地质力学学报  2021, Vol. 27 Issue (2): 195-207
引用本文
云龙, 张进, 王驹, 赵志涛, 宝音图, 庄海洋, 陈苏, 张竞嘉, 张佳, 赵衡, 张北航. 甘肃北山南部活动断裂的发现及其区域构造意义[J]. 地质力学学报, 2021, 27(2): 195-207.
YUN Long, ZHANG Jin, WANG Ju, ZHAO Zhitao, BAO Yintu, ZHUANG Haiyang, CHEN Su, ZHANG Jingjia, ZHANG Jia, ZHAO Heng, ZHANG Beihang. Discovery of active faults in the southern Beishan area, NW China: Implications for regional tectonics[J]. Journal of Geomechanics, 2021, 27(2): 195-207.
甘肃北山南部活动断裂的发现及其区域构造意义
云龙1, 张进2, 王驹1, 赵志涛3, 宝音图4, 庄海洋5, 陈苏6, 张竞嘉1, 张佳1, 赵衡2, 张北航2    
1. 核工业北京地质研究院中核高放废物地质处置评价技术重点实验室, 北京 100029;
2. 中国地质科学院地质研究所, 北京 100037;
3. 中国地质调查局北京探矿工程研究所, 北京 100083;
4. 内蒙古大学交通学院, 内蒙古 呼和浩特 210020;
5. 南京工业大学交通运输工程学院, 江苏 南京 210009;
6. 中国地震局地球物理研究所, 北京 100081
摘要:在河西走廊北侧、北山南缘新发现属于不同断裂系统的两条晚第四纪活动断裂,分别称之为旧井-板滩断裂和俄博庙断裂。其中,旧井-板滩断裂长约28 km,距玉门市约55 km,由4条分支断裂组成,呈复杂的"Y"字形分布。总体走向北东40°~50°,倾向北西,倾角60°~70°,控制了西侧两个晚新生代盆地的发育。俄博庙断裂长约18 km,距金塔县城约50 km,走向近东西,倾向北西,倾角60°~80°。根据卫星影像解译、断错地貌调查、探槽开挖和光释光测年结果,旧井-板滩断裂断错了一系列山脊、冲沟和阶地,在距今约2万年以来有过活动,以正左旋走滑为主;俄博庙断裂北向逆冲形成清晰的线性陡坎,并左旋断错了冲沟,在距今约3万年以来有过活动,以逆左旋走滑为主。以上两条断裂的新构造活动揭示了青藏高原北缘晚新生代以来的远程应变传递已经进入北山造山带南缘。
关键词青藏高原北缘    北山造山带南缘    旧井-板滩断裂    俄博庙断裂    新构造    
DOI10.12090/j.issn.1006-6616.2021.27.02.019     文章编号:1006-6616(2021)02-0195-13
Discovery of active faults in the southern Beishan area, NW China: Implications for regional tectonics
YUN Long1, ZHANG Jin2, WANG Ju1, ZHAO Zhitao3, BAO Yintu4, ZHUANG Haiyang5, CHEN Su6, ZHANG Jingjia1, ZHANG Jia1, ZHAO Heng2, ZHANG Beihang2    
1. Key Laboratory on Geological Disposal of High-level Radioactive Waste, Beijing Research Institute of Uranium Geology, CNNC, Beijing 100029, China;
2. Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China;
3. Beijing institute of Exploration Engineering, China Geological Survey, Beijing 100083, China;
4. Transportation Institute, Inner Mongolia University, Hohhot 210020, Inner Mongolia, China;
5. Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, China;
6. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
Abstract: On the north side of the Hexi Corridor, two active faults, which belong to two different fault systems, have been discovered on the southern margin of Beishan, namely the Jiujing-Bantan fault and the Ebomiao fault. The NE-trending (40°~50°) Jiujing-Bantan fault with a NW-trending dip angle of 60°~70° is ~28 km long and ~55 km away from Yumen City. It consists of 4 branches and presents a complex Y-shaped distribution, controlling the development of the two late Pleistocene basins on its west side. The nearly EW-trending Ebomiao fault with a NW-trending dip angle of 60°~80° is ~18 km long and ~50 km away from Jinta County. Base on results from the satellite image interpretation, offset geomorphological survey, trench excavation and optical luminescence dating, we discovered a series of ridges, gullies and terraces offset by the Jiujing-Bantan fault which has been active since ~20 ka ago mostly with normal left-lateral strike-slips. The northward thrusting of the Ebomiao fault formed a clear linear scarp and offset the gullies with left-lateral strike-slips. This fault has been active since ~30 ka ago, mainly with reverse left-lateral strike-slips. The neotectonic activities of these two faults evidences that the long-range strain transmission from the northern margin of the Tibetan Plateau has entered into the southern margin of the Beishan orogenic belt since the late Cenozoic.
Key words: northern margin of the Tibetan Plateau    southern margin of the Beishan orogenic belt    Jiujing-Bantan fault    Ebomiao fault    neotectonics    
0 引言

新生代以来,印度与欧亚板块之间的碰撞导致欧亚大陆内部大规模的板内变形,形成了迄今面积最大和海拔最高的青藏高原(Molnar and Tapponnier, 1975; Avouac and Tapponnier, 1993Molnar et al., 1993; Tapponnier et al., 2001; 颜丹平等,2020)。高原内部的生长变形过程及向外的扩展机制一直是现今研究的热点,但也存在诸多争论(Yin and Harrison, 2000; Zhang et al., 2001, 2007; Yin, 2010; Wang et al., 2014)。晚第四纪以来,高原东北缘发生了强烈的构造变形,目前已建立了几类高原北缘的生长模型,其中楔入类模型认为高原北缘变形主要是通过高原内部山体隆升(如祁连山、大雪山和疏勒南山等)和大型断裂(如北祁连、昌马和大雪山等断裂)逆冲运动的贡献,并强调了构造作用是高原北东向生长的主控因素(Yue et al., 2004a, 2004b; Darby et al., 2005; Xu et al., 2005; Wu et al., 2011, 2012; Zuza et al., 2018a, 2018b; Cheng et al., 2019a, 2019b)。地壳双冲(Zuza et al., 2018b)和地壳纯剪缩短模型(Lease et al., 2012)则强调了地壳推覆缩短和气候耦合对高原北东向扩展的重要性。同样南蒙古地区的新构造活动也受控于青藏高原的影响(Cunningham et al., 2009; Cunningham, 2013),然而高原北缘的北山地区的活动性却相对微弱,因此北山是一个重要的地区,关乎青藏高原如何影响南蒙古地区,那么高原的北向扩展变形是否已传递进入北山以及如何响应就成为关键的问题。

北山造山带位于中亚造山带的最南缘,经历了古生代的增生造山作用(Xiao et al., 2010),中生代已经进入陆内变形阶段(Cunningham et al., 2009; Zhang and Cunningham, 2012),新生代以来一直被认为是稳定的地块(又称北山地块)。该区地震活动水平弱,到目前为止尚未记录到>4.7级的历史地震(Liu et al., 2007赵根模等,2019)。通过卫星影像解译,发现在玉门市西北侧约50 km的北山造山带内部,发育有一系列北东向断裂,这些断裂控制了一系列晚新生代盆地、洪积扇的分布(如旧井盆地和板滩盆地),晚更新世以来有新活动的迹象(王峰等,2005郭召杰等2008),其中旧井-板滩断裂是这些断裂中最典型也是活动最强烈的一条。此外,在北山南缘距离金塔县城约50 km处,也发现了一条近东西向的活动断裂(俄博庙断裂)。针对俄博庙断裂,Yang et al.(2019)给出了该断裂新生代以来的左旋走滑和逆冲速率分别为2.69 mm/a和0.35 mm/a。云龙等(2019)对该断裂进行了古地震研究,沿该断裂至少发生了两次古地震,分别发生于距今30 ka之前和8.4~3.3 ka。张波等(2020)对该断裂上分布的正向和反向陡坎的高度进行了统计分析,并给出了断裂的左旋走滑速率为1.52 mm/a。值得注意的是以上两条断裂的走向分别为北东向和近东西向,虽然均位于北山造山带南缘,但是应属于两个不同的断裂系统,因此,文章选择以上两个系统中最典型、最活跃的旧井-板滩断裂和俄博庙断裂为研究对象,基于对典型地貌的无人机航测与实地测量、探槽开挖和光释光测年等手段,讨论其晚第四纪以来的活动成因及其对青藏高原北缘北向扩展的响应,为研究高原北缘的变形分配方式提供一个新窗口。

1 区域地质构造概况

青藏高原北缘位于中生代北山造山带、河西走廊西端、敦煌地块和青藏高原北缘等四个构造单元的结合部位,区内不同走向和运动性质的大型断裂(如阿尔金断裂、祁连山北缘断裂和三危山断裂等)发育,构造环境复杂(图 1)。区内主要发育火烧沟组、白杨河组、疏勒河组、玉门砾岩组、酒泉砾石组和戈壁砾石组等新生代地层,缺失古新世地层(史正涛等,2001赵志军等,2001方小敏等,2004戴霜等,2005)。

JBF—旧井-板滩断裂;EBMF—俄博庙断裂;SWSF—三危山断裂;NJSF—南截山断裂;ATF—阿尔金断裂;GXSF—干峡山断裂;TDCF—塔尔湾-登登山-池家刺窝断裂;HHF—花海断裂;KTSF—宽滩山断裂;HSF—黑山断裂;YWSF—阴洼山断裂;JYGF—嘉峪关断裂;XMPF—新民堡断裂;BYHF—白杨河断裂;YMF—玉门断裂;NQLSTFS—北祁连逆冲断裂系;JTNSF—金塔南山北缘断裂 图 1 青藏高原北缘主要活动断裂分布图 Fig. 1 Distribution of the main faults on the northern margin of the Tibetan Plateau.JBF—Jiujing-Bantan fault, EBMF—Ebomiao fault; SWSF—Sanweishan fault; NJSF—Nanjieshan fault; ATF—AltynTagn fault; GXSF—Ganxiashan fault; TDCF—Taerwan-Dengdengshan-Chijiaciwo fault; HHF—Huahai fault; KTSF—Kuantanshan fault; HSF—Heishan fault; YWSF—Yinwashan fault; JYGF—Jiayuguan fault; XMPF—Xinminpu fault; BYHF—Baiyanghe fault; NQLSTFS—Northern Qilianshan thrust fault system; JTNSF—northern Jinta'nanshan fault

研究区北部的北山造山带是中亚造山带的重要组成部分(Xiao et al., 2010),位于中亚造山带的南部,西临天山造山带,东接阿拉善地块,南北两侧分别为蒙古境内阿尔泰山和敦煌地块(Xiao et al., 2010)。由一系列微地块和蛇绿混杂岩带组成,经历古生代的一系列俯冲-增生过程(Xiao et al., 2010Song et al., 2016)。中生代以来,北山地区进入陆内变形阶段,发育东西向逆冲断裂或走滑断裂,在北山地区形成一系列大型逆冲和走滑断裂(Zheng et al., 1996; Cunningham et al., 2009; Zhang and Cunningham, 2012; Cunningham, 2013)。新生代以来,受青藏高原北向扩展远程效应的影响,北山内部的部分大型走滑断裂发生复活,这些断裂的左旋走滑运动使得位于挤压阶区内的山体隆升(Cunningham, 2013)。晚更新世以来,随着高原北向扩展的持续作用,位于北山南缘的小型断裂在北东向挤压作用下复活,发生北向逆冲兼有左旋走滑运动(云龙等,2019; Yang et al., 2019)。

研究区内分布有多条晚第四纪以来的活动断裂。以阿尔金断裂及其延伸部分为界分为三组(图 1):第一组为近东西向阿尔金断裂东段及其延伸部分,包括宽滩山断裂和黑山断裂(Xu et al., 2005张宁等,2016);第二组位于北祁连断裂与宽滩山断裂、黑山断裂间,包括北西、北北西方向的玉门断裂、白杨河断裂、新民堡断裂、阴洼山断裂和嘉峪关-文殊山断裂(陈柏林等, 2006, 2008Zheng et al., 2013李安等,2016);第三组断裂位于宽滩山、黑山断裂北侧,包括北西、北北西向的塔尔湾-登登山-池家刺窝断裂、豁陆山断裂和花海断裂(陈涛等,2012Yu et al., 2015; 闵伟等,2016;云龙等,2010)。

2 旧井-板滩断裂

旧井-板滩断裂距玉门市约55 km,断裂西侧还分布有一系列北东向断裂,旧井-板滩断裂为最东侧的一条(图 2)。卫片解译显示,断裂呈明显的线性展布,平面上由4条分支断裂组成,分别为JBF-1,JBF-2,JBF-3和JBF-4,呈复杂的“Y”字形分布(图 2)。最长的分支断裂(JBF-2)长约28 km,总体走向北东40°~50°,倾向北西,倾角60°~70°,为一条正左旋走滑断裂。断裂构成了花岗岩山体与两个第四纪沉积盆地的边界,控制了南北两个晚更新世、全新世冲洪积、风积盆地(旧井盆地和板滩盆地)的发育。

JBF—旧井-板滩断裂;JBF-1,JBF-2,JBF-3和JBF-4为旧井-板滩断裂的4条分支;JTC-5和JTC-7为两个探槽的编号 图 2 旧井-板滩断裂卫星影像和平面展布图 Fig. 2 Satellite image of the Jiujing-Bantan fault and its interpretation JBF—Jiujing-Bantan fault; JBF-1, JBF-2, JBF-3 and JBF-4 are four branches of the JBF; JTC-5 and JTC-7 are the code numbers of two trenches
2.1 断错微地貌调查

断裂主体沿东侧花岗岩山体与晚第四纪洪积扇边界分布,其中,东侧的花岗岩山丘在早期沿断面抬升,随后受风化和夷平作用,形成断层三角面(图 3a),山体顶面位于同一夷平面内,落差在10~30 m。在局部位置,断裂通过花岗岩山体,受后期的风化作用,形成宽约9 m的断层槽谷(图 3b)。此外,断裂的左旋运动还断错了一系列小型山脊和冲沟,错距分别为4.2 m和5.5 m(图 3c3d)。在山前一大型冲沟G1处(图 3e),冲沟南北两侧共发育两级堆积阶地(T1和T2),主要由晚更新世近源堆积的花岗岩砂砾石组成。其中,冲沟G1北侧发育的阶地T2呈倒三角分布,阶地面受后期剥蚀形成T2′,局部还堆积有厚1~2 m的风积细砂;冲沟G1南侧,发育两级阶地,低阶地T1受后期侵蚀作用,仅呈细条状分布于山前,高阶地T2被断裂水平断错,实测断距11.3±4 m(图 3f)。

a—断层三角面;b—断层槽谷;c—断错山脊;d—断错冲沟;e,f—断错阶地卫星影像及解译图 图 3 旧井-板滩断裂断错地貌 Fig. 3 Offset landforms along the Jiujing-Bantan fault. (a) Fault terminal facet; (b) Fault valley; (c) Offset ridge; (d) Offset gully; (e, f) Satellite image and interpretation map of the offset terrace
2.2 断裂活动性

为了确定该断裂的最新活动时代,在旧井-板滩断裂中最长、断错地貌最明显的分支JBF-2上,选择典型断错阶地位置开挖了两个探槽,分别命名为JTC-5和JTC-7,位置见图 2;同时,在探槽内采集相应的样品进行光释光测年,测年结果见表 1

表 1 探槽内的光释光测年样品分析结果 Table 1 Analysis results of the OSL dating samples from the trenches
2.2.1 探槽JTC-5

在该探槽处,地貌上表现为东侧的花岗岩剥蚀台地和西侧位于旧井盆地内的近源坡积物及风积砂,整体地势起伏不大,表现为长约4 km的北北东走向的线性陡坎,陡坎被多条近东西向的冲沟分割成若干段。沿陡坎可见由花岗岩构成的断层角砾岩。在陡坎西侧断层破碎带部分出露,主要由风化的白色花岗岩断层角砾构成。断层破碎带发育于花岗岩中,地表为冲积和风积角砾石、砂层所覆盖(图 4a)。

U1—U6为地层代号
a—断错地貌;b—探槽JTC-5解译图
图 4 探槽JTC-5处地貌及北壁地质剖面解译 Fig. 4 Offset landforms and geological interpretation of the northern wall of the Trench JTC-5. (a) Offset landform; (b) Interpretation of the Trench JTC-5 U1-U6 are the code numbers of strata

探槽总体走向南东东100°,长约5 m,深约1 m(图 4b)。探槽内揭露了5套地层,地层较为简单,由上至下分别命名为U1—U5,其中,U1为上覆盖层,而U2—U4均为断层破碎带内的物质,U5为较为完整的花岗岩,具体描述如下:

U1:灰黄、土黄色,晚更新世—全新世砂砾石层,局部夹有细砂透镜体,选择在其中一个较细的透镜体内采集光释光样品F21TC5-1,测年结果为距今20.12±1.71 ka。

U2:灰绿、灰黄色断层泥,宽约60~70 cm,局部填充有灰白色断层角砾。

U3:灰褐、灰绿色断层角砾,不同岩性的角砾呈条带状相间分布。

U4:灰白色断层泥,厚约20~30 cm。

U5:灰绿色断层角砾岩带,角砾主要为被强烈研磨破碎的花岗岩块。

U5:花岗岩体,局部有节理发育。

探槽内共揭露了6条断层,产状见图 4b。断层与地层的切割关系较为简单,6条断层均切过了U1以下的各套地层,但值得注意的是最西侧的3条断层似乎有延伸进入U1地层的趋势。

2.2.2 探槽JTC-7

在另一冲沟南侧的断层陡坎处,穿越陡坎开挖了一个长约12 m的探槽,总体走向南东143°,探槽内揭露了3套地层(图 5),由上至下分别为U1—U3,描述如下:

F1—F3为断层;U1—U3为地层代号
a,b—探槽;c—探槽JTC-7解译图
图 5 探槽JTC-7南壁地质剖面及解译图 Fig. 5 Geological interpretation of the southern wall of the Trench JTC-7. (a, b) Trench; (c) Interpretation of the trench JTC-7 F1-F3 are faults; U1-U3 are code numbers of strata

U1:土黄色表层土,局部夹有小砾石,厚度在10 cm左右。

U2:灰黄色地震楔,为含砾细砂粗砂互层,有一定的韵律结构,选择下部一较细的砂层内采集光释光测年样TC7-1,结果为距今13.95±0.75 ka。

U3:断层破碎带,灰黄、灰绿、灰白色等不同颜色和岩性的物质相间夹杂。

探槽内共揭露了3条断层F1,F2和F3,均为逆断层,其中,F1和F2逆冲断错U2和U3地层,被U1地层覆盖;F3穿越U3地层,向上延伸一直到U2地层的顶部。由于在U2地层中光释光样品TC7-1的采样位置比较靠近地表,未达到一般要求的地下40 cm以下,样品存在被部分曝光的可能性,因此,研究认为该样品的年龄结果偏新。结合JTC-5探槽内对应地层的测年结果,该层的埋藏年龄应该在2万年左右。

综合以上两个探槽的解译和年龄样品分析结果,研究认为旧井-板滩断裂在距今两万年以来有过活动,结合断裂沿线4~5 m的纹沟断错,综合认为该断裂应为一条晚更新世晚期以来有过活动的断裂。

3 俄博庙断裂

该断裂据金塔县城约50 km,位于金塔盆地与北山造山带交界位置(疏勒河断裂)的北侧(图 1)。断裂西起大塘,向东至野马井公路附近,主要沿山前早中更新世的冲洪积砂砾石层分布,全长约18 km。断裂近东西走向,倾向北西,倾角60°~80°。走向上,断裂由近东西转为北西西,又转为近东西向,在东端又转为南东东(图 6),影像上呈明显的线性分布。受山前近代水系的侵蚀作用,断裂以间隔分布的线性陡坎在地表排布,南高北低,未出现明显的几何分段。

图 6 俄博庙断裂卫片及平面展布图 Fig. 6 Satellite images of the Ebomiao fault and its interpretation
3.1 断错微地貌调查

卫片解译和实地调查发现,该断裂穿过了除现代河床外的所有地貌面,断裂逆冲形成不同高度的断层陡坎;局部可见左旋走滑断错了水系。山前分布的最高一级地貌面被断裂错断,形成一系列断层陡坎。在断层陡坎出露明显的位置,利用激光测距仪对陡坎的高度进行了测量,测得的陡坎高度分别为1.4 m和0.3 m(图 7a)。

a—断错地貌卫片;b—断层陡坎;c—侵蚀陡坎;d—g—断错冲沟 图 7 俄博庙断裂断错地貌据(云龙等,2019修改) Fig. 7 Offset landforms along the Ebomiao fault (modified after Yun et al., 2019). (a) Satellite image of offset landform; (b) Fault scarp; (c) Eroded scarp; (d-g) Offset gully

在断裂通过处,断裂断错了一套全新世的风积细砂层,形成北高南低的疑似反向陡坎(图 7a—7c),陡坎高约3.7 m。实地调查发现,陡坎地形上盘植被发育良好,主要以保土能力较强的红柳为主,而下盘植被稀疏,整体上表现为北密南疏的特征。探槽挖掘过程中,发现断裂北侧水位高于南侧,因此认为该断裂有阻水作用,阻碍了北侧山地汇水向南的流动。这种作用利于红柳等植被生长,且这类植被利于保土,而南盘地层无植被发育,地层受到风蚀减薄,由此形成了目前观察到的疑似反向陡坎。因此,该陡坎的形成虽与断裂活动相关,但仍是侵蚀陡坎。此外还发现,发育于细砂层内穿越断裂的4条冲沟(由西至东分别为冲沟1至冲沟4)发生同步左旋位错(图 7a7d—7g),实测位错量分别为4.5±0.4 m,6.2±0.5 m,5.5±0.6 m和4.5±0.3 m,平均位错量5.2±0.4 m。

3.2 断裂活动性

探槽ETC-03开挖于俄博庙断裂东段高约0.2 m的陡坎处(图 6),探槽长、宽、深分别为12 m,3 m和4 m。探槽西壁揭露出8套地层(图 8),由老至新,分别称为U1—U8,描述如下:

F1—F4为断层;U1—U8为地层代号
a—断层陡坎;b—探槽局部照片;c—探槽ETC-03解译图
图 8 探槽ETC-03处地貌和探槽西壁地质剖面图据(云龙等,2019修改) Fig. 8 Offset landforms and geological interpretation of the western wall of the Trench ETC-03 (modified after Yun et al., 2019). (a) Fault scarp; (b) Partial photo of the trench; (c) Interpretation of the Trench ETC-03 F1-F4 are faults; U1-U8 are the code numbers of strata

U1:灰白、灰黄色局部盐碱质胶结的砂砾石层,有明显的水平层理。

U2:棕黄色砂砾石层,呈水平层理,分选一般。

U3-1:U2层顶部白色固结的钙质淋滤结核。

U3-2:棕黄色砂砾石层,夹杂砾石,呈明显水平层理,有一定的磨圆度。

U4:深棕黄色粗砂砾石层,呈明显水平层理,有一定磨圆。在该层顶部采集光释光样品OSL-17,测年结果为>100 ka。

U5:棕黄色砂砾石层,位于断层上盘的该层上部砾石已被剥蚀。

U6:灰黄色砂砾石层,水平层理发育,以细砾为主,有一定有磨圆度。靠近断层处,砾石层发生挠曲变形。在该层中部采集光释光样品OSL-16,测年结果为30.2±1.2 ka。

U7-1:细砂层,在断层的逆冲作用下,发生变形。在该层内采集光释光样品OSL-14,测年结果为36.4±0.4 ka。

U7-2:灰黄色砂砾石层,层内夹有细砂层。

U8:棕黄色砂层,局部夹杂砾石,层内采集光释光样品OSL-15,测年结果为3.3±2.4 ka。

探槽内共揭露出4条断层:F1,F2,F3和F4。其中,F1,F3和F4错断了U8以下各套地层,而F2断错了U6以下各套地层,被U6地层覆盖,结合光释光样品的分析结果,认为俄博庙断裂在距今3万年以来有过活动,为晚第四纪以来的活动断裂。具体古地震分析结果在云龙等(2019)中有详细描述,这里不再赘述。

4 讨论

之前对于旧井地区断裂的活动性有过报道(王峰等, 2004, 2005郭召杰等,2008),对于其晚第四纪以来的活动原因提出了两种观点,两种观点都认为高原北缘的应变扩展是旧井-板滩断裂发生新活动的原因,但对于具体应变分配模式有不同观点:一种观点认为旧井-板滩断裂及其西侧的一系列北东向断裂,受北北东向的挤压,导致北东向断裂与近东西向断裂夹持“书斜构造”发生顺时针旋转(王峰等, 2004, 2005);而另一种观点认为上述北东向断裂为三危山断裂东端继续北东向延伸部分,走滑断裂末端的“帚”状张性构造(图 9a; 郭召杰等,2008)。而对于俄博庙断裂,其活动性近几年才陆续有报道(云龙等,2019Yang et al., 2019张波等,2020)。Yang et al.(2019)认为高原北缘的北向逆冲前缘在金塔南山断裂和合黎山断裂附近,俄博庙断裂的活动是高原北缘变形北向扩展的响应。

JBF—旧井-板滩断裂;EBMF—俄博庙断裂;SWSF—三危山断裂;NJSF—南截山断裂;ATF—阿尔金断裂;GXSF—干峡山断裂;TDCF—塔尔湾-登登山-池家刺窝断裂;HHF—花海断裂;KTSF—宽滩山断裂;HSF—黑山断裂;YWSF—阴洼山断裂;JYGF—嘉峪关断裂;XMPF—新民堡断裂;BYHF—白杨河断裂;YMF—玉门断裂;NQLSTFS—北祁连逆冲断裂系;JTNSF—金塔南山北缘断裂
R1—R4—高阻体;C1—C3—低阻体
a—青藏高原北缘卫片及主要活动断裂解译;b—穿越俄博庙断裂的MT剖面(据Yang et al., 2019修改)
JBF—Jiujing-Bantan fault; EBMF—Ebomiao fault; SWSF—Sanweishan fault; NJSF—Nanjieshan fault; ATF—AltynTagn fault; GXSF—Ganxiashan fault; TDCF—Taerwan-Dengdengshan-Chijiaciwo fault; HHF—Huahai fault; KTSF—Kuantanshan fault; HSF—Heishan fault; YWSF—Yinwashan fault; JYGF—Jiayuguan fault; XMPF—Xinmingpu fault; BYHF—Baiyanghe fault; YMF—Yumen fault; NQLSTFS—Northern Qilianshan thrust fault system; JTNSF—northern Jinta'nanshan fault R1-R4—high resistance body; C1-C3—low resistance body 图 9 青藏高原北缘主要断裂分布及MT剖面 Fig. 9 Distribution of the main faults on the northern margin of the Tibetan Plateau and the MT profile. (a) Satellite image and interpretation of the main active faults on the northern margin of the Tibetan Plateau. (b) The MT profile passing through the Ebomiao fault (modified after Yang et al., 2019).

阿尔金断裂西北侧的三危山断裂活动性调查(Cunningham et al., 2016; 刘兴旺等,2018云龙等, 2019, 2021Yun et al., 2020Yang et al., 2020)、深部地球物理剖面(Xiao et al., 2012, 2015)和现今GPS速度场等资料表明,三危山为阿尔金断裂的一条分支断裂,二者夹持的踏实块体有明显北东向运动的特征,而旧井-板滩等一系北东向断裂位于踏实地块的北东向变形的前缘位置,因此,文章认为旧井-板滩等一系北东向断裂晚第四纪的复活是由于踏实地块的北东向运动导致的(图 9a)。对于俄博庙断裂,从地貌调查、探槽开挖(云龙等,2019)和深部地球物理剖面(Yang et al., 2019图 9b)的解译结果来看,断裂具有明显的左旋走滑兼逆冲运动性质,断裂产状近直立向深部延伸,并不像金塔南山和合黎山断裂等有向南汇聚、并入祁连山逆冲推覆体系的特征,因此,判断该断裂并非属于青藏高原前缘逆冲断裂体系,而是属于北山内部断裂。区域GPS速度场(Wang and Shen, 2020)和现今构造应力场(谢富仁等,2004Hu et al., 2017)显示,金塔县城周边主要受NEE 60°~65°方向的挤压,而俄博庙断裂的走向为近东西向,二者夹角约25°~30°。而室内岩石力学实验表明(雷兴林等,1991),破裂产生的最大剪应力与最大主应力的夹角往往是20°~30°,因此,在此区域应力背景条件下,近东西向的现存构造发生复活的可能性最大。综上,旧井-板滩断裂和俄博庙断裂均是位于北山造山带南缘的先存构造,二者虽然均受青藏高原北缘变形传递的远程效应而发生复活,但二者的运动和变形方式显示其具体地动力学条件有所不同。

5 结论

(1) 旧井-板滩断裂由4条分支断裂组成,呈复杂的“Y”字形分布。最长的分支长约28 km,总体走向北东40°~50°,倾向北西,倾角60°~70°,运动方式为正左旋走滑。断裂构成了花岗岩山体与两个第四系沉积盆地的边界,控制了南北两个晚更新世、全新世盆地(旧井盆地和板滩盆地)的发育。断裂断错了一系列山脊、冲沟和阶地,在距今约2万年以来有过活动,为一条晚更新世晚期以来的活动断裂。

(2) 俄博庙断裂金塔县城北约50 km处,长约18 km,整体呈近东西向,倾向北西,倾角60°~80°,运动方式为逆左旋走滑。断裂北向逆冲形成清晰的、间隔性分布的线性断层陡坎,南高北低,并断错了穿越断裂的一系列冲沟。断裂在距今约3万年以来有过活动,为一条晚更新世晚期以来的活动断裂。

(3) 旧井-板滩断裂和俄博庙断裂均是位于北山造山带南缘的先存构造,二者在晚第四纪以来发生复活,是对青藏高原北缘北向扩展远程效应的响应。

致谢: 中国地震局地质研究所杨晓平研究员参与了部分野外工作,审稿人提出了有益的意见和建议,这里一并表示感谢!

参考文献/References
AVOUAC J P, TAPPONNIER P, 1993. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 20(10): 895-898. DOI:10.1029/93GL00128
CHEN B L, WANG C Y, LIU J M, et al., 2006. The activity of the Xinminbao fault from the Late Pleistocene to Holocene[J]. Acta Geoscientica Sinica, 27(6): 515-524. (in Chinese with English abstract)
CHEN B L, WANG C Y, GONG Y L, 2008. Late Cenozoic activity of t11e Yumen fault in the western segment of the HexiCorridor.NW China[J]. Geological Bulletin of China, 27(10): 1709-1719. (in Chinese with English abstract)
CHEN T, LIU Y G, MIN W, et al., 2012. The activity age of Tarwan fault and genesis of the topographic scarp[J]. Seismology and Geology, 34(3): 401-414. (in Chinese with English abstract)
CHENG F, GARZIONE C N, JOLIVET M, et al., 2019a. Initial deformation of the northern Tibetan Plateau: insights from deposition of the Lulehe Formation in the Qaidam Basin[J]. Tectonics, 38(2): 741-766. DOI:10.1029/2018TC005214
CHENG F, GARZIONE C N, MITRA G, et al., 2019b. The interplay between climate and tectonics during the upward and outward growth of the Qilian Shan orogenic wedge, northern Tibetan Plateau[J]. Earth-Science Reviews, 198: 102945. DOI:10.1016/j.earscirev.2019.102945
CUNNINGHAM D, DAVIES S, MCLEAN D, 2009. Exhumation of a Cretaceous rift complex within a Late Cenozoic restraining bend, southern Mongolia: implications for the crustal evolution of the Gobi Altai region[J]. Journal of the Geological Society of London, 166(2): 321-333. DOI:10.1144/0016-76492008-082
CUNNINGHAM D, 2013. Mountain building processes in intracontinental oblique deformation belts: lessons from the Gobi Corridor, Central Asia[J]. Journal of Structural Geology, 46: 255-282. DOI:10.1016/j.jsg.2012.08.010
CUNNINGHAM D, ZHANG J, LI Y F, 2016. Late Cenozoic transpressional mountain building directly north of the AltynTagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China[J]. Tectonophysics, 687: 111-128. DOI:10.1016/j.tecto.2016.09.010
DAI S, FANG X M, SONG C H, et al., 2005. Early Uplift of the Northern Tibetan Plateau[J]. Chinese Science Bulletin, 50(7): 673-683. (in Chinese) DOI:10.1360/csb2005-50-7-673
DARBY B J, RITES B D, YUE Y J, et al., 2005. Did the AltynTagh fault extend beyond the Tibetan Plateau?[J]. Earth and Planetary Science Letters, 240(2): 425-435. DOI:10.1016/j.epsl.2005.09.011
FANG X M, ZHAO Z J, LI J J, et al., 2005. Magnetostratigraphy of the Late Cenozoic Laojunmiao Anticline in the Northern Qilian Mountains and Its Implications for the Northern Tibetan Plateau Uplift[J]. Science in China Series D: Earth Sciences, 48(7): 1040-1051. DOI:10.1360/03yd0188
GUO Z J, ZHANG Z C, ZHANG C, et al., 2008. Lateral growth of the AltynTagh strike-slip fault atthe north margin of the Qinghai-Tibet Plateau: Late Cenozoic strike-slip faults and the crustal stability in the Beishan area, Gansu, China[J]. Geological Bulletin of China, 27(10): 1678-1686. (in Chinese with English abstract)
HU X P, ZANG A, HEIDBACHO, et al., 2017. Crustal stress pattern in China and its adjacent areas[J]. Journal of Asian Earth Sciences, 149: 20-28. DOI:10.1016/j.jseaes.2017.07.005
LEASE R O, BURBANK D W, ZHANG H P, et al., 2012. Cenozoic shortening budget for the northeastern edge of the Tibetan Plateau: Is lower crustal flow necessary?[J]. Tectonics, 31: TC3011.
LEI X L, MA J, KUSEUNOSE K, et al., 1991. Spatial distribution and fractal structure of AE focuses on Inada granite under Triaxial compression[J]. Seismology and Geology, 13(2): 97-106, 114. (in Chinese with English abstract)
LI A, WANG X X, ZHANG S M, et al., 2016. The slip rate and paleoearthquakes of the Yumen fault in the Northern Qilian Mountains since the Late Pleistocene[J]. Seismology and Geology, 38(4): 897-910. (in Chinese with English abstract)
LIU M, YANG Y Q, SHEN Z K, et al., 2007. Active tectonics and intracontinental earthquakes in China: the kinematics and geodynamics[M]//STEIN S, MAZZOTTI S. Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Geological Society of America Special Paper, 425: 209-318.
LIU X W, YUAN D Y, ZUO X B, et al., 2018. Active characteristics of the Sanweishan fault in the northern margin of the Tibetan Plateau during late Pleistocene[J]. Seismology and Geology, 40(1): 121-132. (in Chinese with English abstract)
MIN W, LIU Y G, CHEN T, et al., 2016. The quantative study on activity of Dengdengshan-Chijiaciwo faults since Late Quaternary[J]. Seismology and Geology, 38(3): 503-522. (in Chinese with English abstract)
MOLNAR P, TAPPONNIER P, 1975. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 189(4201): 419-426. DOI:10.1126/science.189.4201.419
MOLNAR P, ENGLAND P, MARTINOD J, 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 31(4): 357-396. DOI:10.1029/93RG02030
SHI Z T, YE Y G, ZHAO Z J, et al., 2001. ESR dating of late Cenozoic molassic deposits in the Jiuxi Basin[J]. Science in China Series D: Earth Sciences, 44(S1): 203-209. DOI:10.1007/BF02911988
SONG D F, XIAO W J, WINDLEY B F, et al., 2016. Metamorphic complexes in accretionaryorogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt[J]. Tectonophysics, 688: 135-147. DOI:10.1016/j.tecto.2016.09.012
TAPPONNIER P, XU Z Q, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. DOI:10.1126/science.105978
WANG C S, DAI J G, ZHAO X X, et al., 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: a review[J]. Tectonophysics, 621: 1-43. DOI:10.1016/j.tecto.2014.01.036
WANG F, SU G, JIN P D, 2004. Tectonic deformation and evolution trend of Beishan region, Gansu Province since Late Quaternary[J]. Journal of Seismological Research, 27(2): 173-178. (in Chinese with English abstract)
WANG F, WANG J, FAN H H, et al., 2015. Distribution of Late Quaternary active faults and its tectonic significance in the Beishan Region, Gansu Province, China[J]. Geological Review, 51(3): 250-256. (in Chinese with English abstract)
WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.
WU L, XIAO A C, WANG L Q, et al., 2011. Late Jurassic-Early Cretaceous northern Qaidam Basin, NW China: implications for the earliest Cretaceous intracontinentaltectonism[J]. Cretaceous Research, 32(4): 552-564. DOI:10.1016/j.cretres.2011.04.002
WU L, XIAO A C, YANG S F, et al., 2012. Two-stage evolution of the AltynTagh Fault during the Cenozoic: new insight from provenance analysis of a geological section in NW Qaidam Basin, NW China[J]. Terra Nova, 24(5): 387-395. DOI:10.1111/j.1365-3121.2012.01077.x
XIAO Q B, ZHANG J, WANG J J, et al., 2012. Electrical resistivity structures between the Northern Qilian Mountains and Beishan Block, NW China, and tectonic implications[J]. Physics of the Earth and Planetary Interiors, 200-201: 92-104. DOI:10.1016/j.pepi.2012.04.008
XIAO Q B, SHAO G H, LIUZENG L, et al., 2015. Eastern termination of the AltynTagh Fault, western China: Constraints from a magnetotelluric survey[J]. Journal of Geophysical Research: Solid Earth, 120(5): 2838-2858. DOI:10.1002/2014JB011363
XIAO W J, MAO Q G, WINDLEY B F, et al., 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310(10): 1553-1594. DOI:10.2475/10.2010.12
XIE F R, CUI X F, ZHAO J T, et al., 2004. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 47(4): 654-662. (in Chinese with English abstract)
XU X W, WANG F, ZHENG R Z, et al., 2005. Late Quaternary sinistral slip rate along the AltynTagh fault and its structural transformation model[J]. Science in China Series D: Earth Sciences, 48(3): 384-397. DOI:10.1360/02yd0436
YAN D P, SUN M, GONG L X, et al., 2020. Composite structure and growth of the Longmenshan foreland thrust belt in the eastern margin of the Qinghai-Tibet Plateau[J]. Journal of Geomechanics, 26(5): 615-633. (in Chinese with English abstract)
YANG H B, YANG X P, ZHAN Y, et al., 2019. Quaternary activity of the Beihewan Fault in the southeastern Beishan Wrench Belt, western China: Implications for crustal stability and intraplate earthquake hazards north of Tibet[J]. Journal of Geophysical Research: Solid Earth, 124(12): 13286-13309. DOI:10.1029/2018JB017209
YANG H B, YANG X P, CUNNINGHAM D, et al., 2020. A regionally evolving transpressional duplex along the northern margin of the AltynTagh Fault: New kinematic and timing constraints from the Sanweishan and Nanjieshan, China[J/OL]. Tectonics, 39, e2019TC005749. https://doi.org/10.1029/2019TC005749.
YIN A, HARRISON T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. DOI:10.1146/annurev.earth.28.1.211
YIN A, 2010. Cenozoic tectonic evolution of Asia: a preliminary synthesis[J]. Tectonophysics, 488(1-4): 293-325. DOI:10.1016/j.tecto.2009.06.002
YU Z Y, MIN W, CHEN T, et al., 2015. Late Quaternary tectonic deformation of the eastern end of the AltynTagh fault[J]. Acta Geologica Sinica, 89(6): 1813-1834. DOI:10.1111/1755-6724.12599
YUE Y J, RITTS B D, GRAHAM S A, et al., 2004a. Slowing extrusion tectonics: lowered estimate of post-Early Miocene slip rate for the AltynTagh fault[J]. Earth and Planetary Science Letters, 217(1-2): 111-122. DOI:10.1016/S0012-821X(03)00544-2
YUE Y J, RITTS B D, HANSON A D, et al., 2004b. Sedimentary evidence against large strike-slip translation on the Northern AltynTagh fault, NW China[J]. Earth and Planetary Science Letters, 228(3-4): 311-323. DOI:10.1016/j.epsl.2004.10.008
YUN L, ZHANG J, XU W, et al., 2019. The active characteristics and its significance of the southern margin fault of Beishan Area in Gansu Province[J]. Geological Review, 65(4): 825-838. (in Chinese with English abstract)
YUN L, ZHANG J, XU W, et al., 2021. Geometry, kinematics andregional tectonic significance of the Huahai fault in the western Hexi Corridor, NW China[J]. Earth Science, 46(1): 259-271. (in Chinese with English abstract)
YUN L, ZHANG J, WANG J, et al., 2020. Active deformation to the north of the AltynTagh Fault: Constraints on the northward growth of the northern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 198: 104312. DOI:10.1016/j.jseaes.2020.104312
ZHANG B, HE W G, LIU B X, et al., 2020. New activity characteristics and slip rate of the ebomiao fault in the southern margin of Beishan, Gansu Province[J]. Seismology and Geology, 42(2): 455-471. (in Chinese with English abstract)
ZHANG P Z, MOLNAR P, DOWNS W R, 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 410(6831): 891-897. DOI:10.1038/35073504
ZHANG P Z, MOLNAR P, XU X W, 2007. Late Quaternary and present-day rates of slip along the AltynTagh Fault, northern margin of the Tibetan Plateau[J]. Tectonics, 26(5): TC5010.
ZHANG J, CUNNINGHAM D, 2012. Kilometer-scale refolded folds caused by strike-slip reversal and intraplate shortening in the Beishan region, China[J]. Tectonics, 31(3): TC3009.
ZHANG N, ZHENG W J, LIU X W, et al., 2016. Kinematics characteristics of Heishan fault in the western Hexicorridor and its implications for regional tectonic transformation[J]. Journal of Earth Sciences and Environment, 38(2): 245-257. (in Chinese with English abstract)
ZHAO G M, WU Z H, LIU J, et al., 2019. The time space distribution characteristics and migration law of large earthquakes in the Indiam-Eurasian Plate collision deformation area[J]. Journal of Geomechanics, 25(3): 324-340. (in Chinese with English abstract)
ZHAO Z J, FANG X M, LI J J, 2001. Late Cenozoic magnetic strata in Jiudong Basin, northern margin of Qilian Mountains[J]. Science in China Series D: Earth Science, 31(S1): 195-201. (in Chinese)
ZHENG W J, ZHANG P Z, GE W P, et al., 2013. Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau[J]. Tectonics, 32(2): 271-293. DOI:10.1002/tect.20022
ZHENG Y, ZHANG Q, WANG Y, et al., 1996. Great Jurassic thrust sheets in Beishan (North Mountains): Gobi areas of China and southern Mongolia[J]. Journal of Structural Geology, 18(9): 1111-1126. DOI:10.1016/0191-8141(96)00038-7
ZUZA A V, WU C, REITH R C, et al., 2018a. Tectonic evolution of the Qilian Shan: an early Paleozoic orogen reactivated in the Cenozoic[J]. GSA Bulletin, 130(5-6): 881-925. DOI:10.1130/B31721.1
ZUZA A V, WU C, WANG Z Z, et al., 2018b. Underthrusting and duplexing beneath the northern Tibetan Plateau and the evolution of the Himalayan-Tibetan orogen[J]. Lithosphere, 11(2): 209-231.
陈柏林, 王春宇, 刘建民, 等, 2006. 新民堡断裂新构造活动特征[J]. 地球学报, 27(6): 515-524. DOI:10.3321/j.issn:1006-3021.2006.06.001
陈柏林, 王春宇, 宫玉良, 2008. 河西走廊盆地西段玉门断裂晚新生代的活动特征[J]. 地质通报, 27(10): 1709-1719. DOI:10.3969/j.issn.1671-2552.2008.10.013
陈涛, 刘玉刚, 闵伟, 等, 2012. 塔尔湾断裂活动时代厘定及地貌陡坎成因分析[J]. 地震地质, 34(3): 401-414. DOI:10.3969/j.issn.0253-4967.2012.03.002
戴霜, 方小敏, 宋春晖, 等, 2005. 青藏高原北部的早期隆升[J]. 科学通报, 50(7): 673-683. DOI:10.3321/j.issn:0023-074X.2005.07.011
方小敏, 赵志军, 李吉均, 等, 2004. 祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升[J]. 中国科学D辑: 地球科学, 34(2): 97-106.
郭召杰, 张志诚, 张臣, 等, 2008. 青藏高原北缘阿尔金走滑边界的侧向扩展: 甘肃北山晚新生代走滑构造与地壳稳定性分析[J]. 地质通报, 27(10): 1678-1686. DOI:10.3969/j.issn.1671-2552.2008.10.010
雷兴林, 马瑾, 楠濑勤一郎, 等, 1991. 三轴压缩下粗晶花岗闪长岩声发射三维分布及其分形特征[J]. 地震地质, 13(2): 97-106, 114.
李安, 王晓先, 张世民, 等, 2016. 祁连山北缘玉门断裂晚更新世以来的活动速率及古地震[J]. 地震地质, 38(4): 897-910. DOI:10.3969/j.issn.0253-4967.2016.04.008
刘兴旺, 袁道阳, 邹小波, 等, 2018. 青藏高原北缘三危山断裂晚更新世活动特征[J]. 地震地质, 40(1): 121-132. DOI:10.3969/j.issn.0253-4967.2018.01.010
闵伟, 刘玉刚, 陈涛, 等, 2016. 登登山-池家刺窝断裂晚第四纪活动性定量研究[J]. 地震地质, 38(3): 503-522. DOI:10.3969/j.issn.0253-4967.2016.03.002
史正涛, 业渝光, 赵志军, 等, 2001. 酒西盆地晚新生代地层的ESR年代[J]. 中国科学D辑: 地球科学, 31(S1): 163-168.
王峰, 苏刚, 晋佩东, 2004. 甘肃北山地区晚第四纪构造变形特征及演化趋势[J]. 地震研究, 27(2): 173-178. DOI:10.3969/j.issn.1000-0666.2004.02.010
王峰, 王驹, 范洪海, 等, 2005. 甘肃北山旧井地区晚第四纪活动断裂分布及其构造意义[J]. 地质论评, 51(3): 250-256. DOI:10.3321/j.issn:0371-5736.2005.03.004
谢富仁, 崔效锋, 赵建涛, 等, 2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 74(4): 654-662. DOI:10.3321/j.issn:0001-5733.2004.04.016
颜丹平, 孙铭, 巩凌霄, 等, 2020. 青藏高原东缘龙门山前陆逆冲带复合结构与生长[J]. 地质力学学报, 26(5): 615-633.
云龙, 张进, 徐伟, 等, 2019. 甘肃北山南缘断裂的活动特征及其意义[J]. 地质论评, 65(4): 825-838.
云龙, 张进, 徐伟, 等, 2021. 河西走廊西段花海断裂几何学、运动学及区域构造意义[J]. 地球科学, 46(1): 259-271.
张波, 何文贵, 刘炳旭, 等, 2020. 甘肃北山南缘俄博庙断裂的新活动特征及活动速率[J]. 地震地质, 42(2): 455-471. DOI:10.3969/j.issn.0253-4967.2020.02.013
张宁, 郑文俊, 刘兴旺, 等, 2016. 河西走廊西端黑山断裂运动学特征及其在构造转换中的意义[J]. 地球科学与环境学报, 38(2): 245-257. DOI:10.3969/j.issn.1672-6561.2016.02.012
赵根模, 吴中海, 刘杰, 等, 2019. 印度-欧亚板块碰撞变形区的大地震时空分布特征与迁移规律[J]. 地质力学学报, 25(3): 324-340.
赵志军, 方小敏, 李吉均, 2001. 祁连山北缘酒东盆地晚新生代磁性地层[J]. 中国科学D辑: 地球科学, 31(S1): 195-201.