2. 自然资源部古地磁与古构造重建重点实验室, 北京 100081;
3. 中国地质调查局油气地质力学重点实验室, 北京 100081;
4. 中国石油大学 (北京) 地球科学学院, 北京 102249
2. Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Ministry of Natural Resources, Beijing 100081, China;
3. Key Laboratory of Petroleum Geomechanics, China Geological Survey, Beijing 100081, China;
4. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
中国西部海相碳酸盐岩油气层多与岩溶作用密切相关(Shen et al., 2015;李阳等,2018;Huang et al., 2019),岩溶储层类型丰富多样,包括潜山区、内幕区两大类以及潜山岩溶、层间岩溶(Xiao et al., 2016)、顺层岩溶、受断裂控制岩溶四个储层亚类(赵文智等,2013)。塔里木盆地断溶体(Ding et al., 2020)、鄂尔多斯中奥陶统岩溶风化壳型(何江等,2013;Wei et al., 2018)、四川盆地丘滩相-岩溶叠合型(Luo et al., 2017)这些西部典型岩溶类型近年取得了重要的油气发现,利用地震(罗思聪,2015;Dai et al., 2017)、多种测井方法(尹正武和李金磊,2013;崔璐,2019)为探索岩溶缝洞油气提供重要的依据。
研究区地处柴达木盆地东部地区,晚古生代以来经历海西—喜山多期隆升剥蚀(李宗星等,2015;刘奎等,2020),区域不整合为石炭系溶蚀淋滤创造条件。近年在柴达木盆地石炭系发现风化壳岩溶证据,在浅钻ZK5-2、青德地1井等石炭系取芯、测井中发现大量溶蚀缝洞存在(彭博等,2016),其中青德地1井揭示了2套石炭系缝洞型含气层,因此探索该区缝洞储层岩电响应特征为以后认识该区缝洞油气聚集规律具有重要意义。鉴于此,文章以柴达木盆地东部典型岩溶缝洞作为对象,利用岩石学、地球物理测井手段,分析了不同类型缝洞的结构样式及各缝洞单元的测井响应,探讨了缝洞差异化因素及形成机制,为认识该区石炭系岩溶缝洞提供参考。
1 地质背景柴达木盆地东部由欧龙布鲁克凸起、埃木尼克凸起以及其间的德令哈凹陷、欧南凹陷、霍布逊凹陷构成(马寅生等,2014;图 1a、图 1b)。区域内石炭系稳定分布,下伏泥盆系牦牛山组。上覆地层多样,多与中生界白垩系犬牙沟或古近系下干柴沟组角度不整合接触,部分区域与残存二叠系巴音河群整合接触。石炭系整体为海陆交互沉积,纵向见多套碳酸盐岩-碎屑岩叠置(魏小洁等,2018),岩溶缝洞主要见于下石炭系怀头他拉组、上石炭克鲁克组一段、四段以及扎布萨尕秀二段几个主要的碳酸盐岩段。响应海西期—喜马拉雅全球构造活动,该区晚古生代以来该区至少经历了6期构造事件(李宗星等,2017;栾守亮,2018),致使石炭系遭受不同程度的溶蚀改造,为缝洞形成创造了条件。
![]() |
a—研究区构造位置图;b—柴达木盆地东部剖面位置图;c—研究区石炭系地层柱状图 图 1 研究区地理位置及地层单元划分 Fig. 1 Area location and stratigraphy |
在区域内石炭系露头岩溶观察成果(Peng et al., 2016)的基础上,重点开展柴达木盆地东部4口石炭系典型钻井(图 1)的缝洞岩性与电性分析。完成钻井取心的缝洞岩石学观察及缝洞产状统计,识别了风化壳型岩溶、断控性岩溶两类岩溶缝洞。利用规测井及电成像测井对比了两种岩溶缝洞响应差异。进一步细化了各个岩溶缝洞缝洞单元电性特征。最后根据缝洞切割关系、区域构造背景及缝洞统计结果探讨了缝洞差异化原因以及形成机制。
3 缝洞单元测井响应 3.1 缝洞特征石炭系缝洞纵向分布与层序进行匹配研究显示,二者存在较差的相关性。除了高角度/垂直缝洞以外,大的缝洞多存在于不整合面附近(< 100 m)。岩石学特征揭示缝洞多穿层,缝洞充填物带有后期改造痕迹,呈表生岩溶的特征(Gao and Fan, 2015)。取芯显示,该区石炭系表生缝洞进一步可划分两种岩溶缝洞亚类,即风化壳型岩溶和断控型岩溶。①风化壳型岩溶多见于克鲁克1~2段、扎布萨尕秀组,以及怀头他拉与上覆层界限处,缝洞改造强烈,横向分布特征明显(图 2)。②断控型岩溶缝洞多见于怀头他拉组,该类裂缝常沿高角度构造缝改造,部分未充填。它对早期低角度缝切割,缝洞呈犬牙状溶蚀边,缝壁氧化呈亮红色,沿缝充填土黄色钙质皮壳。岩溶改造纵深大,岩溶作用发育带下近百米深位置的高角度/垂直缝内仍能见沿缝溶蚀,其缝壁充填红色渗流砂。往往纵向可见2~3套岩溶缝洞旋回叠置,如ZK5-2井(彭博等,2016)。
![]() |
a—渣状层岩石破碎,青德地1井,取心照片,C2zh2;b—溶蚀缝洞,缝洞内上覆黄色泥质充填,青德地1井,取心照片,C2zh2;c—溶洞内岩溶角砾,青德地1井,取心照片,C2zh2;d—多期构造破裂,青德地1井,取心照片,C2k4;e—早期构造破裂缝方解石充填,青德地1井,取心照片,C2k4 图 2 柴达木盆地石炭系缝洞单元岩石结构特征 Fig. 2 Petrological characteristics of Carboniferous fracture and cave units in the Qaidam Basin |
该区石炭系岩溶缝洞在测井上有2种不同响应特征。大型风化壳相关的缝洞孔隙度测井则呈现出“两高一低”的特征(陈胜,2007;赵军龙等,2012), 即高中子(CNL)、高声波(AC)时差、低地层体积密度(DEN);小型缝洞特征相对不典型,但多数测井曲线上呈明显拐点。以青德地1井、ZK5-2井为例(图 3),风化壳型岩溶见于C1h2/C2k1界面或组内(C2k)小规模旋回的上段灰岩中,风化壳型岩溶(如青德地1井C2k4段)自然电位负异常(SP),自然伽马中低值(20.5~35.0API),声波时差异常增高。中子(13.9%)、密度(2.50 g/cm3)有一定镜像特征,深浅电阻率(深侧向LLD;浅侧向LLS)介于215.2~1100.0 Ω·m之间,低于围岩(>1100.0 Ω·m)。该层声波时差232 μs/m,高于围岩。
![]() |
1—砂质泥岩;2—砂岩;3—灰岩;4—泥灰岩;5—泥质灰岩;6—裂隙;7—缝洞 图 3 柴东石炭系风化壳型岩溶常规测井响应(青德地1井890~940 m) Fig. 3 Logging response of Carboniferous weathering crust-type karst in the eastern Qaidam Basin (the Qingdedi No.1 Well, 890~940 m) |
高角度裂缝有关的岩溶缝规模小(如ZK5-2井435.0~450.0 m),取芯显示该段共发育两套岩溶缝洞,缝宽0.5~2.0 cm不等,缝长5.0~8.0 m,该溶缝在测井上识别度相对低,电阻率略有下降(1000~1100.0 Ω· m,围岩>1100.0 Ω·m)。由于缝内部分充填泥质自然伽马值(GR)呈小型峰值。
3.3 缝洞单元划分钻井及露头显示,石炭系的一个缝洞体系往包含2~3个缝洞旋回。一个完整的岩溶缝洞旋回包括5个结构单元(图 4a),分别为上覆层、渣状层、溶洞层、溶缝层、隔层。
![]() |
a—岩溶缝洞旋回示意图;b—上覆层成像测井;c—渣状层成像测井;d—溶洞层成像测井;e—隔层成像测井 图 4 柴东石炭系岩溶缝洞单元成像测井响应 Fig. 4 FMI of Carboniferous karst fracture and cave units in the eastern Qaidam basin |
(1) 上覆层
统计显示,该区石炭系缝洞体上覆层多为已改造的或未完全充填的碎屑岩层,尤其是风化壳型岩溶缝洞,有97%风化壳型缝洞发育于上石炭克鲁克组、扎布萨尕秀组,上覆岩性多为砂岩、细砂岩、泥质粉砂,含易改造充填物,包括钙质、泥质。以青德地1井为例,自然伽马中—高值(40.69~67.24 API,平均50.24 API),电阻率测井低值(5.13~27.63 Ω·m,平均8.30 Ω·m),成像测井上呈高阻明亮的图像(图 4b)。
(2) 渣状层
渣状层出现在该区风化壳型岩溶缝洞中上部,以大规模破碎角砾组成,往往泥质充填,测井值往往介于上覆层与缝洞层之间,测井曲线呈过渡特征。如青德地1井902.6~905.9 m成像测井揭示了约3.3 m渣状破碎层,与上覆岩层呈平行不整合,层内破碎角砾状,成像测井显示破碎明显(图 4c)。砾间泥粉质充填,GR较缝洞层高(21.59~53.89 API,平均34.33 API),成像测井呈低阻暗色充填,破碎带往往横向发育,电阻率较其他灰岩段更低(22.75~273.20 Ω·m,平均108.49 Ω·m),深浅电阻无幅度差。高角度裂缝有关的岩溶缝洞无此结构单元。
(3) 溶洞层
溶洞层单元多见于该区风化壳型岩溶储层中,较大型断控岩溶储层也可发育此单元。缝洞呈多套旋回发育,改造规模不一。剖面岩溶层厚度0.5~70.0 m不等,露头上个别岩溶洞穴单体直径>1.8 m,溶蚀孔洞面孔率>45%,在全区大部分地区可连续追踪。成像测井特征明显,如青德地1井909.0~923.0 m岩溶缝洞段,一套低角度溶蚀缝洞,伴生不规则高角度溶蚀缝。成像显示为一组暗色不规则正弦曲线(Zhang et al., 2019),与一套低阻暗色条带相交,可见垂向溶蚀改造强烈。925.0 m及以下深浅电阻率有一定的幅度差,揭示纵向上存在另一套缝洞,但其规模无上部缝洞规模大,成像测井上呈高阻明亮的图像(图 4d)。
(4) 溶缝层
该区石炭系裂缝广布,且裂缝呈多期性。溶缝层多与中-晚期裂缝密切相关,大多未完全充填,裂缝呈高角度-垂直状, 沿构造断裂岩溶的强度弱,部分改造或未改造,见钙质皮壳。溶蚀缝宽0.5~24.0 cm不等,常规测井特征往往不明显,较长段裂缝层纵向上GR整段有小幅度升高,光电吸收截面指数(PE)小幅度正异常。遇含气的裂缝段,则会出现长的全烃拖尾现象,例如青德地1井裂缝性含气段(2289.7~2446.9 m)拖尾段长达157.2 m。AC、DEN、CNL无明显变化。成像测井上呈中低亮度、高幅度正弦特征,与高亮度围岩明显区别。
裂缝横向对比性较差,但分布广泛,纵向延伸大,甚至贯穿多套地层。例如ZK5-1井,可见溶缝沟通了下石炭C1h及上石炭C2k地层,岩溶发育井深>700 m,岩溶发育累计厚度达80余米。
(5) 隔层
该层受构造、大气水弱改造/无改造,岩性无明显选择性,岩石低渗透性或富硅、富铁锰岩层,远离泄水带,不同层段致密层测井值各异,成像测井显示多是高阻特征、图像均一、无异常(图 4e)。
4 讨论 4.1 缝洞差异化因素基于缝洞形态及发育分布分析可知,该区石炭系风化壳型缝洞、断控型岩溶缝洞二者存在诸多明显差异,风化壳型大多发育在克鲁克组、扎布萨尕秀组顶部岩性转换面之下,上覆良好渗滤层,携带大气水对下部灰岩、泥灰岩层强烈改造,具有区域性、规模化的特点,准西北缘哈山地区石炭系也见此类储层(于洪洲,2019)。裂缝有关岩溶缝洞对地层无选择性,石炭系脆性较高的碳酸盐岩地层均有发育,应力强度对其分布具有控制作用,导致其横向差异明显,纵向延伸大。形成机制的差异并不能代表其形成时间的差异,中国其他地区研究表明缝洞型储层多经历构造-岩溶叠加改造(朱东亚等,2014)。
4.2 缝洞形成机制缝洞关系显示,石炭系部分岩溶缝洞被晚期雁列式晚期缝切割, 同时它又对早期构造缝进行改造,这不同于早成岩期的相控型岩溶特征(Xiao et al., 2016)。石炭系的岩溶缝洞更可能形成于中—晚期成岩阶段,石炭沉积以后的海西期—喜山期强烈造山活动为岩溶地貌的形成创造了条件。
早二叠世之后,海西期为第一期全球性构造事件,在中国西部地区造成广泛的抬升(陈安清等,2011;柏道远等,2012;谭永杰等,2014;程晓敢等,2019),塔里木盆地阿克库勒凸起西南斜坡上潜山(丘)带(区)储层成因与之相关(康玉柱,2002)。埋藏史显示(李宗星,2017),石炭系沉积后第一期次大幅度隆升影响范围局限,多在柴达木盆地边缘及外围,如北部祁连盆地等地。该时期,柴达木盆地东部主体区仅短暂性暴露。最大的隆升发生于印支期, 由早三叠世持续到早-中侏罗世甚至到早白垩世。该时期全球大面积的暴露溶蚀,如美国、加拿大阿尔伯塔Grosmont地层岩溶地层等(Russel-Houstan and Gray, 2014;de Joussineau et al., 2016),柴达木盆地的多个残余型古隆起与印支构造挤压密切相关(曾旭等,2018),由此可见,印支期可能为岩溶改造的最佳时间(图 5)。同时, 多见断裂与岩溶共生, 应力破碎集中段更容易受缝洞改造(王新新等, 2019)。在石炭系岩溶体系中,风化壳型岩溶洞穴常伴生断控型岩溶缝洞,而差异化隆升不仅提升了断裂缝网系统,也为表生期风化壳型岩溶改造提供了有利条件。此套岩溶缝洞是该区重要的储集空间,在青德参1井、青德地1井录井过程中,石炭系的多套岩溶缝洞段见全烃异常。从源储关系来讲,该套岩溶缝洞与生排烃时空匹配良好。海西—印支期多期抬升致使石炭系烃源岩中断,而后沉降,至晚燕山期才再次达到生烃门限并大规模生烃(王利等,2019),印支期形成的石炭系古岩溶缝洞可为之提供良好的储集空间。
![]() |
图 5 柴东石炭系表生岩溶发育模式 Fig. 5 Carboniferous supergene karst model in the eastern Qaidam Basin |
(1) 柴达木盆地石炭系岩溶缝洞可划分两种类型,即风化壳型岩溶和沿构造断裂有关的岩溶缝洞。风化壳型岩溶多见于克鲁克组1~2段、扎布萨尕秀组和怀头他拉与上覆层界限处。
(2) 石炭系风化壳型岩溶测井响应较溶缝型岩溶更为明显,见于C1h2/C2k1界面或组内(C2k)小规模旋回的上段灰岩中,声波时差异常增高。中子(13.9%)、密度(2.50 g/cm3)有一定镜像特征,电阻率(215.2~1100.0 Ω·m)低于围岩(>1100.0 Ω·m)。
(3) 研究区高角度裂缝有关的岩溶缝规模小,常规测井中识别度低,在成像测井中效果明显,缝洞纵向分布规律性不强,一部分溶缝与风化壳型岩溶带伴生,位于风化壳岩溶下部,常表现为对早期低角度缝切割,沿缝有溶蚀改造形态及氧化壁,改造纵深大。
(4) 研究区岩溶类型主要为风化壳型,部分区域风化壳型与断控型共生,但前者的改造强度大于后者。两种岩溶类型改造机制存在差异,改造时间相近,均是对印支期构造活动的响应,改造时间由早三叠世持续到早—中侏罗世,甚至到早白垩世。
BAI D Y, JIA B H, ZHONG X, et al., 2012. Study on the deformation of Indosinian Movement in Southeastern Hunan[J]. Geological Review, 58(1): 19-29. (in Chinese with English abstract) |
CHEN A Q, CHEN H D, HOU M C, et al., 2011. The Middle-Late Triassic Event sediments in Ordos Basin:Indicators for EpisodeⅠof the Indosinian Movement[J]. Acta Geologica Sinica, 85(10): 1681-1690. (in Chinese with English abstract) |
CHEN S, 2007. The research on characteristics of Ordovician palaeokarst and reservoir in Tahe Oilfield[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
|
CHEN X G, WU H X, LI Y, et al., 2019. Influences of Indosinian structures on later structural deformation and sedimentation in Piedmont of Western Kunlun Mountains[J]. Xinjiang Petroleum Geology, 40(1): 27-33. (in Chinese with English abstract) |
CUI L, 2019. Logging response characteristics of karst formation in upper Ordovician assemblage of Daniudi gas field[J]. Petroleum Geology and Engineering, 33(5): 26-30, 35. (in Chinese with English abstract) |
DAI X F, ZHANG M, JIANG Q C, et al., 2017. Karst reservoirs seismic prediction of Lower Permian Maokou Formation in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 44(1): 79-88. DOI:10.1016/S1876-3804(17)30010-1 |
De JOUSSINEAU G, BARREIT K R, ALESSANDRONI M, et al., 2016. Organization, flow impact and modeling of natural fracture networks in a karstified carbonate bitumen reservoir:An example in the Grosmont Formation of the Athabasca Saleski leases, Alberta, Canada[J]. Bulletin of Canadian Petroleum Geology, 64(2): 291-308. DOI:10.2113/gscpgbull.64.2.291 |
DING Z W, WANG R J, CHEN F F, et al., 2020. Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs:A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 47(2): 306-317. DOI:10.1016/S1876-3804(20)60048-9 |
GAO Z Q, FAN T L, 2015. Unconformities and their influence on lower Paleozoic petroleum reservoir development in the Tarim Basin[J]. Journal of Petroleum Science and Engineering, 133: 335-351. DOI:10.1016/j.petrol.2015.06.015 |
HE J, FANG S X, HOU F H, et al., 2013. Vertical zonation of weathered crust ancient karst and the reservoir evaluation and prediction-A case study of M55-M51 sub-members of Majiagou Formation in gas fields, central Ordos Basin, NW China[J]. Petroleum Exploration and Development, 40(5): 534-542. (in Chinese with English abstract) |
HUANG S P, JIANG Q C, FENG Q F, et al., 2019. Type and distribution of Mid-Permian Maokou Formation karst reservoirs in southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 46(2): 293-300. DOI:10.1016/S1876-3804(19)60009-1 |
KANG Y Z, 2020. New theory of marine oil formation and discover of tahe oilfield, northern tarim basin[J]. Journal of Geomechanics, 8(3): 201-206. (in Chinese with English abstract) |
LI Y, KANG Z J, XUE Z J, et al., 2018. Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development, 45(4): 669-678. (in Chinese with English abstract) |
LI Z X, GAO J, ZHENG C, et al., 2015. Present-day heat flow and tectonic-thermal evolution since the late Paleozoic time of the Qaidam basin[J]. Chinese Journal of Geophysics, 58(10): 3687-3705. (in Chinese with English abstract) |
LI Z X, QIU N S, MA Y S, et al., 2017. The tectono-thermal evolution in the eastern Qaidam Basin, Northwest China since the Paleozoic[J]. Earth Science Frontiers, 24(3): 157-167. (in Chinese with English abstract) |
LIU K, LI Z X, SHI X B, et al., 2020. Late Hercynian-Indosinian denudation and uplift history in the eastern Qaidam Basin:constraints form multiple thermometric indicator sand sedimentary evidences[J]. Chinese Journal of Geophysics, 63(4): 1403-1421. (in Chinese with English abstract) |
LUAN S L, 2018. Sedimentary characteristics of Carboniferous in Chengqianggou-Ximeigou area in Qaidam Basin[J]. Journal of Shengli College, China University of Petroleum, 32(1): 16-18. (in Chinese) |
LUO B, YANG Y, LUO W, et al., 2017. Controlling factors of Dengying Formation reservoirs in the central Sichuan paleo-uplift[J]. Petroleum Research, 2(1): 54-63. DOI:10.1016/j.ptlrs.2017.06.001 |
LUO S C, 2015. Restoration and significance of karst paleogeomorphology of Dengying Formation in Sichuan Basin[D]. Chengdu: Southwest Petroleum University. (in Chinese)
|
MA Y S, YIN C M, LIU C L, et al., 2014. Evaluation of oil and gas potential of carboniferous in Qaidam Basin[M]. Beijing: Geological Publishing of House, 129-147. (in Chinese)
|
PENG B, LIU C L, LI Z X, et al., 2016a. The discovery and genetic analysis of grape-shaped hole of the Carboniferous in Eastern Qaidam Basin[J]. Earth Science Frontiers, 23(5): 66-74. (in Chinese with English abstract) |
PENG B, LIU C L, LI Z X, et al., 2016b. Discovery of Palaeozoic karsts in the Qaidam Basin and their oil and gas prospects[J]. Acta Geologica Sinica(English Edition), 90(5): 1919-1920. DOI:10.1111/1755-6724.12832 |
RUSSEL-HOUSION, GRAY K, 2014. Paleokarst in the Grosmont formation and reservoir implications, Saleski, Alberta, Canada[J]. Interpretation, 2: SF29-SF50. DOI:10.1190/INT-2013-0187.1 |
SHEN A J, ZHAO W Z, HU A P, et al., 2015. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 42(2): 597-608. |
TAN Y J, QIU R Z, XIAO Q H, et al., 2014. Indosinian Movement characteristics and its significance in China and neighboring areas[J]. Coal Geology of China, 26(8): 8-14, 33. (in Chinese with English abstract) |
WANG L, LI Z X, LIU C L, et al., 2019. The carboniferous source rock maturity evolution in the delingha depression in the qaidam basin, northwest china[J]. Journal of Geomechanics, 25(3): 370-381. (in Chinese with English abstract) |
WANG X X, CUI D Y, SUN C H, et al., 2019. Characteristics of strike-slip fault and its controlling on oil in block a of the halahatang oilfield, Tarim basin[J]. Journal of Geomechanics, 25(6): 1058-1067. (in Chinese with English abstract) |
WEI X H, REN J F, ZHAO J X, et al., 2018. Paleogeomorphy evolution of the Ordovician weathering crust and its implication for reservoir development, eastern Ordos Basin[J]. Petroleum Research, 3(1): 77-89. DOI:10.1016/j.ptlrs.2018.03.004 |
WEI X J, MA Y S, LI Z X, et al., 2018. High-frequency alternations and driving mechanisms of clastic-carbonate successions in the Upper Carboniferous, northern Qaidam Basin[J]. Journal of Palaeogeography, 20(3): 409-422. (in Chinese with English abstract) |
XIAO D, TAN X C, XI A H, et al., 2016. An inland facies-controlled eogenetic karst of the carbonate reservoir in the Middle Permian Maokou Formation, southern Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 72: 218-233. DOI:10.1016/j.marpetgeo.2016.02.001 |
YIN Z W, LI J L, 2013. The prediction method of ancient weatnering crust karst reservoir in Leikoupo Formation of YB Area[J]. Computing Technology for Geophysical and Geochemical Exploration, 35(3): 331-337. (in Chinese with English abstract) |
YU H Z, 2019. Characteristics and influencing factors of carboniferous volcanic reservoirs in hashan area, northwestern margin of the Junggar basin[J]. Journal of Geomechanics, 25(2): 206-214. (in Chinese with English abstract) |
ZENG X, TIAN J X, ZHANG G Q, et al., 2018. Main types and hydrocarbon exploration direction of the paleo-uplifts in the qaidam basin[J]. Journal of Geomechanics, 24(3): 381-390. (in Chinese with English abstract) |
ZHANG S D, REN X G, LUO L, et al., 2019. Logging-based identification and evaluation of karst fractures in the eastern Right Bank of the Amu Darya River, Turkmenistan[J]. Natural Gas Endustry B, 6(1): 58-63. DOI:10.1016/j.ngib.2019.01.008 |
ZHAO J L, GONG Z W, LI G, et al., 2012. A review and perspective of identifying and evaluating the logging technology of fractured carbonate reservoir[J]. Progress in Geophysics, 27(2): 537-547. (in Chinese with English abstract) |
ZHAO W Z, SHEN A J, PAN W Q, et al., 2013. A research on carbonate karst reservoirs classification and its implication on hydrocarbon exploration:Cases studies from Tarim Basin[J]. Acta Petrologica Sinica, 29(9): 3213-3222. (in Chinese with English abstract) |
ZHU D Y, JIN Z J, ZHANG R Q, et al., 2014. Characteristics and developing mechanism of Sinian Dengying Formation dolomite reservoir with multi-stage karst[J]. Earth Science Frontiers, 21(6): 335-345. (in Chinese with English abstract) |
柏道远, 贾宝华, 钟响, 等, 2012. 湘东南印支运动变形特征研究[J]. 地质论评, 58(1): 19-29. DOI:10.3969/j.issn.0371-5736.2012.01.002 |
陈安清, 陈洪德, 侯明才, 等, 2011. 鄂尔多斯盆地中-晚三叠世事件沉积对印支运动Ⅰ幕的指示[J]. 地质学报, 85(10): 1681-1690. |
陈胜, 2007.塔河油田奥陶系古岩溶及储层特征研究[D].成都: 成都理工大学.
|
程晓敢, 吴鸿翔, 李勇, 等, 2019. 西昆仑山前印支运动期构造对后期构造和沉积的影响[J]. 新疆石油地质, 40(1): 27-33. |
崔璐, 2019. 大牛地气田奥陶系上组合岩溶地层测井响应特征[J]. 石油地质与工程, 33(5): 26-30, 35. |
何江, 方少仙, 侯方浩, 等, 2013. 风化壳古岩溶垂向分带与储集层评价预测:以鄂尔多斯盆地中部气田区马家沟组马五5-马五1亚段为例[J]. 石油勘探与开发, 40(5): 534-542. |
康玉柱, 2002. 海相成油新理论与塔河大油田的发现[J]. 地质力学学报, 8(3): 201-206. DOI:10.3969/j.issn.1006-6616.2002.03.002 |
刘奎, 李宗星, 施小斌, 等, 2020. 柴达木盆地东部晚海西-印支期剥蚀量与隆升历史:多种古温标与沉积学证据的制约[J]. 地球物理学报, 63(4): 1403-1421. |
李阳, 康志江, 薛兆杰, 等, 2018. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发, 45(4): 669-678. |
李宗星, 高俊, 郑策, 等, 2015. 柴达木盆地现今大地热流与晚古生代以来构造-热演化[J]. 地球物理学报, 58(10): 3687-3705. DOI:10.6038/cjg20151021 |
李宗星, 邱楠生, 马寅生, 等, 2017. 柴达木盆地东部古生代以来构造-热演化[J]. 地学前缘, 24(3): 157-167. |
栾守亮, 2018. 柴达木盆地城墙沟-石灰沟地区石炭系沉积特征[J]. 中国石油大学胜利学院学报, 32(1): 16-18. DOI:10.3969/j.issn.1673-5935.2018.01.004 |
罗思聪, 2015.四川盆地灯影组岩溶古地貌恢复及意义[D].成都: 西南石油大学.
|
马寅生, 尹成明, 刘成林, 等, 2014. 柴达木盆地石炭系油气资源潜力评价[M]. , 189-147.
|
彭博, 刘成林, 李宗星, 等, 2016. 柴达木盆地东部石炭系葡萄状灰岩缝洞的发现及成因分析[J]. 地学前缘, 23(5): 66-74. |
谭永杰, 邱瑞照, 肖庆辉, 等, 2014. 中国及邻区印支运动特征及其意义[J]. 中国煤炭地质, 26(8): 8-14, 33. DOI:10.3969/j.issn.1674-1803.2014.08.03 |
王利, 李宗星, 刘成林, 等, 2019. 柴达木盆地德令哈坳陷石炭系烃源岩成熟度演化史[J]. 地质力学学报, 25(3): 370-381. |
王新新, 崔德育, 孙崇浩, 等, 2019. 哈拉哈塘油田A地区断裂特征及其控油作用[J]. 地质力学学报, 25(6): 1058-1067. |
魏小洁, 马寅生, 李宗星, 等, 2018. 柴达木盆地北缘上石炭统碎屑岩-碳酸盐岩高频转换过程及驱动机制[J]. 古地理学报, 20(3): 409-422. |
尹正武, 李金磊, 2013. YB地区雷口坡组古风化壳岩溶储层预测方法[J]. 物探化探计算技术, 35(3): 331-337. DOI:10.3969/j.issn.1001-1749.2013.03.15 |
于洪洲, 2019. 准西北缘哈山地区石炭系火山岩储层特征及影响因素[J]. 地质力学学报, 25(2): 206-214. |
曾旭, 田继先, 张国卿, 等, 2018. 柴达木盆地古隆起主要类型及油气勘探方向[J]. 地质力学学报, 24(3): 381-390. |
赵军龙, 巩泽文, 李甘, 等, 2012. 碳酸盐岩裂缝性储层测井识别及评价技术综述与展望[J]. 地球物理学进展, 27(2): 537-547. DOI:10.6038/j.issn.1004-2903.2012.02.017 |
赵文智, 沈安江, 潘文庆, 等, 2013. 碳酸盐岩岩溶储层类型研究及对勘探的指导意义:以塔里木盆地岩溶储层为例[J]. 岩石学报, 29(9): 3213-3222. |
朱东亚, 金之钧, 张荣强, 等, 2014. 震旦系灯影组白云岩多级次岩溶储层叠合发育特征及机制[J]. 地学前缘, 21(6): 335-345. |