地质力学学报  2020, Vol. 26 Issue (6): 961-972
引用本文
马立成, 江万, 肖宙轩, 李宗星, 彭博, 胡俊杰, 董敏. 柴达木盆地东部扎布萨尕秀组的时代归属讨论[J]. 地质力学学报, 2020, 26(6): 961-972.
MA Licheng, JIANG Wan, XIAO Zhouxuan, LI Zongxing, PENG Bo, HU Junjie, DONG Min. Discussion on the depositional timing of the Zhabusagaxiu formation in the eastern Qaidam Basin, China[J]. Journal of Geomechanics, 2020, 26(6): 961-972.
柴达木盆地东部扎布萨尕秀组的时代归属讨论
马立成1,2,3, 江万1,2,3, 肖宙轩4, 李宗星1,2,3, 彭博1,2,3, 胡俊杰1,2,3, 董敏1,2,3    
1. 自然资源部古地磁与古构造重建重点实验室, 北京 100081;
2. 中国地质科学院地质力学研究所, 北京 100081;
3. 中国地质调查局油气地质力学重点实验室, 北京 100081;
4. 长安大学地球科学与国土资源学院, 陕西 西安 710054
摘要:柴达木盆地石炭系是中国北方新区新层系油气勘探调查研究的热点,盆地东部地区石炭系出露较全,但多数学者认为柴东地区不存在二叠系。针对扎布萨尕秀组归属于石炭纪还是二叠纪的争议,采集扎布萨尕秀组的砂岩碎屑锆石开展了U-Pb LA-ICP-MS同位素测年,获得40个和谐年龄分布在2488±34 Ma至288±3 Ma之间,最年轻的一组碎屑锆石的加权平均年龄288.0±2.0 Ma(MSWD=0.112,n=21)。这意味着该扎布萨尕秀组中的砂岩沉积于288 Ma之后,晚于国际石炭—二叠纪界限(299 Ma)。依据野外调查和已有研究成果,扎布萨尕秀组中赋存丰富的虫筳科化石,其中膨胀型虫筳属PseudoschwagerinaSphaeroschwagerina的出现是进入二叠纪的重要标志。结合碎屑锆石年代学和虫筳属化石特征,扎布萨尕秀组应归属早二叠世,说明柴达木东部地区存在二叠纪沉积记录。该认识为深化柴达木盆地晚古生代—中生代沉积建造和构造演化提供了重要的地层学证据。
关键词柴达木盆地    扎布萨尕秀组    碎屑锆石    虫筳属    二叠系    年代学    
DOI10.12090/j.issn.1006-6616.2020.26.06.077     文章编号:1006-6616(2020)06-0961-12
Discussion on the depositional timing of the Zhabusagaxiu formation in the eastern Qaidam Basin, China
MA Licheng1,2,3, JIANG Wan1,2,3, XIAO Zhouxuan4, LI Zongxing1,2,3, PENG Bo1,2,3, HU Junjie1,2,3, DONG Min1,2,3    
1. Key Laboratory of Paleomagnetism and Paleostructure Reconstruction, Ministry of Natural Resources, Beijing 100081, China;
2. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
3. Key Laboratory of Petroleum Geomechanics, China Geological Survey, Beijing 100081, China;
4. School of Earth Science and Resources, Chang'an University, Xi'an 710054, Shannxi, China
Abstract: The Carboniferous hydrocarbon exploration in the Qaidam Basin, Qinghai province in northern China, is the focus in the investigation of newly developed area and new series of strata. The Carboniferous sedimentary strata are fully exposed in the eastern part of the Qaidam Basin, and it has been assumed that there are no sedimentary strata of Permian. Nowadays, it is still controversial whether the Zhabusagaxiu formation belongs to the Carboniferous or Permian. In this paper, detrital zircons from sandstones of the Zhabusagaxiu formation were collected and the zircon U-Pb LA-ICP-MS isotopic dating was carried out. The harmonious ages of zircons were obtained, ranging from 2488±34 Ma to 288±3 Ma. The weighted average age of the youngest group is 288.0±2.0 Ma (MSWD=0.112, n=21). This means that the deposition of sandstones in the Zhabusagaxiu formation happened after 288 Ma, later than the international Carboniferous-Permian boundary (299 Ma). Based on the field investigation and previous research, there are abundant fossil families of Fusulina in the Zhabusagaxiu formation, and especially the appearance of pseudoschwagerina or spyroschwagerina is a crucial sign of entering the Permian. Consequently, combined with the zircon geochronology of classic rocks and typical fossil characteristics in the strata, it is suggested that the Zhabusagaxiu formation should belong to the Early Permian, indicating the existence of Permian stratigraphic deposition in the eastern Qaidam Basin. This recognition provides a geological basis for deepening the sedimentary formation and structural evolution from the late Paleozoic to Mesozoic in the Qaidam Basin.
Key words: Qaidam Basin    Zhabusagaxiu formation    detrital zircon    Fusulina    Permian    geochronology    
0 引言

柴达木盆地是青藏高原北部定型于新生代的一个大型山间盆地,南部与昆仑山相连,北部与祁连山毗邻,西北部被阿尔金山所环绕,是中国重要的含油气盆地。柴达木盆地形成于昆仑山与祁连山相向挤压对冲的构造背景下,盆地中部发生沉降,从边缘到中心形成一个大的背斜,背斜两翼发育系列逆断层,总体表现为“两断夹一隆”的构造格局(马寅生等, 2012, 2014)。柴达木盆地石炭系作为中国北方新区新层系油气勘探的热点,已获得油气勘探的重大发现(李宗星等,2019),为柴达木盆地的油气勘探注入新的活力。因此,该地区石炭系的研究也备受关注。

柴达木盆地石炭系的研究始于20世纪50年代,研究工作主要集中在以下几个方面:①柴达木盆地东部地区石炭纪的岩石地层、生物地层序列和年代地层系统的建立(王增吉, 1981, 1985高联达和冀六祥,1992; 王增吉和俞学光,1995),不少学者在该地区石炭系自下而上识别出了下石炭统穿山沟组、城墙沟组、怀头他拉组,上石炭统克鲁克组和下二叠统扎布萨尕秀组(杨式溥等,1980贺广田和薛连明,1986; 贺广田等,1987朱秀芳,1987青海省地质矿产局,1991);②石炭系油气基础地质、烃源岩和油气资源的评价研究(文志刚等,2004万传治等,2006牛永斌等,2010李会军等,2011马寅生等,2012王大华等,2013彭渊等,2015曹军等,2016林存国等,2016刘成林等,2016孙娇鹏等,2016曾旭等,2018栾守亮,2018);③柴达木盆地石炭系的油气勘探,最近20年间中国石油天然气集团公司、中国石油化工集团公司和中国地质调查局等单位在柴达木盆地内石炭系油气勘探获得了重大发现(李宗星等,2019),为实现柴达木盆地石炭系工业油气流提升了信心。

目前,关于扎布萨尕秀组的时代尚有争议。该组1962年由青海地质局632石油普查大队命名,岩性以砂页岩、灰岩为主,夹煤层,为海陆交互相沉积,与下伏克鲁克组为连续沉积;未见顶,主要分布在柴达木盆地东部地区。以往多数学者依据地层对比、地层所含化石认为柴东地区扎布萨尕秀组应划归晚石炭世(俞建章和林英铴,1961骆金锭和赵嘉明,1962杨式溥等,1980施希德,1983贺广田和薛连明,1986),柴东地区不存在二叠世地层沉积;但朱秀芳(1987)王训练等(2002)认为石炭、二叠系界线应置于扎布萨尕秀组上段䗴类Pseudoschwagerina组合带或Sphaeroschwagerina带的底部,即柴东地区存在二叠系。文章根据在柴达木盆地东部石灰沟地区扎布萨尕秀组中段采集了砂岩样品和䗴科化石,试图进一步精确厘定该组的地质时代。碎屑锆石LA-ICP-MS U-Pb分析测试得出最年轻的加权平均年龄数据为288.0±2.0 Ma,晚于国际石炭纪—二叠纪界限年龄(~299 Ma)(Cohen, et al., 2013),证实扎布萨尕秀组中段的形成时代不早于早二叠世。此外,从该组化石中所鉴定出来的Pseudoschwagerina(假希瓦格䗴)和Sphaeroschwagerina(球希瓦格䗴),近一步印证柴东地区存在二叠纪的沉积地层,这为理解柴东地区沉积建造和区域构造演化补充了重要的年代地层学证据。

1 区域地质背景

柴达木盆地位于青藏高原东北部,处于祁连造山带和昆仑山构造带近南北向对冲、阿尔金断裂左行走滑和鄂拉山断裂右行走滑的复合联合控制之下。柴达木盆地中生代以来经历了多期构造变形的叠加和改造,盆地定型于新生代,而且柴达木东部地区仍有新构造活动(邓宏文和钱凯,1990杨明慧,1997王桂宏等,2000金之钧等,2004)。柴达木盆地石炭系—二叠系的分布受控于沉积条件和多期次构造运动,出露于盆地周边及盆内山前和盆地东北缘山麓部位。石炭系—二叠系呈北西—南东向展布,在石灰沟、城墙沟、尕海南山、旺尕秀、欧龙布鲁克山等地区出露较好。自下而上主要发育一套碎屑岩与碳酸盐岩的混合沉积建造,沉积地层包括下石炭统穿山沟组(C1ch)、城墙沟组(C1c)、怀头他拉组(C1h)、上石炭统克鲁克组(C2k)和下二叠统扎布萨尕秀组(P1zh)(图 1)。

图 1 柴达木盆地地质略图及采样位置 Fig. 1 Geological sketch map of the Qaidam Basin and the sampling location
2 地层特征

石炭系—二叠系出露于柴达木东部地区欧龙布鲁克山、埃姆尼克山、旺尕秀、石灰沟、城墙沟、尕海南山等地,其中上石炭统克鲁克组和下二叠统扎布萨尕秀组之间呈整合接触。德令哈石灰沟地区上石炭统克鲁克组下段为黑色、灰色粉砂岩、炭质页岩、煤层或劣煤、灰岩组成的韵律层,是良好的地层划分标志;上段为灰白色砂岩、页岩、灰岩组成的韵律层,克鲁克组厚400~700 m;下二叠统扎布萨尕秀组灰岩发育,以灰色、灰黑色生物灰岩为主,下部夹少量页岩,局部可见粗砂岩,地层厚度大于720 m,石灰沟地区扎布萨尕秀组岩性特征描述如下,剖面见图 2

图 2 德令哈地区石灰沟扎布萨尕秀组地层剖面(青海省地质局第一区域地质测量队,1978b;五角星所示为采样层位) Fig. 2 Stratigraphic section of the Zhabusagaxiu formation in Shihuigou of the Delingha area (The First Regional Geological Survey Team of Qinghai Geological Bureau, 1978b; the pentagram is the sampling horizon of this study)
3 样品特征及分析方法 3.1 样品特征

此次砂岩和䗴科化石样品采集地点在柴达木盆地东部石灰沟一带(图 1图 3a)。其中砂岩样品采集于扎布萨尕秀组底部(图 2第3层),样品1105-1,采样点GPS:N 37°24′35.07″,E 96°04′11.64″。露头上砂岩样品为灰白色,粒状结构,中层构造,其中砂级碎屑为石英(90%~95%)、岩屑(1%~5%)、长石(1%~3%),次棱—次圆状,大小一般0.5~2.0 mm,部分0.25~0.50 mm,少部分0.10~0.25 mm,杂乱分布;长石主要为斜长石及钾长石;岩屑为流纹岩、粘土岩及粘土硅质岩,并可见少量云母碎屑;填隙物为粘土杂基(5%),粘土杂基隐晶-细小鳞片状,直径一般为0.001~0.010 mm,部分为0.01~0.02 mm,少量为0.02~0.05 mm,填隙状分布(图 3b)。

a—灰岩及化石出露远景照,五角星为化石采样位置;b—砂岩镜下照片;c—化石露头照片;d—Pseudoschwagerina(假希瓦格䗴)单体;e—Sphaeroschwagerina(球希瓦格䗴)单体;Qtz—石英;Fsp—长石 图 3 柴达木盆地东部石灰沟地区扎布萨尕秀组野外露头及镜下照片 Fig. 3 Outcrop and microscopic view of the Zhabusagaxiu formation in the Shihuigou area of the eastern Qaidam Basin

䗴科化石采集层位为灰色生物碎屑灰岩(图 2第5~6层),样品1106-1,采样点GPS:N 37°24′15.61″,E 96°06′34.44″,露头上以䗴科化石为主,壳体直径2~5 mm居多(图 3c),多呈椭圆形或粗纺锤形。对比已有关于二叠系䗴科化石及柴东地区扎布萨尕秀组中的化石的类型特征(青海省地质局第一区域地质测量队, 1978a, 1978bIngavat-Helmcke,1993Fontaine et al., 1994;Katsumi et al., 1996;周祖仁等,1997Vachard et al., 2000张遴信和周建平,2000Okuyucu and Göncüoüǧlu,2010Crippa et al., 2014),样品1106-1薄片在显微镜下可见典型的Pseudoschwagerina(假希瓦格䗴)和Sphaeroschwagerina (球希瓦格䗴)(图 3d3e)。

3.2 分析方法

样品锆石挑选在廊坊市宇恒矿岩技术服务有限公司完成。锆石制靶、CL图像分析和锆石微区U-Pb年龄测定在南京宏创地质勘查技术服务有限公司实验室完成。制靶时先将锆石颗粒用环氧树脂固定并抛光,使颗粒露出核部。样品在测定之前用浓度3%的HNO3清洗,除去表面污染,再进行反射光和透射光照相。

锆石微区U-Pb年龄测定所用设备包括Agilent 7700X型LA-ICP-MS等离子质谱仪/photon Machines Excite激光剥蚀系统。激光束斑直径为30 μm,激光剥蚀深度为20~40 μm。实验过程中剥蚀物质的载气为He,标准参考物质为美国国家标准技术研究院研制的人工合成硅酸盐玻璃NISTSRM 610,以单点剥蚀为采样方式,数据采集选用一个质量峰-点的跳峰方式,每完成4~5个待测样品测定,插入测标样一次。在所测锆石样品15~20个点前后各测2次NISTSRM 610。锆石年龄测定外部标准物质为标准锆石91500,而元素含量采用NISTSRM 610作为外标。选择29Si作内标测定锆石的U、Th和Pb的含量,实验原理及方法见文献(柳小明等,2007)。

样品测试完成后,锆石同位素比值及元素含量采用ICP-MS-Data Cal软件校正和计算(Liu et al., 2008Liu et al., 2009)。样品测试采用美国地质调查局标准(AGV-1、BCR-1和bhl-1)进行校准,并进行普通铅校正(Andersen, 2002)。最后,使用Isoplot/Ex(ver. 3.23)软件实现同位素年龄的最终计算与谐和年龄图的生成(Ludwig,2003)。

4 分析结果

锆石的阴极发光图像(图 4)显示,扎布萨尕秀组中所获得的碎屑锆石多呈次圆状—长柱状,长宽比为1.1~2.1。大多数锆石具有明显的振荡环带,少量锆石具有老的继承性核。锆石的Th含量介于53.90×10-6~368.07×10-6 mg/kg,U含量介于126.82×10-6~616.54×10-6 mg/kg,Th/U比值与岩浆锆石相似(表 1),34个点的Th/U比值大于0.4(比值范围0.41~1.04),有6个点的数值较低(测点6、7、9、14、25和32),在0.12~0.40之间。这表明,此次所测试的锆石均为岩浆成因(Pidgeon et al., 1998; Corfu et al., 2003Hoskin and Schaltegger, 2003)。

图 4 扎布萨尕秀组砂岩中锆石的阴极发光影像及单颗粒锆石年龄 Fig. 4 Cathodoluminescence images and ages of single zircon of sandstones in the Zhabusagaxiu formation

表 1 扎布萨尕秀组砂岩中的锆石LA-ICP-MS同位素数据 Table 1 Zircon LA-ICP-MS isotopic data of sandstones from the Zhabusagaxiu formation

测定的40颗锆石给出了38个谐和年龄数据,分布于2488±34 Ma至288±3 Ma之间(表 1,点19和点28)。有4颗锆石的年龄超过1700 Ma(表 1,点7、9、10和19),它们可能来源于柴达木盆地结晶基底(图 5a5b);15颗锆石的年龄介于310~533 Ma,它们记录了早古生代的岩浆活动;考虑到测试结果的误差,有13颗锆石的单颗粒年龄小于300 Ma(表 1, 图 4),参与计算的单颗粒锆石,其206Pb/238U年龄介于288.3~313.5 Ma之间,加权平均年龄结果为288.0±2.0 Ma(MSWD=0.112,n=21)(图 5c5d)。测点1和测点15(表 1)两个点在U-Pb整体的谐和图和统计直方图中为离群点,未参与加权平均年龄计算。

图 5 扎布萨尕秀组碎屑锆石U-Pb和谐年龄曲线和加权平均年龄直方图 Fig. 5 U-Pb harmonious age curves and weighted average age histogram of zircons from the Zhabusagaxiu formation
5 讨论

20世纪70~80年代,中国对石炭、二叠系分界与国际上常用划分意见相差较大。哈萨克斯坦北部的阿德尔拉希沟(Aidralash Creek)剖面为石炭、二叠系界线全球层型剖面,以牙形石Streptognathodus isolatus的首次出现为界线标志(张遴信和周建平,2000王训练等,2002)。这个界线相当于䗴类生物地层中Sphaeroschwagerina vulgaris-S.fusiformis带的底界(Davydov et al., 1998Jin et al., 1997; 金玉玕等,2000Henderson and Mei, 2003Zhang and Wang, 2018)。目前,在中国比较公认的S.isolatus仅见于贵州紫云羊场一地,产出层位介于牙形石Streptognathodus elegantulus带与S.elongatus-S.simplex带之间的界面,而且略低于Pseudoschwagerina uddeni-Ps.texana带的底界(张遴信和周建平,2000)。依据国际划分标准,后两个生物带的时代应为早二叠世(夏国英等,1996王成源和康沛泉,2000)。中国华南是全球二叠纪䗴类化石最发育的地区之一(肖伟民等,1986),其二叠系的底界一般见于马平组和船山组的中上部,以膨胀型的䗴属PseudoschwagerinaSphaeroschwagerina的出现为标志,而在华北地区则见于太原组下部(王成源和康沛泉,2000)。从晚石炭世Triticites为主的动物群到二叠纪乌拉尔世早期以Pseudoschwagerina为主的动物群的过渡可追踪至华南、北美、日本、俄罗斯等主要地块,说明PseudoschwagerinaSphaeroschwagerina作为二叠纪底界的标志具有全球对比意义(金玉玕等,2000Vachard et al., 2000; Forke,2002Davydov and Leven, 2003Yoshida and Machiyama, 2004)。

柴达木盆地东部扎布萨尕秀组上部的时代归属是该区石炭、二叠系界线争论的焦点。该组1962年由青海地质局石油普查大队创名于乌兰县扎布萨尕秀北东,青海省地质矿产局(1991)马寅生等(2014)先后引用,代表上石炭统上部的沉积地层。朱秀芳(1987)将柴达木盆地扎布萨尕秀组的䗴类动物群分为两个带,下部为Triticites带,上部为Sphaeroschwagerina带,并将区内的石炭、二叠系界线置于Sphaeroschwagerina带之底,与国际上目前采用的界线标准相近。贺广田等(1987)王增吉(1990)青海省地质矿产局(1991)孙崇仁等(1997)一直把柴达木盆地东部的扎布萨尕秀组全部归入上石炭统克鲁克组。根据国际上最新的石炭、二叠系界线定义,柴达木盆地东部Pseudoschwagerina组合带或Sphaeroschwagerina带及与其共生的珊瑚Pseudozaphrentoides-Lophocarinophyllum组合带都应当归入二叠系,即石炭、二叠系界线应置于扎布萨尕秀组上段底部,生物地层标志是Pseudoschwagerina组合带底界或者Sphaerosch-wagerina带底界。目前,在青海省开展油气勘探及调查的石油公司和科研院所仍然将扎布萨尕秀组和石炭统克鲁克组独立划分。此次研究在扎布萨尕秀组砂岩中获得了最年轻的一组谐和年龄数据,其加权平均年龄结果为288.0±2.0 Ma(MSWD=0.112,n=21),明显晚于国际石炭—二叠系界限年龄(~299 Ma),证明扎布萨尕秀组沉积时限不早于早二叠世,将扎布萨尕秀组划归为石炭系已不合适。此次在扎布萨尕秀组灰岩中采集到了典型的二叠纪PseudoschwagerinaSphaeroschwagerina䗴化石,进一步证实了朱秀芳(1987)王训练等(2002)学者的结果。因此,扎布萨尕秀组应归为下二叠统。

已有研究中独立针对扎布萨尕秀组泥岩的烃源岩评价较少,由于扎布萨尕秀组和克鲁克组岩性特征基本一致(孙崇仁等,1997),多数学者将扎布萨尕秀组和克鲁克组作为上石炭统整体来评价。柴达木盆地东部石灰沟地区钻孔和露头揭示黑色泥岩的总体特征是:有机质丰度较高,有机质类型为Ⅱ—Ⅲ型,烃源岩热演化处于成熟—高成熟阶段,具有较高的生烃潜力等(段宏亮等,2006杨超等,2010王大华等,2013李宗星等,2019王利等,2019)。此外,地质调查显示柴东地区扎布萨尕秀组中黑色泥页岩由石灰沟向旺尕秀有逐渐增厚的趋势,同时在德令哈旺尕秀煤矿剖面的扎布萨尕秀组砂岩中发育团块状或沿裂隙产出的油砂(马寅生等,2012),进一步说明扎布萨尕秀组具备良好的生烃潜力。因此,伴随柴达木东部地区晚古生代油气勘探和调查的深入,扎布萨尕秀组作为晚古生代的烃源岩将逐渐得以重视,同时,也将上古生界柴达木东部地区的油气勘探层位由石炭系拓展至二叠系。

6 结论

柴达木盆地东部地区扎布萨尕秀组砂岩中的碎屑锆石U-Pb加权平均年龄为288.0±2.0 Ma,晚于国际石炭—二叠纪的界限时间(~299 Ma),该地层中赋存丰富的PseudoschwagerinaSphaeroschwagerina䗴类化石是进入二叠纪的重要标志。因此,扎布萨尕秀组应划归为早二叠世,亦说明柴达木东部地区存在二叠纪的地层,为理解柴东地区沉积建造和区域构造演化补充了重要的年代地层学证据。

致谢: 感谢两位审稿人提出的宝贵意见和建议,感谢杨欣德研究员给予本文在地层沉积及地层层序划分方面的悉心指导。

参考文献/References
ANDERSEN T, 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192(1-2): 59-79. DOI:10.1016/S0009-2541(02)00195-X
Bureau of Geology and Mineral Resources of Qinghai Province, 1991. People's republic of China ministry of geology and mineral resources[M]. Beijing: Geological Publishing House, 100-122. (in Chinese)
CAO J, LIU C L, MA Y S, et al., 2016. Geochemical characteristics and genesis of shale gas for Carboniferous marine-continental transitional facies coal measure strata in Eastern Qaidam Basin[J]. Earth Science Frontiers, 23(5): 158-166. (in Chinese with English abstract)
COHEN K M, FINNEY S C, GIBBARD P L, et al., 2013. The ICS international chronostratigraphic chart[J]. Episodes, 36(3): 199-204. DOI:10.18814/epiiugs/2013/v36i3/002
CORFU F, HANCHAR J M, HOSKIN P W O, et al., 2003. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. DOI:10.2113/0530469
CRIPPA G, ANGIOLINI L, VAN WAVEREN I, et al., 2014. Brachiopods, fusulines and palynomorphs of the Mengkarang Formation (Early Permian, Sumatra) and their palaeobiogeographical significance[J]. Journal of Asian Earth Sciences, 79: 206-223. DOI:10.1016/j.jseaes.2013.09.030
DAVYDOV V I, GLENISTER B F, SPINOSA C, et al., 1998. Proposal of Aidaralash as global stratotype section and point (GSSP) for base of the Permian System[J]. Episodes, 21(1): 11-18. DOI:10.18814/epiiugs/1998/v21i1/003
DAVYDOV V I, LEVEN E J, 2003. Correlation of upper carboniferous (Pennsylvanian) and lower Permian (Cisuralian) marine deposits of the Peri-Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 196(1-2): 39-57. DOI:10.1016/S0031-0182(03)00312-2
DENG H W, QIAN K, 1990. Neotectonics and the formation of Quaternary gas fields in Qaidam basin[J]. Geoscience, 4(2): 83-91. (in Chinese with English abstract)
DUAN H L, ZHONG J H, WANG Z K, et al., 2006. Evaluation of Carboniferous hydrocarbon source rocks in the eastern Qaidam basin, China[J]. Geological Bulletin of China, 25(9-10): 1135-1142. (in Chinese with English abstract)
FONTAINE H, CHONGLAKMANI C, BIN AMNAN I, et al., 1994. A well-defined Permian biogeographic unit:Peninsular Thailand and northwest Peninsular Malaysia[J]. Journal of Southeast Asian Earth Sciences, 9(1-2): 129-151. DOI:10.1016/0743-9547(94)90071-X
FORKE H C, 2002. Biostratigraphic subdivision and correlation of Uppermost Carboniferous/Lower Permian sediments in the Southern Alps:Fusulinoidean and condont faunas from the Carnic Alps (Austria/Italy), Karavanke Mountains (Slovenia), and Southern Urals (Russia)[J]. Facies, 47(1): 201-275. DOI:10.1007/BF02667713
GAO L D, JI L X, 1992. Carboniferous sporopollen from Qinghai and its stratigraphic significance[J]. Geology of Qinghai, 1(1): 1-8. (in Chinese with English abstract)
HE G T, XUE L M, 1986. The carboniferous system of Qinghai province[J]. Regional Geology of China, (3): 211-220. (in Chinese with English abstract)
HE G T, WANG Z J, ZHAN L P, et al., 1987. The late Carboniferous strata from north margin of Qaidam basin[J]. Bulletin of the Chinese Academy of Geological Sciences, 17: 142-158. (in Chinese with English abstract)
HENDERSON C M, MEI S L, 2003. Stratigraphic versus environmental significance of Permian serrated conodonts around the Cisuralian-Guadalupian boundary:new evidence from Oman[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 191(3-4): 301-328. DOI:10.1016/S0031-0182(02)00669-7
HOSKIN P W O, SCHALTEGGER U, 2003. The composition of Zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. DOI:10.2113/0530027
INGAVAT-HELMCKE R, 1993. Contribution to the Permian fusulinacean faunas of Peninsular Thailand[J]. Journal of Southeast Asian Earth Sciences, 8(1-4): 67-75. DOI:10.1016/0743-9547(93)90008-D
JIN Y G, WARDLAW B R, GLENISTER B F, 1997. Permian choronostratigraphy subdivision[J]. Episodes, 20(1): 10-15. DOI:10.18814/epiiugs/1997/v20i1/003
JIN Y G, SHANG Q H, CAO C Q, 2000. A review of Permian stratigraphy[J]. Journal of Stratigraphy, 24(2): 99-108. (in Chinese with English abstract)
JIN Z J, ZHANG M L, TANG L J, et al., 2004. Evolution of Meso-Cenozoic Qaidam basin and its control on oil and gas[J]. Oil & Gas Geology, 25(6): 603-608. (in Chinese with English abstract)
LI H J, YAN X L, GUO J, et al., 2011. Characteristics and significance of hydrocarbon shows originated from Carboniferous formation in Qaidam Basin[J]. Fault-Block Oil & Gas Field, 18(1): 14-17. (in Chinese with English abstract)
LI Z X, PENG B, MA Y S, et al., 2019. Progress of Carboniferous oil and gas survey in Qaidam Basin[J]. Geological survey of China, 6(4): 79-87. (in Chinese with English abstract)
LIN C G, YIN C M, WANG C F, et al., 2016. Re-recognition of Carboniferous and Jurassic distribution of DLHA depression, eastern Qaidam Basin[J]. Geological Bulletin of China, 35(2-3): 293-301. (in Chinese with English abstract)
LIU C L, ZHANG X, ZHANG Y Y, et al., 2016. Carboniferous shale gas system evaluation for the Delingha depression in Qaidam Basin[J]. Earth Science Frontiers, 23(5): 135-145. (in Chinese with English abstract)
LIU X M, GAO S, DIWU C R, et al., 2007. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size[J]. Chinese Science Bulletin, 52(9): 1257-1264. DOI:10.1007/s11434-007-0160-x
LIU Y S, HU Z C, GAO S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. DOI:10.1016/j.chemgeo.2008.08.004
LIU Y S, GAO S, HU Z C, et al., 2009. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571.
LUAN S L, 2018. The sedimentary characteristics of Carboniferous in Chengqianggou-Shizigou area in the Qaidam Basin[J]. Journal of Shengli College China University of Petroleum, 32(1): 16-18. (in Chinese)
LUDWIG K R, 2003. User's manual for Isoplot/Ex, version 3.00, a geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication.
LUO J D, ZHAO J M, 1962. The Lower Carboniferous rugose corals in the Qilian Mountains[M]//The Geology of the Qilian Mountains. Beijing: Science Press: 111-199. (in Chinese)
MA Y S, YIN C M, LIU C L, et al., 2012. The progress of carboniferous oil and gas investigation and assessment in Qaidam Basin[J]. Acta Geoscientica Sinica, 33(2): 135-144. (in Chinese with English abstract)
MA Y S, YIN C M, LIU C L, et al., 2014. The Petroleum resource potential evaluation of Carboniferous in Qaidam Basin[M]. Beijing: Geological Publishing House, 1-284. (in Chinese)
NIU Y B, ZHONG J H, DUAN H L, et al., 2010. Relationship between carboniferous sedimentary facies and source rock in Qaidam basin[J]. Acta Sedimentologica Sinica, 28(1): 140-149. (in Chinese with English abstract)
OKUYUCU C, GÖNCÜOĞLU M C, 2010. Middle-late Asselian (Early Permian) fusulinid fauna from the post-Variscan cover in NW Anatolia (Turkey):Biostratigraphy and geological implications[J]. Geobios, 43(2): 225-240. DOI:10.1016/j.geobios.2009.09.006
PENG Y, MA Y S, LIU C L, et al., 2015. An analysis of late Hercynian-Indosinian paleotectonic stress on the northern margin of the Qaidam basin[J]. Acta Geoscientica Sinica, 36(1): 50-58. (in Chinese with English abstract)
PIDGEON R T, NEMCHIN A A, HITCHEN G J, 1998. Internal structures of zircons from Archaean granites from the Darling Range batholith:implications for zircon stability and the interpretation of zircon U-Pb ages[J]. Contributions to Mineralogy and Petrology, 132(3): 288-299. DOI:10.1007/s004100050422
SHI X D, 1983. The discovery of Tournaisian in the Mt. Amunike of the north-eastern Qaidam Basin, with a discussion on the division of the Lower Carboniferous in the Mt. Oulongbuluke[C]//Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, 2: Stratigraphy and Palaeontology: 187-206. (in Chinese)
SUN C R, LA J D, LI Z R, et al., 1997. Lithostratigraphy in Qinghai Province[M]. Beijing: China University of Geosciences Press, 1-140. (in Chinese)
SUN J P, YIN C M, CHEN S Y, et al., 2016. An analysis of Late Carboniferous sedimentary; tectonic setting and provenance of North Qaidam area:Evidence from Well Shiqian 1[J]. Geological Bulletin of China, 35(2-3): 302-311. (in Chinese with English abstract)
The First Regional Geological Survey Team of Qinghai Geological Bureau, 1978a. 1:200, 000 Delinghajiuzhi geological map and instruction[M]. . (in Chinese)
The First Regional Geological Survey Team of Qinghai Geological Bureau, 1978b. 1:200, 000 Tuosuhu geological map and instruction[M]. . (in Chinese)
UENO K, NAGAI K, NAKORNSRI N, et al., 1996. A new Moscovian foraminiferal fauna from Huai Luang, east of Wang Saphung, Changwat Loei, Northeast Thailand[J]. Journal of Southeast Asian Earth Sciences, 14(1-2): 79-89. DOI:10.1016/S0743-9547(96)00047-5
VACHARD D, LEMUS M V, FOURCADE E, et al., 2000. New Early Permian fusulinid assemblage from Guatemala[J]. Earth and Planetary Sciences, 331(12): 789-796.
WAN C Z, LE X F, CHEN Y B, 2006. Distribution laws and evaluation of hydrocarbon potential on Carboniferous in the east of Qaidam basin[J]. Natural Gas Geoscience, 17(5): 663-667. (in Chinese with English abstract)
WANG C Y, KANG P Q, 2000. The base of the Permian system in China[J]. Acta Micropalaeontologica Sinica, 17(4): 378-387. (in Chinese with English abstract)
WANG D H, LIN W, LI J L, et al., 2013. Evaluation and potential analysis of upper carboniferous source rocks in Shihuigou area, eastern Qaidam basin[J]. Journal of Oil and Gas Technology, 35(8): 17-20. (in Chinese with English abstract)
WANG G H, ZHANG Y Y, WANG S H, et al., 2000. Formation and distribution of local Quaternary structures in eastern Qaidam basin[J]. Petroleum Exploration and Development, 27(2): 45-47. (in Chinese with English abstract)
WANG L, LI Z X, LIU C L, et al., 2019. The Carboniferous source rock maturity evolution in the Delingha depression in the Qaidam basin, Northwest China[J]. Journal of Geomechanics, 25(3): 370-381. (in Chinese with English abstract)
WANG X L, GAO J H, ZHANG H J, et al., 2002. Recognition of the top and base boundaries of the carboniferous system in the northern margin of the Qaidam basin[J]. Earth Science Frontiers, 9(3): 65-72. (in Chinese with English abstract)
WANG Z J, 1981. Rugose corals from the early lower carboniferous Chuan-Shangou formation in Amunike Mountain, Qinghai Province[J]. Acta Geologica Sinica, 55(3): 170-178. (in Chinese with English abstract)
WANG Z J, 1985. The lower Carboniferous in the western section of the eastern Kunlun Mountains[J]. Geological Review, 32(2): 111-117. (in Chinese)
WANG Z J, 1990. Stratigraphy of China:Carboniferous in China[M]. Beijing: Geological Publishing House, 1-419. (in Chinese)
WANG Z J, YU X G, 1995. The late Carboniferous rugose corals from Shihuigou on the north margin of the Qaidam basin[J]. Acta Geoscientia Sinica, 16(3): 310-324. (in Chinese with English abstract)
WEN Z G, WANG Z Y, HE Y B, et al., 2004. Evaluation on upper Carboniferous hydrocarbon source rock in the northern margin of Chaidamu basin[J]. Natural Gas Geoscience, 15(2): 125-127. (in Chinese with English abstract)
XIA G Y, DING Y J, DING H, et al., 1996. On the carboniferous-Permian boundary stratotype in China[M]. Beijing: Geological Publishing House, 1-200. (in Chinese)
XIAO W M, WANG H D, ZHANG L X, et al., 1986. Early Permian strata and biota in Southern Guizhou[M]. Guiyang: Guizhou people's Publishing House, 1-364. (in Chinese)
YANG C, CHEN Q H, WANG G M, et al., 2010. Evaluation of Carboniferous source rocks in Qaidam area[J]. Acta Petrolei Sinica, 31(6): 913-919. (in Chinese with English abstract)
YANG M H, 1997. Characteristics and mechanism of Neotectionic movement in the Qaidam basin[J]. Marine Geology & Quaternary Geology, 17(3): 71-78. (in Chinese with English abstract)
YANG S P, HOU H F, GAO L D, et al., 1980. The Carboniferous system of China[J]. Acta Geologica Sinica, 54(3): 167-175. (in Chinese with English abstract)
YOSHIDA K, MACHIYAMA H, 2004. Provenance of Permian sandstones, south Kitakami terrane, northeast Japan:implications for Permian arc evolution[J]. Sedimentary Geology, 166(3-4): 185-207. DOI:10.1016/j.sedgeo.2003.12.005
YU J Z, LIN Y T, 1961. Discussion on stratigraphic correlation of the Early Carboniferous in the South and North Slope of Qilian Mountains from the perspective of Coral fossils[J]. Acta Geologica Sinica, 41(2): 154-174.
ZENG X, TIAN J X, ZHANG G Q, et al., 2018. Main types and hydrocarbon exploration direction of the paleo-uplifts in the Qaidam basin[J]. Journal of Geomechanics, 24(3): 381-390. (in Chinese with English abstract)
ZHANG L X, ZHOU J P, 2000. On the carboniferous-Permian boundary in China[J]. Journal of Stratigraphy, 24(3): 224-229. (in Chinese with English abstract)
ZHANG Y C, WANG Y, 2018. Permian fusuline biostratigraphy[M]//LUCAS S G, SHEN S Z. The Permian Timescale. London: Geological Society of London, 450: 253-288.
ZHOU Z R, YANG Q, SHENG J Z, 1997. Fusulinid generapseudoschwagerrina and Sphaeroschwagerina[J]. Acta Micropalaeontologica Sinica, 14(2): 111-128. (in Chinese with English abstract)
ZHU X F, 1987. The Carboniferous and Permian Fusulinids from Ulan Country, Qinghai Province[J]. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, 16: 1-49. (in Chinese)
曹军, 刘成林, 马寅生, 等, 2016. 柴达木盆地东部石炭系海陆过渡相煤系页岩气地球化学特征及成因[J]. 地学前缘, 23(5): 158-166.
邓宏文, 钱凯, 1990. 柴达木盆地新构造运动与第四纪气田的形成[J]. 现代地质, 4(2): 83-91.
段宏亮, 钟建华, 王志坤, 等, 2006. 柴达木盆地东部石炭系烃源岩评价[J]. 地质通报, 25(9-10): 1135-1142.
高联达, 冀六祥, 1992. 青海石炭纪孢子花粉及其地层意义[J]. 青海地质, 1(1): 1-8.
贺广田, 薛连明, 1986. 青海的石炭系[J]. 中国区域地质, (3): 211-220.
贺广田, 王增吉, 詹立培, 等, 1987. 柴达木盆地北缘晚石炭世地层[J]. 中国地质科学院院报, (17): 142-158.
金玉玕, 尚庆华, 曹长群, 2000. 二叠纪地层研究述评[J]. 地层学杂志, 24(2): 99-108. DOI:10.3969/j.issn.0253-4959.2000.02.004
金之钧, 张明利, 汤良杰, 等, 2004. 柴达木中新生代盆地演化及其控油气作用[J]. 石油与天然气地质, 25(6): 603-608. DOI:10.3321/j.issn:0253-9985.2004.06.001
李会军, 鄢犀利, 郭娟, 等, 2011. 柴达木盆地源自石炭系油气显示特征及其意义[J]. 断块油气田, 18(1): 14-17.
李宗星, 彭博, 马寅生, 等, 2019. 柴达木盆地石炭系油气调查最新进展[J]. 中国地质调查, 6(4): 79-87.
林存国, 尹成明, 王财富, 等, 2016. 柴达木盆地德令哈坳陷石炭系分布特征[J]. 地质通报, 35(2-3): 293-301.
刘成林, 张旭, 杨元元, 等, 2016. 柴达木盆地德令哈坳陷石炭系页岩气系统评价[J]. 地学前缘, 23(5): 135-145.
柳小明, 高山, 第五春容, 等, 2007. 单颗粒锆石的20 μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定[J]. 科学通报, 52(2): 228-235. DOI:10.3321/j.issn:0023-074X.2007.02.017
栾守亮, 2018. 柴达木盆地城墙沟-石灰沟地区石炭系沉积特征[J]. 中国石油大学胜利学院学报, 32(1): 16-18. DOI:10.3969/j.issn.1673-5935.2018.01.004
骆金锭, 赵嘉明, 1962.祁连山区下石炭统四射珊瑚[M]//祁连山地质志, 第四卷, 第三分册.北京: 科学出版社: 111-199.
马寅生, 尹成明, 刘成林, 等, 2012. 柴达木盆地石炭系油气资源调查评价进展[J]. 地球学报, 33(2): 135-144.
马寅生, 尹成明, 刘成林, 等, 2014. 柴达木盆地石炭系油气资源潜力评价[M]. 北京: 地质出版社, 1-284.
牛永斌, 钟建华, 段宏亮, 等, 2010. 柴达木盆地石炭系沉积相及其与烃源岩的关系[J]. 沉积学报, 28(1): 140-149.
彭渊, 马寅生, 刘成林, 等, 2015. 柴达木盆地北缘晚海西-印支期古构造应力分析[J]. 地球学报, 36(1): 50-58.
青海省地质局第一区域地质测量队, 1978a. 1:20万德令哈旧址幅地质图及说明书[M]. .
青海省地质局第一区域地质测量队, 1978b. 1:20万托素湖幅地质图及说明书[M]. .
青海省地质矿产局, 1991. 青海省区域地质志[M]. 北京: 地质出版社, 100-122.
孙崇仁, 喇继德, 李璋荣, 等, 1997. 青海省岩石地层[M]. 北京: 中国地质大学出版社, 1-140.
施希德, 1983.柴达木东北缘阿木尼克山杜内阶的发现: 兼对欧龙布鲁克下石炭统划分的讨论[C]//青藏高原地质文集(2)-地层·古生物: 青藏高原地质科学讨论会论文集(一).拉萨: 地质出版社: 187-206.
孙娇鹏, 尹成明, 陈世悦, 等, 2016. 柴达木盆地北缘晚石炭世构造环境及物源:以石浅1井为例[J]. 地质通报, 35(2-3): 302-311.
万传治, 乐幸福, 陈迎宾, 2006. 柴达木盆地东部地区石炭系分布规律与生烃潜力评价[J]. 天然气地球科学, 17(5): 663-667. DOI:10.3969/j.issn.1672-1926.2006.05.013
王成源, 康沛泉, 2000. 中国二叠系的底界[J]. 微体古生物学报, 17(4): 378-387. DOI:10.3969/j.issn.1000-0674.2000.04.004
王大华, 林武, 李军亮, 等, 2013. 柴东石灰沟地区上石炭统烃源岩评价及潜力分析[J]. 石油天然气学报, 35(8): 17-20. DOI:10.3969/j.issn.1000-9752.2013.08.004
王桂宏, 张友焱, 王世洪, 等, 2000. 柴达木盆地东部第四系局部构造形成的控制因素及分布规律[J]. 石油勘探与开发, 27(2): 45-47. DOI:10.3321/j.issn:1000-0747.2000.02.012
王利, 李宗星, 刘成林, 等, 2019. 柴达木盆地德令哈坳陷石炭系烃源岩成熟度演化史[J]. 地质力学学报, 25(3): 370-381.
王训练, 高金汉, 张海军, 等, 2002. 柴达木盆地北缘石炭系顶、底界线再认识[J]. 地学前缘, 9(3): 65-72. DOI:10.3321/j.issn:1005-2321.2002.03.010
王增吉, 1981. 柴达木盆地北缘早石炭世早期穿山沟组的皱纹珊瑚[J]. 地质学报, 55(3): 170-78.
王增吉, 1985. 东昆仑山西段早石炭世地层[J]. 地质论评, 31(2): 170-178.
王增吉, 1990. 中国地层:中国的石炭系[M]. 北京: 地质出版社, 1-419.
王增吉, 俞学光, 1995. 柴达木盆地北缘石灰沟晚石炭世的四射珊瑚[J]. 地球学报, 16(3): 310-324.
文志刚, 王正允, 何幼斌, 等, 2004. 柴达木盆地北缘上石炭统烃源岩评价[J]. 天然气地球科学, 15(2): 125-127. DOI:10.3969/j.issn.1672-1926.2004.02.005
夏国英, 丁蕴杰, 丁惠, 等, 1996. 中国石炭-二叠系界线层型研究[M]. 北京: 地质出版社, 1-200.
肖伟民, 王洪弟, 张遴信, 等, 1986. 贵州南部早二叠世地层及其生物群[M]. 贵阳: 贵州人民出版社, 1-364.
杨超, 陈清华, 王冠民, 等, 2010. 柴达木地区上古生界石炭系烃源岩评价[J]. 石油学报, 31(6): 913-919.
杨明慧, 1997. 柴达木盆地新构造运动主要特征与成因机制[J]. 海洋地质与第四纪地质, 17(3): 71-78.
杨式溥, 侯鸿飞, 高联达, 等, 1980. 中国的石炭系[J]. 地质学报, 54(3): 167-175.
俞建章, 林英铴, 1961. 从珊瑚化石来讨论祁连山南北坡早石炭世地层对比问题[J]. 地质学报, 41(2): 154-174.
曾旭, 田继先, 张国卿, 等, 2018. 柴达木盆地古隆起主要类型及油气勘探方向[J]. 地质力学学报, 24(3): 381-390.
张遴信, 周建平, 2000. 论中国的石炭系与二叠系界线[J]. 地层学杂志, 24(3): 224-229. DOI:10.3969/j.issn.0253-4959.2000.03.011
周祖仁, 杨群, 盛金章, 1997. 假希瓦格属(Pseudoschwagerina)和球希瓦格属(Sphaeroschwagerina)[J]. 微体古生物学报, 14(2): 111-128.
朱秀芳, 1987. 青海乌兰石炭-二叠纪的类动物群[J]. 中国地质科学院地质研究所所刊, 16: 1-49.