和2.67×107 t碎屑物质(吴忱, 2008)。永定河、滹沱河和漳河等组成的海河每年向渤海提供大约1.87×107 t碎屑物质(胡春宏等, 2010)。黄河平均每年向渤海输入泥沙超过1×109 t,成为渤海泥沙的主要输入河流(Li et al., 2020)。这些泥沙覆盖在海底,成为渤海海底地貌的主体部分。

1.2 胶东半岛

在构造上可将胶东半岛分为两部分(图 3):胶北地体和胶东地体(Zhao et al., 2018)。胶北地体具有华北克拉通的属性,出露2473~2527 Ma和1860~1900 Ma的锆石U-Pb峰值年龄(Zhu et al., 2020),其前寒武基底主要为太古代、古元古代以及新元古代地层(Zhao et al., 2018);胶东地体具有苏鲁造山带超高压的属性,其前寒武基底主要为新元古代花岗质片麻岩,锆石年龄集中在740~780 Ma (Tang et al., 2008; Zhang et al., 2010)。在胶北和胶东地体,晚侏罗世(160 Ma)和早白垩世(115~130 Ma) 花岗质侵入岩体广泛分布(Tang et al., 2008; Yang et al., 2014)。自古近纪,随着胶东半岛的隆升,其开始为渤海中央盆地(李孟芸, 2017)和黄海北部盆地(Zhu et al., 2020) 提供碎屑物质。

图 3 胶东半岛地质简图(据中国1∶250万地质图修改,2004) Fig. 3 Geological sketch map of the Jiaodong Peninsula, modified after the China 1∶250, 000 geological map (China Geological Survey, 2004)

威海湾位于胶东半岛东端(图 3),平均水深6~9 m,最大水深34.5 m。威海湾的潮汐类型为不规则的半日潮,平均潮差为1.35 m,盛行风向一般与海岸线平行。在刘公岛两侧,潮流达到0.87 m/s,但在威海湾内部只有0.05 m/s。威海湾表面沉积物以粘土粉砂为主(5.7~6.7Φ) (Zhong et al., 2020),砂质沉积物(1~4.2Φ) 主要分布在海岸(宫立新, 2014)。银滩湾位于胶东半岛南部(图 3),沉积物以中细砂(2~4Φ) 为主(宫立新, 2014),潮汐模式是正常的半日潮。海浪的运动方向由东南向西北,大致与海岸方向平行,偶尔受台风的影响。

2 样品来源及分析方法 2.1 样品/数据来源

对黄河、刘公岛、威海湾、银滩湾的现代河流边滩和海岸砂进行样品采集,每个点采集大约3~5 kg样品。黄河现代河流样品采自山东省东明县黄河干流边滩(35°20′29″N;115°01′40″E)。刘公岛(37°29′54″N;122°10′49″E)、威海(37°26′02″N;122°10′22″E)、银滩(36°49′39″N;121°42′05″E) 的样品采自现代海岸潮间带砂体。辽河、滦河、永定河、滹沱河、漳河现代河流沉积物和刘公岛、威海、银滩的海岸砂碎屑锆石U-Pb年龄数据来自林旭等(2020a)研究成果。黄河碎屑锆石U-Pb年龄数据来自Nie et al. (2015)研究成果。辽东湾、渤海中央盆地和莱州湾钻孔碎屑锆石U-Pb年龄数据来自李孟芸(2017)Huang et al. (2020)研究成果。

2.2 实验方法

将野外采集回来的碎屑样品经重砂分析、磁性分选等一系列过程,将磷灰石分离出来,并在双目显微镜下进行人工挑选提纯。每个样品随机挑选大于300颗磷灰石制作环氧树脂靶,并对靶片进行表面抛光处理。然后对所有样品进行背散射图像拍摄,选择某一颗粒的分析位置,提高分析精度。单矿物原位微区微量元素含量在武汉上谱分析科技有限责任公司利用LA-ICP-MS完成,型号为Agilent 7700e。GeolasPro激光剥蚀系统由COMPexPro 102 ArF 193 nm准分子激光器和MicroLas光学系统组成。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合,激光剥蚀系统配置有信号平滑装置。此次分析的激光束斑和频率分别为44 μm和5 Hz。每个时间分辨分析数据包括大约20~30 s空白信号和50 s样品信号。单矿物微量元素含量处理中采用玻璃标准物质BHVO-2G,BCR-2G和BIR-1G进行多外标无内标校正。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正以及元素含量计算) 采用软件ICPMSDataCal (Liu et al., 2008) 完成。

为了系统判别渤海各个钻孔和胶东半岛海湾的沉积物来源,采用多维标度(MDS)方法来评估不同U-Pb年龄分布的相似性(Vermeesch et al., 2016)。将其与潜在河流和基岩源区进行对比,辅助判断物源区。

3 实验结果

黄河、刘公岛、威海和银滩样品的部分磷灰石颗粒的背散射图像如图 4所示。来自黄河的磷灰石颗粒以圆或次圆为主,说明经历了多期搬运沉积过程;而刘公岛、威海和银滩的磷灰石颗粒则以棱角状、次棱角状为主,说明其未经历长距离的搬运过程,以近源为主。

图 4 磷灰石背散射图像(圆圈为样品分析点) Fig. 4 Representative back scattering images of detrital apatite grains from the Yellow River(a), Liugong Island(b), Weihai Bay (c) and Yintan Bay(d). Circles indicate analytical spots for major and trace elements dating.

通过LA-ICP-MS对黄河下游干流、刘公岛、威海和银滩的现代河流和海岸沉积物开展碎屑磷灰石原位(in situ)地球化学分析,所测得的主量元素、微量元素、稀土元素分析结果见表 1图 5。黄河、刘公岛、威海、银滩四件样品的常量元素包括SiO2, P2O5和CaO。而Na2O,MgO,Al2O3,K2O,TiO2,MnO,FeO的含量极小,低于检测值下限可忽略不计。黄河SiO2的含量范围为0.2×10-2~1.0×10-2、刘公岛为0.1×10-2~0.3×10-2、威海和银滩分别为0.1×10-2~0.4×10-2和0.3×10-2~0.6×10-2。P2O5和CaO是磷灰石的主要成分,在磷灰石中的含量较多,其中黄河的P2O5含量分布范围为41.1×10-2~43.3×10-2,刘公岛为42.5×10-2~44.2×10-2,威海为42.8×10-2~45.8×10-2,银滩为43.2×10-2~45.1×10-2。各区样品的CaO含量范围:黄河39.2×10-2~57.1×10-2、刘公岛55.2~56.9×10-2、威海53.8×10-2~56.3×10-2、银滩54.4×10-2~56.1×10-2。微量元素主要由Sr,Y,Ce,Ga,Zr,Pb,Th,U等元素组成,其中以Sr含量最为丰富,其次为Ce和Y。其中黄河的Sr (95×10-6~5526×10-6)和Ce (13×10-6~7593×10-6) 含量最高。稀土元素由于其稳定的化学性质被广泛应用于沉积物来源判别、构造环境变化等方面的研究,此次分析的样品中,黄河的磷灰石Sm和Nd元素的平均值、分布范围与刘公岛、威海和银滩的样品截然不同。此外,四个样品的∑REE (La—Eu)平均含量分别为:黄河3015×10-6、刘公岛708×10-6、威海792×10-6、银滩175×10-6,黄河与其他三个样品明显不同。

表 1 磷灰石LA-ICP-MS数据统计表 Table 1 Descriptive statistics of the LA-ICP-MS data for apatite grains

a—CaO和P2O5;b—SiO2和P2O5;c—Y和Ce;d—Sm和Nd;e—Sr/Y和∑REE;f—Ce/Yb和∑REE 图 5 磷灰石主、微量元素含量二维散点图 Fig. 5 Two-dimensional scatter plots for the contents of CaO and P2O5(a), SiO2 and P2O5(b), Y and Ce(c), Sm and Nd(d), Sr/Y and ∑REE(e), Ce/Yb and ∑REE(f) in apatites

将两个微量元素含量或比值对其中一个元素或其他元素做散点图,这种图解使用最为普遍,可有效判别源区(Belousova et al., 2002; Morton and Yaxley, 2007; 张宏飞和高山, 2016O′Sullivan et al., 2020)。磷灰石的主量元素CaO, SiO2和P2O5表现出负相关关系,而Y和Ce,Sm和Nd则表现出正相关关系(图 5a5d),尽管威海(将刘公岛和威海样品合并)和银滩的分布区域发生重叠,但二者与黄河的分布范围明显不同,指示了不同的物质组成。在Sr/Y和∑REE的二维散点图中(图 5e),可以发现二者呈现显著的负正相关关系,而在Ce/Yb和∑REE的二维散点图中(图 5f),则呈现正相关关系,这可以有效区分黄河、威海、银滩的分布区域。

辽河下游的锆石U-Pb峰值年龄主要集中在263 Ma, 520 Ma, 1768 Ma和2496 Ma (林旭等, 2020a图 6a)。滦河与辽河相比,最大的不同是其流域内出现795 Ma的新元古代峰值年龄(图 6b)。海河流域包括永定河、滹沱河、漳河的碎屑锆石样品,其主要U-Pb年龄峰值集中在154 Ma, 257 Ma, 1852 Ma和2470 Ma,缺乏古生代和新元古代峰值年龄(图 6c)。黄河流域下游入海口的碎屑锆石U-Pb年龄,主要出现250 Ma, 411 Ma, 941 Ma, 1867 Ma和2441 Ma的峰值(Nie et al., 2015图 6d)。辽东湾地表钻孔的碎屑锆石主要包含中生代(130 Ma)和古生代(260 Ma、389 Ma和519 Ma) 峰值年龄,其古元古代和新太古代峰值年龄不显著(Huang et al., 2020图 6e)。胶东基岩(Zhao et al., 2018图 6f)和胶东碎屑(林旭等, 2020a图 6g) 锆石U-Pb峰值年龄组成十分相似,主要由中生代(117 Ma, 160 Ma, 221~223 Ma)和古生代(405 Ma),以及新元古代(729 Ma) 峰值年龄组成,古元古代和新太古代峰值年龄不显著。渤海中央盆地东南部中新世馆陶组的碎屑锆石U-Pb峰值年龄出现三个主要峰值:152 Ma,258 Ma和752 Ma (李梦芸, 2017图 6h)。渤海中央盆地地表钻孔的碎屑锆石U-Pb峰值年龄集中在250 Ma,408 Ma,911 Ma (Huang et al., 2020图 6i),古元古代和新太古代峰值年龄不显著。莱州湾地表钻孔的碎屑锆石U-Pb峰值年龄包括117 Ma,241 Ma,417 Ma和982 Ma (Huang et al., 2020图 6j)。Xiao et al. (2020)对渤海湾CK3钻孔进行了碎屑锆石U-Pb年龄物源示踪研究,结果表明1.5 Ma后碎屑物质主要来自黄河。

a—辽河、b—滦河、c—海河(林旭等, 2020a);d—黄河(Nie et al., 2015);e—辽东湾钻孔(Huang et al., 2020);f—胶东半岛基岩(Zhao et al., 2018);g—胶东半岛碎屑(林旭等, 2020a);h—中新世中央盆地钻孔(李孟芸, 2017);i—晚第四纪中央盆地钻孔;j—莱州湾钻孔(Huang et al., 2020) (a-c) The Liaohe River, Luanhe River and Haihe River (Lin et al., 2020a). (d)The Yellow River (Nie et al., 2015). (f, g) Bedrock and detrital from the Jiaodong Peninsula (Zhao et al., 2018; Lin et al., 2020a). (h) A Miocene borehole in the Bohai Central Basin. (e, i, j) boreholes in the Liaodong Bay, Bohai Central Basin and Laizhou Bay (Huang et al., 2020) 图 6 碎屑锆石U-Pb年龄概率分布图 Fig. 6 Probability distribution of U-Pb ages of detrital zircons.

从锆石U-Pb年龄之间的K-S距离MDS图可知(图 7),莱州湾和渤海中央盆地晚第四纪钻孔的碎屑锆石U-Pb年龄和黄河的距离比较近。渤海东南部中新世钻孔的碎屑锆石U-Pb年龄与胶东基岩和胶东碎屑锆石U-Pb年龄分布区域接近。同时胶东半岛碎屑锆石U-Pb年龄和莱州湾钻孔的距离也较近。辽东湾的物质组成和辽河的亲缘性最近。太行山和燕山的滹沱河、漳河、永定河和滦河与这些钻孔的亲缘性均不高,而来自朝鲜半岛的汉江和大同江与上述区域的距离则更远。

图 7 锆石U-Pb年龄之间的K-S统计距离多维判别图(MDS) Fig. 7 MDS plot showing the K-S distances between the zircon U-Pb ages
4 讨论

环渤海湾盆地地表河流碎屑锆石U-Pb年龄(林旭等, 2020a)和辽东湾、中央盆地和莱州湾钻孔的碎屑锆石U-Pb年龄(李孟芸, 2017; Huang et al., 2020)的研究成果,为系统讨论这些钻孔的物质来源提供了依据。辽东湾钻孔晚第四纪近地表的碎屑锆石U-Pb峰值年龄(Huang et al., 2020图 6e),与滦河相比缺少新元古代峰值年龄(林旭等, 2020a),同时其古元古代和新太古代峰值年龄不显著;而与海河的锆石U-Pb峰值年龄组成最大的不同体现在,辽东湾钻孔具有早古生代的峰值年龄(519 Ma),古元古代和新太古代峰值年龄不显著;与黄河下游河口的碎屑锆石U-Pb峰值年龄相比(Nie et al., 2015),辽东湾钻孔不具有新元古代峰值年龄,但富集中生代峰值年龄,因此滦河、海河、黄河的碎屑锆石U-Pb峰值年龄组成与辽东湾钻孔存在显著差异,但其与辽河高度吻合,结合MDS判断结果,说明辽东湾钻孔的碎屑物质主要来自辽河下游。另外,辽东湾表层沉积物重矿物组合物源示踪结果表明,辽河流域是区域内碎屑物质的主要来源区(王利波等, 2014),这与金秉福等(2014)开展的辽东湾全岩主量和微量元素以及单颗粒角闪石原位地球化学指标分析的结果一致。

莱州湾钻孔晚第四纪近地表的碎屑锆石U-Pb峰值年龄组成与辽河和海河相比,其存在明显的新元古代峰值年龄,而与滦河相比却又缺乏古元古代和新太古代峰值年龄;与胶东基岩(Zhao et al., 2018)和胶东碎屑(林旭等, 2020a) 锆石U-Pb峰值年龄相比,虽然都出现新元古代峰值年龄,但莱州湾钻孔集中在982 Ma,后者则集中在729 Ma。莱州湾钻孔碎屑锆石U-Pb峰值年龄组成和黄河相似。但是莱州湾钻孔中也出现了117 Ma的中生代峰值年龄,这一峰值年龄在黄河流域下游、海河和滦河并没有出现(Nie et al., 2015),而在胶东半岛碎屑(林旭等, 2020a)和流入莱州湾的胶莱河中出现(耿显雷等, 2016)。这也体现在MDS判断结果上,可以清楚的看到莱州湾钻孔和黄河、胶东半岛存在亲近性,因而莱州湾的物质主要来自黄河,但胶东半岛也提供了部分物质。郭飞等(2016)通过对莱州湾晚第四纪钻孔沉积物开展全岩常微量元素以及稀土元素含量分析,对比发现黄河是莱州湾的主要物质贡献河流,同时胶莱河和潍河也提供了重要物源,这与黄学勇(2019) 在莱州湾内部晚第四纪钻孔的全岩常微量元素以及稀土元素物源示踪结果吻合,这也进一步说明莱州湾内碎屑物质来源的多元性。

渤海中央盆地位于辽东湾、渤海湾、莱州湾交汇处,因而是判断辽河、滦河、海河和黄河物质扩散的理想区域。从图 6中可以明显看出,渤海中央盆地晚第四纪钻孔的碎屑锆石U-Pb峰值年龄组成,与辽河和海河相比出现明显的新元古代峰值年龄;与滦河相比古元古代和新太古代峰值年龄不明显,同时二者的新元古代峰值年龄也不相同;与胶东半岛基岩和碎屑锆石U-Pb峰值年龄组成最显著的差异在于,后者出现明显的中生代峰值年龄(160 Ma),而在渤海中央盆地则以250 Ma的峰值为主。渤海中央盆地中新世钻孔的碎屑锆石U-Pb年龄特征和MDS判断结果,表明其碎屑物质在中新世时主要来自胶东半岛(李孟芸, 2017),与邻近区域内晚第四纪钻孔的碎屑锆石U-Pb峰值年龄组成截然不同。Xiao et al.(2020)对渤海湾西部陆地中新世、上新世和更新世钻孔的碎屑锆石U-Pb年龄物源示踪结果表明,黄河在早更新世(1.5 Ma) 流入渤海湾,这与Liu et al. (2020)在黄河三角洲第四纪钻孔开展的碎屑重矿物物源示踪结果(1.9 Ma)相近。此外,受晚更新世中国东部陆架海平面下降的影响,黄河深入“干涸”的渤海内部(赵希涛等, 1979),对渤海近地表的碎屑物质组成起到重要影响。因而,渤海中央盆地中新世(胶东半岛)的碎屑物质没有经历再循环过程进入到后期的近地表沉积地层中。另外,在黄海暖流的影响下,黄海与渤海通过渤海海峡进行物质联系,但是从碎屑锆石U-Pb年龄谱(Wu et al., 2007; Choi et al., 2013, 2016)和MDS判断结果来看,朝鲜半岛和黄海并不是渤海中央盆地物质的主要源区。从锆石U-Pb年龄谱的形态特征和年龄组成上,渤海中央盆地晚第四纪钻孔的锆石主要来自黄河,这也进一步体现在MDS判断结果中。渤海湾中央盆地近地表的主微量元素(蓝先洪等, 2016)、稀土元素(郑世雯, 2017)和粘土矿物(刘希青等, 2018) 物源示踪结果表明,黄河成为区域中主要的物质输入河流。张连杰等(2019)对渤海湾近地表的物质进行矿物组合分析,结果表明黄河碎屑物质的影响力最强,控制着渤海湾的整个南半部;滦河控制着渤海湾的北部和东北部;海河碎屑物质的影响力较弱,仅局限在渤海湾西北部的海河口附近。因而,从区域上来说,黄河对渤海的物质组成影响最大,同时影响着莱州湾、渤海湾和中央盆地的物质组成。

综上可知,渤海的碎屑沉积物主要以远源的黄河物质为主,而黄河(渤海) 物质是否和胶东半岛东部海湾的碎屑物质存在物源联系?回答这一问题的关键在于对二者开展物源示踪判别。以往的物源示踪结果研究表明,威海湾外部的泥质沉积体主要来自黄河(Li et al., 2015; Zhong et al., 2020)。这些泥质体在潮汐、海岸流和台风的作用下,再次搬运进入威海湾内(Zhong et al., 2020)。但是从威海湾内的刘公岛和威海岸边的砂级磷灰石原位地球化学分析结果可以明显看到,黄河与这些海岸砂不存在物源关系,结合林旭等(2020a)对威海湾内的碎屑锆石和钾长石物源分析,说明威海湾的砂级物质主要来自当地。这与胶东半岛南部的银滩湾(林旭等, 2020a)、乳山湾(刘金庆等, 2016)、胶州湾(刘金庆等, 2016; Hu et al., 2018) 的情形相似,即粗颗粒物质主要来自当地河流,而细颗粒物质来自黄河。因而,黄河(渤海) 物质与胶东半岛海湾的砂级物质不存在物源关系,主要以细颗粒组分出现在黄海。

5 结论

通过对辽河、滦河、永定河、滹沱河、漳河和黄河的碎屑锆石U-Pb年龄,与渤海的辽东湾、中央盆地和莱州湾的碎屑锆石U-Pb年龄进行峰值对比,结合MDS图判断锆石U-Pb年龄组成的远近距离,系统判别了渤海各个海湾的物质来源,结果表明,辽东湾的碎屑物质主要来自辽河;渤海中央盆地的碎屑物质同样以黄河为主;莱州湾的物质组成主要受黄河影响,但胶东半岛也对莱州湾提供了部分碎屑物质。因而,黄河对渤海的碎屑物质组成的影响要远强过辽河、滦河和海河。碎屑磷灰石原位主微量元素分析结果表明,黄河与胶东半岛的威海湾和银滩湾没有物源联系,胶东半岛海湾内的砂级物质主要以本地物质为主。

致谢: 衷心感谢两位审稿人的修改建议,感谢硕士研究生刘海金和李兆宁野外样品采集的帮助。

参考文献/References
ALLENM B, MACDONALD D M, XUN Z, et al., 1997. Early cenozoic two-phase extension and late cenozoic thermal subidence and inversion of the Bohai Basin, northern China[J]. Marine and Petroleum Geology, 14(7-8): 951-972. DOI:10.1016/S0264-8172(97)00027-5
BELOUSOVA E A, GRIFFIN W L, O'REILLY S Y, et al., 2002. Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 76(1): 45-69. DOI:10.1016/S0375-6742(02)00204-2
BRACCIALI L, PARRISH R R, HORSTWOOD M S A, et al., 2013. U-Pb LA-(MC)-ICP-MS dating of rutile: New reference materials and applications to sedimentary provenance[J]. Chemical Geology, 347: 82-101. DOI:10.1016/j.chemgeo.2013.03.013
BRUAND E, FOWLER M, STOREY C, et al., 2017. Apatite trace element and isotope applications to petrogenesis and provenance[J]. American Mineralogist, 102(1): 75-84. DOI:10.2138/am-2017-5744
CHEN L R, 2008. Sediment mineralogy of the China Sea[M]. Beijing: China Ocean Press, 40-57. (in Chinese)
CHENG Y, LI X Q, ZHAO Z Y, et al., 2018. Detrital zircon U-Pb age and its provenance significance in the TZK3 core from the Yangtze River Delta[J]. Journal of Geomechanics, 24(5): 635-644. (in Chinese with English abstract)
CHOI T, LEE Y I, ORIHASHI Y, et al., 2013. The provenance of the southeastern Yellow Sea sediments constrained by detrital zircon U-Pb age[J]. Marine Geology, 337: 182-194. DOI:10.1016/j.margeo.2013.01.007
CHOI T, LEE Y I, ORIHASHI Y, 2016. Crustal growth history of the Korean Peninsula: Constraints from detrital zircon ages in modern river sediments[J]. Geoscience Frontiers, 7(5): 707-714. DOI:10.1016/j.gsf.2016.05.003
China Geological Survey, 2004. Geological map of the People's Republic of China (1:2.5 million)[M]. Beijing: China map publishing house, 1. (in Chinese)
DING B, LIU H X, LI P, et al., 2019. The tectonic activity in the southern margin of the Ili Basin and its constraints on sandstone-type uranium deposits: evidence from apatite fission track and U-Pb dating[J]. Journal of Geomechanics, 25(S1): 84-89. (in Chinese with English abstract)
FYHN M B W, THOMSEN T B, KEULEN N, et al., 2019. Detrital zircon ages and heavy mineral composition along the Gulf of Tonkin-Implication for sand provenance in the Yinggehai-Song Hong and Qiongdongnan basins[J]. Marine and Petroleum Geology, 101: 162-179. DOI:10.1016/j.marpetgeo.2018.11.051
GENG X L, GAO S, CHEN C, 2011. Crustal growth of the eastern North China Craton and sulu orogen as revealed by U-Pb dating and Hf isotopes of detrital zircons from modern rivers[J]. Earth Science-Joumal of China University of Geosciences, 36(3): 483-499. (in Chinese with English abstract)
GONG L X. 2014. Erosion situation and protection of beach in eastern part of Shandong Peninsula[D]. Qingdao: Ocean university of China: 1-130. (in Chinese with English abstract)
GUO F, GAO M S, HOU G H, et al., 2016. Geochemical characteristics of sediment in Core 07 since the late Pleistocene in Laizhou Bay[J]. Acta Oceanologica Sinica, 38(3): 145-155. (in Chinese with English abstract)
GUO R H, HU X M, GARZANTI E, et al., 2020. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet[J]. Earth-Science Reviews, 201: 103082. DOI:10.1016/j.earscirev.2020.103082
HAN Z Z, YI W H, LI M, et al., 2013. Analysis for heavy mineral characteristics and material provenance in the sediments of the northern Bohai bay[J]. Periodical of Ocean University of China, 43(4): 73-79. (in Chinese with English abstract)
HU C H, WANG Y G, ZHANG Y J, et al., 2010. Variation tendency of runoff and sediment load in China major rivers and its causes[J]. Advances in Water Science, 21(4): 524-532. (in Chinese with English abstract)
HU G, XU K H, CLIFT P D, et al., 2018. Textures, provenances and structures of sediment in the inner shelf south of Shandong Peninsula, western South Yellow Sea[J]. Estuarine, Coastal and Shelf Science, 212: 153-163. DOI:10.1016/j.ecss.2018.07.018
HU S Y, ZENG Z G, FANG X, et al., 2019. Geochemical study of detrital apatite in sediment from the southern Okinawa trough: new insights into sediment provenance[J]. Minerals, 9(10): 619. DOI:10.3390/min9100619
HUANG X T, SONG J Z, YUE W, et al., 2020. Detrital Zircon U-Pb Ages in the East China Seas: Implications for Provenance Analysis and Sediment Budgeting[J]. Minerals, 10(5): 398. DOI:10.3390/min10050398
HUANG X Y, 2019. Analysis of Sedimentary Characteristics in the Guangli River Estuary and the Western Laizhou Bay[D]. Dalian: Liaoning Normal University: 1-72. (in Chinese with English abstract)
JIN B F, YUE W, WANG K S, 2014. Chemical composition of detrital amphibole in the sediments of the Huanghe River, Liaohe River and Yalu River, and its implication for sediment provenance[J]. Acta Oceanologica Sinica, 36(4): 11-21. (in Chinese with English abstract)
JOHNSON S P, KIRKLAND C L, EVANS N J, et al., 2018. The complexity of sediment recycling as revealed by common Pb isotopes in K-feldspar[J]. Geoscience Frontiers, 9(5): 1515-1527. DOI:10.1016/j.gsf.2018.03.009
KONG P, JIA J, ZHENG Y, 2014. Time constraints for the Yellow River traversing the Sanmen gorge[J]. Geochemistry, Geophysics, Geosystems, 15(2): 395-407. DOI:10.1002/2013GC004912
LAN X H, QIN Y C, WANG Z B, et al., 2016. Geochemical characteristics of sediments in the eastern Bohai sea since late Pleistocene[J]. Acta Sedimentologica Sinica, 34(5): 892-901. (in Chinese with English abstract)
LI G G, HU B Q, LI J, et al., 2012b. Geochemistry of major elements in the surface sediments of the offshore area of Shandong peninsula and its geological implications[J]. Marine Geology & Quaternary Geology, 32(3): 45-54.
LI J, HU B Q, ZHAO J T, et al., 2015. Distribution pattern and controlling factors of heavy mineral assemblages in surficial seafloor sediments offshore of the Eastern Shandong Peninsula (Yellow Sea)[J]. Environmental Earth Sciences, 73(8): 4273-4285. DOI:10.1007/s12665-014-3712-9
LI L, NI J R, CHANG F, et al., 2020. Global trends in water and sediment fluxes of the world's large rivers[J]. Science Bulletin, 65(1): 62-69. DOI:10.1016/j.scib.2019.09.012
LI M Y, 2017. Dating method of detrital zircons and its application in sediment provenance studies[D]. Wuhan: Yangtze University: 1-60.
LI S Z, ZHAO G C, DAI L M, et al., 2012a. Mesozoic basins in Eastern China and their bearing on the deconstruction of the North China Craton[J]. Journal of Asian Earth Sciences, 47: 64-79. DOI:10.1016/j.jseaes.2011.06.008
LI S Z, SUO Y H, LI X Y, et al., 2019. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate[J]. Earth-Science Reviews, 192: 91-137. DOI:10.1016/j.earscirev.2019.03.003
LIN X, LIU J, WU Z H, et al., 2020a. Detrital zircon U-Pb ages and K-feldspar main and trace elements provenance studying from fluvial to marine sediments in northern China[J]. Acta Geologica Sinica, 94(10): 3024-3035. (in Chinese with English abstract)
LIN X, ZHAO X T, WU Z H, et al., 2020b. Source tracing elements of K-feldspar of main rivers around Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 39(6): 10-18. (in Chinese with English abstract)
LIU J, SAITO Y, KONG X H, et al., 2009. Geochemical characteristics of sediment as indicators of post-glacial environmental changes off the Shandong Peninsula in the Yellow Sea[J]. Continental Shelf Research, 29(7): 846-855. DOI:10.1016/j.csr.2009.01.002
LIU J, ZHANG J Q, MIAO X D, et al., 2019. Mineralogy of the core YRD-1101 of the Yellow River Delta: Implications for sediment origin and environmental evolution during the last ~1.9Myr[J]. Quaternary International, 537: 79-87.
LIU J Q, ZHANG Y, YIN P, et al., 2016. Distribution and provenance of heavy minerals in surface sediments of the Qingdao offshore area[J]. Marine Geology and Quaternary Geology, 36(1): 69-78. (in Chinese with English abstract)
LIU X C, WU Y B, FISHER C M, et al., 2017. Tracing crustal evolution by U-Th-Pb, Sm-Nd, and Lu-Hf isotopes in detrital monazite and zircon from modern rivers[J]. Geology, 45(2): 103-106. DOI:10.1130/G38720.1
LIU X Q, HAN Z Z, AI L N, et al., 2018. Composition of clay minerals and rare geochemical characteristics of BZ01 and B62 core and provenance analysis in the center of Bohai Sea[J]. Periodical of Ocean University of China, 48(1): 106-114. (in Chinese with English abstract)
LIU Y S, HU Z C, GAO S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. DOI:10.1016/j.chemgeo.2008.08.004
MALUSÀ M G, WANG J G, GARZANTI E, et al., 2017. Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology[J]. Lithos, 290-291: 48-59. DOI:10.1016/j.lithos.2017.08.006
MILLIMAN J D, FARNSWORTH K L, 2013. River discharge to the coastal ocean: aglobal syntnesis[M]. London: Cambridge University Press, 1-393.
MONNIER L, LACH P, SALVI S, et al., 2018. Quartz trace-element composition by LA-ICP-MS as proxy for granite differentiation, hydrothermal episodes, and related mineralization: The Beauvoir Granite (Echassières district), France[J]. Lithos, 320-321: 355-377. DOI:10.1016/j.lithos.2018.09.024
MORTON A, YAXLEY G, 2007. Detrital Apatite Geochemistry and its Application in Provenance Studies[M]. Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry. Geological Society of America, 319-344.
NIE J, STEVENTS T, RITTNER M, et al., 2015. Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment[J]. Nature Communications, 6(1): 1-10.
O'SULLIVAN G, CHEW D, KENNY G, et al., 2020. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 201: 103044. DOI:10.1016/j.earscirev.2019.103044
QI J F, YANG Q, 2010. Cenozoic structural deformation and dynamic processes of the Bohai Bay basin Province, China[J]. Marine and Petroleum Geology, 27(4): 757-771. DOI:10.1016/j.marpetgeo.2009.08.012
QIAO S Q, SHI X F, WANG G Q, et al., 2017. Sediment accumulation and budget in the Bohai sea, Yellow Sea and East China sea[J]. Marine Geology, 390: 270-281. DOI:10.1016/j.margeo.2017.06.004
QIU Y, WANG L F, HUANG W K., 2016. Meso-Cenozoic sedimentary basins in Chinese waters[M]. Beijing: Geology Press, 1-233. (in Chinese)
RAO W B, MAO C P, WANG Y G, et al., 2015. Geochemical constraints on the provenance of surface sediments of radial sand ridges off the Jiangsu coastal zone, East China[J]. Marine Geology, 359: 35-49. DOI:10.1016/j.margeo.2014.11.007
SAITO Y, YANG Z S, HORI K, 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene[J]. Geomorphology, 41(2-3): 219-231. DOI:10.1016/S0169-555X(01)00118-0
TANG J, ZHENG Y F, WU Y B, et al., 2008. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China[J]. Precambrian Research, 161(3-4): 389-418. DOI:10.1016/j.precamres.2007.09.008
VERMEESCH P, RESENTINI A, GARZANTI E, 2016. An R package for statistical provenance analysis[J]. Sedimentary Geology, 336: 14-25. DOI:10.1016/j.sedgeo.2016.01.009
WANG K S, SHI X F, CAI S W, et al., 2010. Distribution and provenance of the surface sediments of the Yellow River mouth and Laizhou Bay deduced from heavy minerals[J]. Marine Geology and Quaternary Geology, 30(6): 1-8. (in Chinese with English abstract)
WANG L B, LI J, ZHAO J T, et al., 2014. Detrtial mineral assemblages and distributions as indicators of provenance and dispersal pattern in surface sediments from Liaodong Bay, Bohai Sea[J]. Acta Oceanologica Sinica, 36(2): 66-74. (in Chinese with English abstract)
WU C, 2008. Landform environment and its formation in North China[M]. Beijing: Science Press, 1-551. (in Chinese with English abstract)
WU F Y, YANG J H, WILDE S A, et al., 2007. Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea[J]. Precambrian Research, 159(3-4): 155-177. DOI:10.1016/j.precamres.2007.06.007
XIAO G, SUN Y, YANG J, et al., 2020. Early pleistocene integration of the Yellow River Ⅰ: Detrital-zircon evidence from the North China plain[J]. Palaeogeography Palaeoclimatology, Palaeoecology, 546: 109691. DOI:10.1016/j.palaeo.2020.109691
YANG J, GAO S, CHEN C, et al., 2009. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers[J]. Geochimica et Cosmochimica Acta, 73(9): 2660-2673. DOI:10.1016/j.gca.2009.02.007
YANG Q Y, SANTOSH M, SHEN J F, et al., 2014. Juvenile vs. recycled crust in NE China: Zircon U-Pb geochronology, Hf isotope and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula[J]. Gondwana Research, 25(4): 1445-1468. DOI:10.1016/j.gr.2013.06.003
YANG S Y, LI C X, LEE C B, et al., 2003. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators[J]. Chinese Science Bulletin, 48(11): 1135-1139. DOI:10.1007/BF03185768
YI L, DENG C L, TIAN L Z, et al., 2016. Plio-Pleistocene evolution of Bohai Basin (East Asia): demise of Bohai Paleolake and transition to marine environment[J]. Scientific Reports, 6(1): 29403. DOI:10.1038/srep29403
ZENG L S, CHEN J, GAO L E, et al., 2012. The geochemical nature of apatites in high Sr/Y two-mica granites from the North Himalayan Gneiss Domes, southern Tibet[J]. Acta Petrologica Sinica, 28(9): 2981-2993. (in Chinese with English abstract)
ZHANG H F, GAO S, 2016. Geochemistry[M]. Beijing: Geology Press, 1-410. (in Chinese)
ZHANG J, ZHAO Z F, ZHENG Y F, et al., 2010. Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China[J]. Lithos, 119(3-4): 512-536. DOI:10.1016/j.lithos.2010.08.005
ZHANG L J, HU R J, ZHU L H, et al., 2019. Characteristics of detrital minerals in Bohai Bay and their implications for provenance and sedimentary dynamical environment[J]. Periodical of Ocean University of China, 49(5): 60-70. (in Chinese with English abstract)
ZHAO R, WANG Q F, DENG J, et al., 2018. Late Mesozoic magmatism and sedimentation in the Jiaodong Peninsula: New constraints on lithospheric thinning of the North China Craton[J]. Lithos, 322: 312-324. DOI:10.1016/j.lithos.2018.10.020
ZHAO X T, GENG X S, ZHANG J W, 1979. Sea level changes of the eastern China during the past 20000 years[J]. Acta Oeanologia Sinica, 1(2): 269-281. (in Chinese with English abstract)
ZHAO X T, HU D G, WU Zh H, et al., 2017. Reviews on the research of late Cenozoic geology and environment of the Yangtze River delta area[J]. Journal of Geomechanics, 23(1): 1-64. (in Chinese with English abstract)
ZHENG S W, FAN D J, LIU M, et al., 2017. Rare earth element evidence for the modern Yellow River origin sediments in the middle Bohai Sea[J]. Periodical of Ocean University of China, 47(6): 95-103. (in Chinese with English abstract)
ZHONG W, ZHU L H, DONG P, et al., 2020. Mechanisms of sediment trapping in coastal embayments off the Shandong Peninsula in summer: A case study in Weihai Bay[J]. Estuarine, Coastal and Shelf Science, 236: 106623. DOI:10.1016/j.ecss.2020.106623
ZHU X F, SHEN C B, ZHOU R J, et al., 2020. Paleogene sediment provenance and paleogeographic reconstruction of the South Yellow Sea Basin, East China: Constraints from detrital zircon U-Pb geochronology and heavy mineral assemblages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 553: 109776. DOI:10.1016/j.palaeo.2020.109776
ZHU X, XU W, 1990. China Meso-Cenozoic sedimentary basins[M]. Beijing: Petroleum Industry Press, 1-319. (in Chinese)
陈丽蓉, 2008. 中国海沉积矿物学[M]. 北京: 海洋出版社, 40-57.
程瑜, 李向前, 赵增玉, 等, 2018. 长江三角洲地区TZK3孔碎屑锆石U-Pb年龄及其物源意义[J]. 地质力学学报, 24(5): 635-644.
丁波, 刘红旭, 李平, 等, 2019. 伊犁盆地南缘构造活动及对砂岩型铀矿的制约: 来自磷灰石裂变径与U-Pb定年的证据[J]. 地质力学学报, 25(S1): 84-89.
耿显雷, 高山, 陈晨, 2011. 华北克拉通东部及苏鲁造山带的地壳生长: 来自现代河流碎屑锆石的U-Pb定年和Hf同位素证据[J]. 地球科学——中国地质大学学报, 36(3): 483-499.
宫立新. 2014. 山东半岛东部海滩侵蚀现状与保护研究[D]. 青岛: 中国海洋大学, 1-130.
郭飞, 高茂生, 侯国华, 等, 2016. 莱州湾07钻孔沉积物晚更新世以来的元素地球化学特征[J]. 海洋学报, 38(3): 145-155. DOI:10.3969/j.issn.0253-4193.2016.03.014
韩宗珠, 衣伟虹, 李敏, 等, 2013. 渤海湾北部沉积物重矿物特征及物源分析[J]. 中国海洋大学学报, 43(4): 73-79.
胡春宏, 王延贵, 张燕菁, 等, 2010. 中国江河水沙变化趋势与主要影响因素[J]. 水科学进展, 21(4): 524-532.
黄学勇. 2019. 广利河口及莱州湾西部沉积特征分析[D]. 大连: 辽宁师范大学, 1-72.
金秉福, 岳伟, 王昆山, 2014. 黄河、辽河和鸭绿江沉积角闪石矿物化学特征对比及物源识别[J]. 海洋学报, 36(4): 11-21. DOI:10.3969/j.issn.0253-4193.2014.04.001
蓝先洪, 秦亚超, 王中波, 等, 2016. 渤海东部晚更新世以来的沉积物地球化学特征[J]. 沉积学报, 34(5): 892-901.
李孟芸. 2018. 锆石测年方法及其在沉积物源研究中的应用[D]. 武汉: 长江大学, 1-60.
林旭, 刘静, 吴中海, 等, 2020a. 中国北部陆架海碎屑锆石U-Pb年龄和钾长石主微量元素物源示踪研究[J]. 地质学报, 94(10): 3024-3035.
林旭, 赵希涛, 吴中海, 等, 2020b. 渤海湾周缘主要河流钾长石物源示踪指标研究[J]. 地质科技通报, 39(6): 10-18.
刘金庆, 张勇, 印萍, 等, 2016. 青岛近岸海域表层沉积物重矿物分布及物源[J]. 海洋地质与第四纪地质, 36(1): 69-78.
刘希青, 韩宗珠, 艾丽娜, 等, 2018. 渤海中部BZ01与B62孔岩芯粘土矿物组成和稀土元素地球化学特征对物源的指示意义[J]. 中国海洋大学学报, 48(S1): 106-114.
邱燕, 王立飞, 黄文凯, 2016. 中国海域中新生代沉积盆地[M]. 北京: 地质出版社, 1-233.
吴忱, 2008. 华北地貌环境及其形成演化[M]. 北京: 科学出版社, 1-551.
王昆山, 石学法, 蔡善武, 等, 2010. 黄河口及莱州湾表层沉积物中重矿物分布与来源[J]. 海洋地质与第四纪地质, 30(6): 1-8.
王利波, 李军, 赵京涛, 等, 2014. 辽东湾表层沉积物碎屑矿物组合分布及其对物源和沉积物扩散的指示意义[J]. 海洋学报, 36(2): 66-74.
叶亚康, 2019. 川西松林口岩体锆石U-Pb定年及其地球化学特征[J]. 地质力学学报, 25(S1): 53-59.
曾令森, 陈晶, 高利娥, 等, 2012. 藏南北喜马拉雅穹窿高Sr/Y二云母花岗岩中磷灰石地球化学特征及其岩石学意义[J]. 岩石学报, 28(9): 2981-2993.
张宏飞, 高山, 2016. 地球化学[M]. 北京: 地质出版社, 1-410.
张连杰, 胡日军, 朱龙海, 等, 2019. 渤海湾碎屑矿物特征及其物源和沉积动力环境指示意义[J]. 中国海洋大学学报, 49(5): 60-70.
赵希涛, 耿秀山, 张景文, 1979. 中国东部20000年来的海平面变化[J]. 海洋学报: 中文版, 1(2): 269-281.
赵希涛, 胡道功, 吴中海, 等, 2017. 长江三角洲地区晚新生代地质与环境研究进展述评[J]. 地质力学学报, 23(1): 1-64. DOI:10.3969/j.issn.1006-6616.2017.01.001
郑世雯, 范德江, 刘明, 等, 2017. 渤海中部现代黄河沉积物影响范围的稀土元素证据[J]. 中国海洋大学学报: 自然科学版, 47(6): 95-103.
中国地质调查局, 2004. 中华人民共和国地质图 1:250万说明书[M]. 北京: 中国地图出版社, 1.
朱夏, 徐旺, 1990. 中国中新生代沉积盆地[M]. 北京: 石油工业出版社, 1-319.