地质力学学报  2020, Vol. 26 Issue (5): 742-758
引用本文
郑建平. 中国东部大陆岩石圈地幔置换作用的内外原因[J]. 地质力学学报, 2020, 26(5): 742-758.
ZHENG Jianping. Internal and external factors in continental lithosphere mantle replacement in eastern China[J]. Journal of Geomechanics, 2020, 26(5): 742-758.
中国东部大陆岩石圈地幔置换作用的内外原因
郑建平1,2    
1. 中国地质大学(武汉)地球科学学院, 湖北 武汉 430074;
2. 地质过程与矿产资源国家重点实验室, 湖北 武汉 430074
摘要:克拉通大陆通常有古老、巨厚且难熔的岩石圈地幔。这种地幔高度亏损玄武质组分,有密度低、刚性程度高的特点,能长期漂浮于软流圈之上而稳定存在。中国东部大陆主要由华北和华南两个古老地块在古生代—早中生代沿中央造山带拼合形成,在晚中生代时强烈活化,表现为构造变形、盆地形成、岩浆活动、巨量成矿等,其深部原因是什么?在分析东部大陆形成过程和岩石圈地幔属性基础上发现:块体初始规模小且发育薄弱带,后期容易受改造;特别是显生宙以来中国大陆受周边多个构造域夹持,板块俯冲作用会引起软流圈物质扰动和上涌并沿薄弱带侵蚀和改造上覆岩石圈,使之发生有效减薄、明显再富集和最终地幔置换。改造和置换后的岩石圈地幔富含玄武质组分,有较高密度和较低刚性程度,容易发生变形和部分熔融,使克拉通大陆活化。因此,块体规模大小并发育薄弱带以及周边构造环境是大陆稳定性控制重要的内、外在因素;中国东部大陆岩石圈显生宙强烈活化和地幔置换是由于块体规模较小而且周边多体系俯冲作用等内、外在有利因素协同作用下的结果。
关键词岩石圈    地幔置换    内在原因    外在因素    中国东部    
DOI10.12090/j.issn.1006-6616.2020.26.05.061     文章编号:1006-6616(2020)05-0742-17
Internal and external factors in continental lithosphere mantle replacement in eastern China
ZHENG Jianping1,2    
1. School of Earth Sciences, China University of Geosciences, Wuhan 430074, Hubei, China;
2. State Key Laboratory of Geological Processes and Mineral Resources, Wuhan 430074, Hubei, China
Abstract: Cratonic continent usually has an ancient, thick and refractory lithosphere mantle. Depleted basaltic composition, low density and high rigidity make the cratonic lithosphere float above the asthenosphere enclosure and exist stably for a long time. The eastern China continent was formed through the collision of the North and South China blocks along the Qinling-Dabie-Sulu Orogenic Belt during the Paleozoic and the early Mesozoic, and was reactive in the Phanerozoic, especially in the late Mesozoic. Since then, the eastern China continent showed the charateristics of strong tectonic deformation, basin formation, magmatism and massive mineralization. What are the deep reasons which caused these effects? Based on the analysis of formation and evolution of the eastern continent and the properties of the lithosphere mantle, it can be found that the initial scale of the block was small, and the developed zones were weak and easily affected by later transformation. Especially since the Phanerozoic, the Chinese mainland has been clamped by several surrounding tectonic domains, and the asthenospheric upwellings caused by subductions in different stages and directions have eroded along the weak zones and reformed the overlying lithosphere. These effects led to the thinning lithosphere, significant re-enrichment and ultimate mantle replacement. After the transformation and replacement, the lithosphere mantle that was enriched in basaltic components and had high density and low rigidity, was prone to deformation and partial melting, which made the stable cratonic continent activated. The block scale, internal weak zones and surrounding tectonic environment are, therefore, important internal and external factors in controlling continental stability. The lithospheric evolution of eastern China in the Phanerozoic reflects comprehensive records of these favorable factors.
Key words: lithosphere    mantle replacement    internal factor    external factor    eastern China    
1 中国东部大陆的基本特征

克拉通通常有古老、巨厚且难熔的岩石圈地幔。这种地幔高度亏损玄武质组分, 因此有较低密度和较高刚性程度, 使之能长期漂浮于软流圈之上而稳定存在, 并构成全球七大主要大陆板块的基础(图 1)。中国大陆主要由华北—塔里木和华南等地块及其周边的造山带构成。中国东部通常指我国地貌的第三级阶梯所在区域, 其西以北东—南西走向的大兴安岭—太行山—巫山—雪峰山为界, 东接西太平洋, 由东北、华北、中央造山带和华南等多个一级构造单元组成。其中东北地区和华北陆块以东—西走向的索伦缝合带为界, 该缝合带形成于晚古生代至早中生代, 记录了古亚洲洋岩石圈板块向南俯冲和关闭(Windley et al., 2007); 祁连-秦岭-大别-苏鲁造山带(或称中央造山带)是华南与华北陆块在古生代—早中生代时期拼合结果(Wu and Zheng, 2013);晚中生代以来, (古)太平洋板片俯冲、转向及后撤等过程,导致中国东部发生一系列深部过程(如岩石圈减薄和地幔置换)和浅部响应(如广泛构造变形、大规模岩浆和成矿作用) (郑建平和戴宏坤, 2018)。中国的东北地区属中亚造山带东部延伸部分, 由多个微陆块拼合而成(Xiao et al., 2015), 其岩石圈地幔属性和演化过程已有总结(林阿兵等,2018), 在此不再赘述。

a—全球(Furnes et al., 2015);b—中国东部(翟明国,2019) 图 1 主要构造单元分布简图 Fig. 1 Sketch of the distribution of main structural units

中国东部的华北和华南(图 2)陆块均为具前寒武纪结晶基底的大陆地块, 广泛出露太古代的岩石和碎屑锆石(Liu et al., 1992; Gao et al., 1999; Zheng et al., 2004a, 2006a, 2011; Xu et al., 2007; Yu et al., 2010; Guo et al., 2014; Ping et al., 2018), 与世界上其他典型克拉通相似。然而, 古生代—新生代火山岩中的橄榄岩捕虏体则显示中国东部在显生宙时岩石圈地幔以饱满和/或适度难熔属性为特征(Mg#-Ol < 92)(Zheng et al., 1998, 2004b, 2007, 2015; 郑建平, 1999; Zhang et al., 2001; 夏群科等, 2010), 克拉通型难熔地幔(Mg#-Ol>92)仅在地块核部地区出现(Zheng et al., 2001; Yu et al., 2011; Sun et al., 2012)。此外,岩石圈厚度(朱介寿等, 2005; Wang et al., 2009a; 李延栋, 2010; He, 2015)和地温梯度(Xu et al., 1995; Wang et al., 2009a)以及浅部广泛发育的构造变形(Davis et al., 2001; Wang et al., 2011, 2013a;舒良树, 2012; 张国伟等, 2013; )和岩浆作用(Zhou et al., 2006; Wang et al., 2013; Zhang et al., 2014)等,明显区别于其他克拉通地区,即华北发生了克拉通破坏作用(朱日祥等,2020)并伴随着岩石圈减薄和地幔置换作用(郑建平, 1999)。这些过程发生的控制因素是什么?在梳理中国东部地质概况和岩石圈地幔特征基础上, 探讨了块体大小及周边俯冲作用对东部岩石圈地幔演化的影响, 成果对揭示大陆演化有重要意义。

a—华北陆块;b—华南陆块;CCSD-PP1—大陆科学钻探先导孔 图 2 华北、华南陆块前寒武纪基底岩石和捕虏体取样位置简图(构造划分引自文献Zhao et al., 2001, 2012) Fig. 2 Sampling locations of Precambrian basement rocks and xenoliths in North and South China Blocks (The structural division is cited from Zhao et al., 2001, 2012)
2 中国东部克拉通形成和演化过程

华北地块位于欧亚大陆东部、太平洋西侧, 是世界上最主要古老克拉通之一(图 2a), 广泛出露太古代基底岩石(Wan et al., 2011; Zhai et al., 2011), 最老岩石年龄达3.6 Ga以上(Liu et al., 1992; Zheng et al., 2004a; Ping et al., 2018)。该克拉通在太古代末期由多个微陆块拼合而完成克拉通化过程(翟明国, 2008, 2011; Zhai et al., 2011), 或在古元古代时由东、西两个太古代陆块沿中部造山带拼合后保持长期稳定(Zhao et al., 2001, 2005)。晚中生代以来, 华北西部陆块整体仍保持相对稳定, 构造变形(廖昌珍, 2006; 张岳桥和董树文2019)、岩浆活动(Zhang et al., 2014)和岩石圈减薄(Chen et al., 2009; Huang et al., 2009)均局限于鄂尔多斯块体边缘; 华北东部陆块则不同,整体发生明显活化, 表现为强烈的变形作用(Davis et al., 2001; 徐刚等, 2006; Wang et al., 2011)、广泛的岩浆活动(Zhang et al., 2014)、大规模成矿作用(毛景文等, 2005; Sun et al., 2017; Li et al., 2015a; Wang et al., 2015)、大型沉积盆地形成(李忠等, 2003; 刘少峰等, 2004; 王永超等, 2016)、显著的岩石圈减薄(邓晋福等, 1994; 2005)和地幔置换作用(Zheng et al., 1998, 2007; Xu, 2001)等。

华南陆块位于欧亚大陆东部南段, 包括青藏高原以东、秦岭-大别造山带以南的中国南部的大陆及邻海区域(张国伟等, 2013), 由西北侧的扬子地块和东南侧的华夏地块在新元古代(970~820 Ma)沿着江南造山带(即江绍-萍玉断裂带)拼合形成(Li et al., 1999; Zhao and Cawood, 1999; Li et al., 2009)。扬子地块出露有太古代—古远古代的结晶基底(Gao et al., 1999; Zheng et al., 2006a), 其中湖北宜昌附近的崆岭杂岩保存有年龄达3.45 Ga的岩石(Guo et al., 2014), 沉积盖层为新元古代—早中生代(Wang et al., 2012, 2013); 华夏地块主要出露新元古代—古生代的岩石, 仅有少量古元古代—新太古代的岩石露头(Yu et al., 2012; Zhao and Cawood, 2012), 但火山岩中的锆石捕虏晶(Zheng et al., 2011; Xiang et al., 2018)、河流中的碎屑锆石(Xu et al., 2007)以及变质岩基底的原岩(Yu et al., 2010)等显示该地块可能也曾存在太古代基底。只是这些古老的基底物质在新元古代(830—750 Ma)发生明显的再造作用, 并伴随有玄武岩、苦橄岩和科马提岩的喷发等(Wang et al., 2007, 2009b), 随后直至早侏罗世(~190 Ma), 该区缺乏大规模的岩浆活动(舒良树, 2012)。在晚中生代时, 与华北一样,华南也经历了从特提斯构造域向太平洋构造域的构造转换, 产生了强烈的陆内造山作用和岩浆活动, 形成了复杂的陆内造山带和火成岩省(Zhou et al., 2006)。中生代末以来, 属于中国东部的华南东南缘也处于拉张构造环境, 广泛分布含地幔橄榄岩包体的中、新生代火山岩(图 2b)。

3 中国东部岩石圈地幔特征 3.1 华北陆块

华北古生代含金刚石金伯利岩中的地幔包体多见石榴石方辉橄榄岩, 指示当时岩石圈厚度大(Griffin et al., 1999; 郑建平, 1999); 新生代玄武岩中多为尖晶石二辉橄榄岩, 显示岩石圈厚度薄(Xu et al., 2003; Zheng et al., 2007; Sun et al., 2012; Zou et al., 2019)。橄榄石的Mg#值、斜方辉石的Mg#和Cr#值, 以及辉石的Al2O3和CaO含量, 都可以很好地反映地幔的熔体抽取程度。研究表明, 华北古生代岩石圈地幔有难熔的(refractory)性质, 而新生代时有大量饱满的(fertile)二辉橄榄岩(图 3a)。全岩微量元素和Sr-Nd-Pb同位素显示, 前者具有富集的(enriched)地幔特征, 指示着长期复杂的交代历史, 后者则具有亏损的(depleted)地幔性质, 交代作用明显弱(郑建平, 1999, 2009Zhang et al., 2004; Tang et al., 2013)。Re-Os同位素显示古生代岩石圈地幔具有太古宙形成年龄, 与上覆地壳年龄一致, 壳幔是耦合的;而中、新生代玄武岩中地幔岩石包体指示岩石圈形成年龄新, 只有鹤壁等少数地点有太古代年龄记录(Zheng et al., 2001; Gao et al., 2002; Wu et al., 2003; Xu et al., 2006, 2008a; Zhang et al, 2008; Liu et al., 2011)。平衡温度压力条件计算表明, 古生代华北具有较低的地热梯度(~40 mWm-2Griffin et al., 1999; Xu, 2001), 与世界其他典型克拉通类似;而新生代地热梯度较高(~80 mWm-2Xu, 2001), 明显不同于典型克拉通的情况。因此, 华北岩石圈的厚度、性质和地温梯度在中生代发生了重要的改变, 古老难熔、巨厚低地温的克拉通型岩石圈地幔变为年轻饱满、薄的大洋型岩石圈地幔, 即晚中生代以来发生了岩石圈地幔置换作用(郑建平, 1999, 2009; Zheng et al., 2007)。

a—华北陆块;b—华南陆块 图 3 华北、华南陆块不同位置地幔橄榄石Mg#特征对比图(郑建平等,2019) Fig. 3 A comparison map of mantle olivine Mg# characteristics from different locations in North and South China Blocks (Zheng et al., 2019)

郯庐断裂带内部新生代玄武岩中(如山旺和女山等)的地幔橄榄岩包体(图 3a), 主要是饱满的二辉橄榄岩, 缺乏难熔的方辉橄榄岩(Rudnick et al., 2004; Xu et al., 2013; Park and Jung, 2015),暗示古老难熔地幔已被强烈改造和置换; 远离断裂带的橄榄岩包体,如阜新、辉南、宽甸和栖霞等,主要是过渡型的二辉橄榄岩; 位于块体中心部位的鹤壁玄武岩中橄榄岩包体主体为尖晶石相方辉橄榄岩, 属古老难熔地幔的浅部残留(Zheng et al., 2001; Sun et al., 2012)。这种地幔性质的空间差异指示岩石圈深大断裂在地幔置换中所起作用明显, 即岩石圈断裂带为软流圈物质上涌提供通道, 是岩石圈地幔改造和最终置换的优先发生区(Zheng et al., 1998, 2007)。

与地块内部岩石圈深大断裂带类似, 华北南缘和东缘的深部岩石圈也经历了类似的改造作用。对信阳中生代(~160 Ma)火山岩中丰富的橄榄岩、麻粒岩等捕虏体开展了系统研究发现, 华北南缘深部岩石圈具有上老下新的年龄结构(Zheng et al., 2006b, 2008a, 2014), 岩石圈地幔的性质与典型太古代克拉通地幔有一定的差异, 受到来自华南陆壳俯冲释放流体的交代改造; 大别—苏鲁地区的造山带橄榄岩地体与南缘岩石圈地幔有明显的亲缘性(Zheng et al., 2006c, 2006d, 2008b, 2014; Chen et al., 2017)。位于北朝鲜的三叠纪金伯利岩中的地幔橄榄岩包体体现古老与新生地幔共存的特点(Yang et al., 2010)。

在华北北缘中段(如汉诺坝)的火成碳酸岩中发现含有碳化硅、金刚石等超高压还原矿物。这些碳酸岩具有沉积碳酸盐的微量元素和同位素组成特征, 被解释为俯冲沉积碳酸盐熔融作用所形成, 可能与古亚洲洋岩石圈板块俯冲对华北北缘岩石圈的改造有关(Chen et al., 2016)。最近,在华北北缘西段的狼山晚白垩世(~89 Ma)玄武岩中发现大量新鲜橄榄岩包体(图 3a), 它们均为尖晶石相二辉橄榄岩, 与华北东部的新生饱满地幔类似(Dai et al., 2019)。该区的地壳基底主要是太古代—古元古代, 如果按照古老地壳下伏的是难熔地幔的关系(Griffin et al., 1999), 该区先存的克拉通型难熔地幔也可能被新生饱满地幔置换。因此,华北北缘东段(阜新、宽甸、辉南)的饱满地幔(Xu et al., 2003; Zheng et al., 2007; Xu et al., 2013)可能与太平洋俯冲作用关系密切, 而西段远离太平洋构造域, 其地幔改造和置换作用可能与古亚洲洋俯冲作用关系更密切。

综上所述, 华北深部岩石圈性质在时空上是不均一的。时间上, 古生代的华北深部岩石圈地幔还基本上是典型的克拉通型地幔(古老、巨厚、难熔), 晚中生代以来则已经不同程度地被大洋型地幔(年轻、薄、饱满)所置换; 空间上, 板块边缘的克拉通型地幔已经被改造并置换为大洋型地幔、岩石圈断裂也是地幔置换作用的优先发生区域, 而板块内部还有克拉通型地幔残留。

3.2 华南陆块

总结已有地幔捕虏体的研究发现(图 3b), 华南明溪地区有少量难熔地幔的信息, 而扬子北部的大洪山地区古生代金伯利岩中出露的石榴石二辉橄榄岩捕虏体显示了适度难熔(Mg#-OI=90~92)的特征(Zhang et al., 2001), 与典型克拉通地区地幔特征稍有不同。以适度难熔的地幔特征为主的地区,包括扬子地块的盘石山和方山, 华夏地块的安远、麒麟、平南、马山以及海南岛等。具有饱满至适度难熔(Mg#-OI=88~92)的岩石圈地幔特征的地区有练山、新昌、西陇以及马关等, 宁远和道县的中生代玄武岩中橄榄岩捕虏体主体具有饱满的地幔特征, 并含有少量的适度难熔的橄榄岩捕虏体, 与建德和雷州半岛新生代玄武岩中相似, 而牛头山地区饱满特征的橄榄岩达到90%。总之, 华南大部分中、新生代以来岩石圈地幔以饱满和过渡地幔为主, 仅有少量难熔的地幔残留, 说明华南东部与华北的情况一样,中生代、新生代岩石圈地幔也存在明显的时空不均一性。

地幔橄榄岩在被寄主岩浆捕获之前曾多有深部过程发生, 如熔-流体交代等。在无水干体系的四矿物相橄榄岩中, 单斜辉石的微量元素总体上可以代表全岩的特征。在尖晶石相橄榄岩中, 单斜辉石低HREE丰度反映了高的部分熔融程度, 高LREE丰度则记录着强烈的地幔交代作用, 具有低HREE丰度但又LREE强烈富集的样品, 多是古老难熔的地幔岩石并经历明显的碳酸岩熔体交代作用(如华北的复县、蒙阴, 鹤壁等), 代表稳定的大陆特征(图 4a); 相反, HREE含量高, LREE表现亏损到弱富集的单斜辉石, 主要是新生饱满地幔岩石的特征, 类似于大洋岩石圈地幔的性质, 是未受交代或受到弱的硅酸盐熔体交代的岩石。常用单斜辉石中(La/Yb)N和Ti/Eu的关系图来区分常见的交代介质-硅酸盐和碳酸岩熔体(Coltorti et al., 1999), 高(La/Yb)N, 低Ti/Eu, 多与碳酸岩交代作用有关;反之, 则与硅酸盐熔体的交代有关, 从图 4b中明显可以看出, 仅在扬子东北缘, 西垄、明溪、麒麟等地存在少量碳酸岩熔体交代的印记, 其他地区基本都落入硅酸盐熔体交代的区域。

a—华北陆块;b—华南陆块 图 4 地幔单斜辉石(La/Yb)N-Ti/Eu相关性及交代介质性质对比(郑建平等,2019) Fig. 4 Plots of (La/Yb)N vs.Ti/Eu of mantle clinopyroxene and comparison of relative metasomatism agents from different locations in North and South China Blocks (Zheng et al., 2019)

地幔的年龄可大致根据其熔融程度来判断, 但是也不能排除年轻的岩石圈地幔经受高程度熔融时, 其残留也表现出与古老地幔相同的元素特征(Lee et al., 2001)。在这种情况下, Re-Os同位素的运用, 尤其是单颗粒硫化物中的原位测试对了解岩石圈地幔的时代提供了很好约束。研究发现:湖南宁远中生代玄武岩橄榄岩捕虏体具有古元古代的年龄(~1.82 Ga), 并在古生代时期发生了熔体交代作用(Liu et al., 2012a), 华夏地区新生代玄武岩/煌斑岩中的橄榄岩捕虏体的Re同位素亏损地幔模式年龄包括古元古代(~1.8 Ga)、中元古代(~1.3~1.5 Ga)、新元古代(~0.9 Ga)和古生代(~0.6 Ga)等(Liu et al., 2012b), 它们与华夏地块地壳生长事件相对应(Xu et al., 2008b);苏北盆地练山和盘石山地区的Re-Os同位素组成主要分布在古元古代和显生宙(Reisberg et al., 2005)。

4 块体小且发育薄弱带的大陆更容易被改造和破坏

岩石圈地幔的厚度和组成等通常会对克拉通的稳定性起重要控制作用。相对于二辉橄榄岩, 方辉橄榄岩通常被认为是高度熔体抽取后的残余体, 具有较低的密度、较高的熔点和粘度(Griffin et al, 1999; Lee, 2006; Pearson and Wittig, 2008)。此外, 巨厚的岩石圈通常可以抑制软流圈诱发的部分熔融, 使其难以受到足够的熔体富集作用而保持长期稳定(Lee et al., 2011; Zheng et al., 2015)。古老克拉通通常有岩石圈厚度大、地温低的特点, 地幔主体由难熔的(亏损熔体组分)方辉橄榄岩组成; 显生宙岩石圈则不同, 它们的厚度薄、地温高, 主体由饱满的二辉橄榄岩组成(郑建平, 1999; Carlson et al., 1999, 2005)。

地幔交代作用或熔-岩反应可使克拉通地幔发生再富集作用(张宏福, 2009; Zhang et al., 2012), 改变其低密度和难熔的属性(Lee, 2003)。地幔橄榄岩捕虏体研究显示, 克拉通岩石圈地幔普遍记录了后期的再富集作用(Tang et al., 2013),已不是简单的高程度部分熔融残余体(Herzberg, 2004; Herzberg and Rudnick, 2012), 部分方辉橄榄岩可能是熔-岩相互作用的产物(Simon et al., 2007), 甚至转变为饱满的二辉橄榄岩或辉石岩(Liu et al., 2010; Rapp et al., 2010)。块体边缘或内部薄弱带处通常是熔流体活动的有利部位, 可能是岩石圈地幔改造的优先区域。

厚岩石圈(>250 km)的下伏软流圈不易熔融,无熔体产生;薄岩石圈(< 225 km)之下的软流圈易于熔融并引起上覆岩石圈的强烈交代再富集(图 5)。同时,规模小的克拉通容易受到周边板片俯冲、碰撞等作用的影响和改造。相对于世界上其他典型克拉通,中国东部的华北和华南地块规模都比较小(图 1), 而且都由不同古老陆块拼合而成, 内部发育缝合带等薄弱带(图 2)。它们的边缘和内部薄弱带附近的岩石圈地幔多发生了明显的减薄, 且难熔的克拉通型地幔已完全被饱满地幔置换, 而远离块体边缘和薄弱带的部位则存在古老难熔地幔残留(图 3), 浅部的构造变形和岩浆活动也优先发育于块体边缘和薄弱带处,因此,块体小且发育内部薄弱带的大陆容易被改造和破坏(Zheng et al., 2015; 郑建平等, 2018)。

1—薄岩石圈(如 < 225 km)之下的软流圈易于熔融并引起上覆岩石圈的交代再富集;2—厚的岩石圈(如>250 km)的下伏软流圈不易熔融, 难以改造岩石圈性质 图 5 不同厚度岩石圈地幔再富集过程难易对比(Zheng et al., 2015) Fig. 5 Complexity comparison of the reenrichment process of lithosphere mantle with different thickness(Zheng et al., 2015)
5 块体周边发育俯冲作用是造成大陆容易被改造破坏的外因

华北克拉通被多个构造域或造山带包绕(图 1)。在北侧, 华北与西伯利亚地块之间经过一系列的俯冲碰撞事件后形成了中亚造山带(Xiao et al., 2015), 包括古亚洲洋向南俯冲并于二叠纪沿索伦缝合带闭合(Windley et al., 2007)形成统一的蒙古-华北地块, 以及鄂霍次克洋于侏罗纪沿蒙古-鄂霍次克缝合带自西向东呈“剪刀口式”闭合(Yin and Nie, 1996; Yang et al., 1998; Kravchinsky et al., 2002; Tomurtogoo et al., 2005; 黄始琪等, 2016)等复杂过程; 在南侧, 华南陆块与华北陆块在寒武纪到三叠纪时期多阶段复杂拼合形成大别-苏鲁造山带和秦岭-桐柏-红安造山带(Wu and Zheng, 2013)。主要拼合阶段包括: ①古生代早期秦岭与华北地块沿商丹缝合带拼合(Gao et al., 1995; Dong et al., 2011; Li et al., 2015b);②晚志留—早泥盆世古特提斯洋打开(Meng and Zhang, 2000; Wu et al., 2009);③三叠纪华南与华北地块最终碰撞拼合等过程(Li et al., 2000; Zheng et al., 2003, 2014; 郑永飞, 2008; Wu et al., 2009)。华南大陆深俯冲作用对华北南缘岩石圈地幔改造非常强烈(Zheng et al., 2014Zhao et al., 2018)。

总体而言,中国东部在华北与华南地块拼合形成统一大陆之后,至侏罗纪时主要是古太平洋板片俯冲至东亚大陆之下(Maruyama et al., 2006; Sun et al., 2015, 2017; Chough and Sohn, 2010; Safonova and Santosh, 2014), 并可能因板块运动方向发生了多次变化(Northrup et al., 1995; Sun et al., 2007), 导致中国东部构造应力场由压扭性向弧后拉张转变(Zhu et al., 2005, 2010张岳桥和董树文, 2008; 李锦轶等,2019)。华南板块的情况稍微独特一点,它位于西太平洋俯冲带和特提斯-喜马拉雅构造带之间, 在白垩纪至古近纪, 这两个构造域对该地区的发展起到了主导性的作用(Hall, 1996; Metcalfe, 2006; Wang et al., 2013), 太平洋板块和印度板块向欧亚大陆汇聚速率发生变化, 中国东部形成了一个沿北西—南东向伸展应力场方向的断裂(Ren et al., 2002)。地震层析成像显示, 中国东南部属于亚洲东南部—西太平洋地震波低速带的范围, 华夏地块的低速带开始于50~80 km深处(Lebedev and Nolet, 2003), 与太平洋和菲律宾板块东向俯冲及印度板块西向俯冲有关(Zhao et al., 2011)。晚中生代太平洋板块向西俯冲对华南的地球动力学有十分重要的影响。在东华夏,俯冲作用可能会对大陆岩石圈地幔的交代作用产生流体并引起广泛的岩浆作用(Zhou et al., 2006), 此时的西华夏西侧受到太平洋西向俯冲的地幔对流的影响导致岩石圈处于伸展拉张的环境(Li et al., 2014)。

现今中国东部通常被认为是一个“大地幔楔”(Huang and Zhao, 2006; Zhao et al., 2009; Kusky et al., 2014), 其下有可能来自太平洋俯冲的滞留板片(Fukao et al., 2009; Zhao et al., 2009; Kuritani et al., 2011; Tang et al., 2014)。此外,在华南,早新生代时新特提斯洋的汇合以及随后欧亚板块和印度板块的碰撞形成了喜马拉雅造山带(Klootwijk et al., 1985; Metcalfe, 2006), 已有学者讨论过板块碰撞对中国东部的深远影响(Tapponnier and Molnar, 1976)。华夏地块的西缘靠近青藏高原的东部以及沿红河断裂带发育有古近纪含钾质熔岩,表明岩石圈扩张所影响的范围(Chung et al., 1997a; Huang et al., 2009)。与此同时, 华夏地块在早新生代形成了大量的拉分盆地(Chung et al., 1997b; Zhu et al., 2004), 因此在古近纪西华夏地块西部岩石圈的伸展拉张可能是印度-欧亚板块碰撞带东部地区应力释放的结果。

综上所述, 中国东部在晚中生代时期受东侧的太平洋俯冲作用影响较大, 导致整个东部大陆处于岩石圈伸展和下部软流圈上涌的背景下, 使得古老的富集交代的岩石圈地幔发生部分熔融;在新生代早期, 西侧的欧亚板块和印度板块的俯冲碰撞及其远程影响, 可能使得中国东部岩石圈处于进一步的伸展拉张的环境, 并且早期富集岩石圈组分消耗之后, 地幔源区转变为软流圈地幔。同时,在晚中生代由于俯冲太平洋板块的后撤作用导致上涌软流圈地幔回落转化成为新增生的岩石圈地幔(图 6)。例如,在~160 Ma时, 古太平洋板片在局部地区(如东北)开始俯冲, 驱赶软流圈物质上涌, 此时的东北地区开始处于弧后拉张环境, 产生一系列与俯冲相关的岩浆作用;在~140 Ma时, 西太平洋板片开始大规模的北西向俯冲, 中国东部全面进入弧后拉张阶段, 板块俯冲引起的上涌软流圈强烈侵蚀上覆的深部古老岩石圈地幔, 其中岩石圈断裂带(如郯庐断裂带)是侵蚀作用有利区域, 岩石圈地幔发生显著减薄; 软流圈的上涌也导致了莫霍面抬升、浅部地壳发生滑脱和拆离, 引起伸展背景下的局部挤压作用。在~110 Ma以来, 俯冲带持续后撤, 俯冲作用导致的软流圈上涌则向东南迁移, 中国东部逐渐远离俯冲带, 降温的软流圈转变为深部新增生的岩石圈, 实现岩石圈地幔置换和小幅增厚; 浅部地壳因拉张作用而发生持续伸展, 形成断陷盆地。

T.L.F.—郯庐断裂带
a—~160 Ma, 古太平洋板片在局部地区开始俯冲, 驱赶软流圈物质上涌;b—~140 Ma, 西太平洋板片开始大规模的北西向俯冲, 中国东部全面进入弧后拉张阶段, 板片俯冲引起的上涌软流圈强烈侵蚀上覆的深部古老岩石圈地幔, 其中岩石圈断裂带是侵蚀作用有利区域, 岩石圈地幔发生显著减薄;c—~110 Ma以来, 俯冲带持续后撤, 中国东部逐渐远离俯冲带, 降温的软流圈转变为深部新增生的岩石圈, 实现岩石圈地幔置换和小幅增厚; 浅部地壳因拉张作用而发生持续伸展, 形成断陷盆地
图 6 (古)太平洋板块俯冲与后撤引起中国东部大陆深部过程和浅部响应(郑建平等,2018) Fig. 6 Subductions and roll backs of the Paleo-Pacific plate result in deep processes and shallow responding in the eastern China continent (Zheng et al., 2018)
6 主要结论

(1) 中国东部大陆有块体规模小、发育内部薄弱带的固有特性,而且周边被古亚洲洋、太平洋和特提斯-喜马拉雅等不同构造域夹持,提供了周边板块俯冲引起的软流圈地幔物质上涌有效侵蚀、改造古老的岩石圈地幔的条件。特别是晚中生代时,中国东部大陆受太平洋板块俯冲作用影响较大, 岩石圈一直处于伸展、软流圈容易上涌的环境中;新生代早期, 印度板块与欧亚大陆的俯冲碰撞、及其所扰动的软流圈使东部岩石圈进一步处于伸展环境。

(2) 晚中生代以来,由于俯冲太平洋板块的后撤作用导致上涌软流圈地幔回落转化成为新增生的岩石圈地幔,是岩石圈地幔实现置换作用的重要过程。大陆块体的大小、规模相对应的初始厚度,内部是否发育薄弱带以及周边俯冲构造环境发育状况是克拉通稳定性非常重要的内在及外在控制因素。

致谢: 感谢主编邢树文先生和副主编胡健民先生的组织和约稿,以及张卉、戴宏坤、马骁和刘文美等研究生的协助整理。

参考文献/References
CARLSON R W, PEARSON D G, BOYD F R, et al., 1999. Re-Os systematics of lithospheric peridotites: Implications for lithosphere formation and preservation[C]//7th international kimberlite conference. Cape Town: Red Roof Design: 99-108.
CARLSON R W, PEARSON D G, JAMES D E, 2005. Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 43(1). DOI:10.1029/2004RG000156
CHEN C F, LIU Y S, FOLEY S F, et al., 2016. Paleo-Asian oceanic slab under the North China craton revealed by carbonatites derived from subducted limestones[J]. Geology, 44(12): 1039-1042. DOI:10.1130/G38365.1
CHEN L, CHENG C, WEI Z G, 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton[J]. Earth and Planetary Science Letters, 286(1-2): 171-183. DOI:10.1016/j.epsl.2009.06.022
CHEN Y, SU B, CHU Z Y, 2017. Modification of an ancient subcontinental lithospheric mantle by continental subduction:Insight from the Maowu garnet peridotites in the Dabie UHP belt, eastern China[J]. Lithos, 278.
CHOUGH S K, SOHN Y K, 2010. Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula:New view[J]. Earth-Science Reviews, 101(3-4): 225-249. DOI:10.1016/j.earscirev.2010.05.004
CHUNG S L, CHENG H, JAHN B M, et al., 1997a. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening[J]. Lithos, 40(2-4): 203-220. DOI:10.1016/S0024-4937(97)00028-5
CHUNG S L, LEE T Y, LO C H, et al., 1997b. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone[J]. Geology, 25(4): 311-314. DOI:10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2
COLTORTI M, BONADIMAN C, HINTON R W, et al., 1999. Carbonatite metasomatism of the oceanic upper mantle:evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean[J]. Journal of Petrology, 40(1): 133-165. DOI:10.1093/petroj/40.1.133
DAI H K, ZHENG J P, XIONG Q, et al., 2019. Fertile Lithospheric mantle underlying ancient continental crust beneath the northwestern North China craton:significant effect from the southward subduction of the Paleo-Asian Ocean[J]. GSA Bulletin, 131(1-2): 3-20. DOI:10.1130/B31871.1
DAVIS G A, ZHENG Y D, WANG C, et al., 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[M]//HENDRIX M S, DAVIS G A. Paleozoic and mesozoic tectonic evolution of central and Eastern Asia: from continental assembly to intracontinental deformation. Boulder, Colorado: Geological Society of America Memoir, 171-197.
DENG J F, MO X X, ZHAO H L, et al., 1994. Lithosphere root/de-rooting and activation of the East China continent[J]. Geoscience, 8(3): 349-356. (in Chinese with English abstract)
DENG J F, ZHAO G C, SU S G, et al., 2005. Structure overlap and tectonic setting of Yanshan orogenic belt in Yanshan Era[J]. Geotectonica et Metallogenia, 29(2): 157-165. (in Chinese with English abstract)
DONG Y P, ZHANG G W, HAUZENBERGER C, et al., 2011. Palaeozoic tectonics and evolutionary history of the Qinling orogen:Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks[J]. Lithos, 122(1-2): 39-56. DOI:10.1016/j.lithos.2010.11.011
FUKAO Y, OBAYASHI M, NAKAKUKI T, et al., 2009. Stagnant slab:a review[J]. Anneal Review of Earth and Planetary Sciences, 37: 19-46. DOI:10.1146/annurev.earth.36.031207.124224
FURNES H, DILEK Y, DE WIT M, 2015. Precambrian greenstone sequences represent different ophiolite types[J]. Gondwana Research, 27(2): 649-685. DOI:10.1016/j.gr.2013.06.004
GAO S, LING W L, QIU Y M, et al., 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 63(13-14): 2071-2088. DOI:10.1016/S0016-7037(99)00153-2
GAO S, RUDNICK R L, CARLSON R W, et al., 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton[J]. Earth and Planetary Science Letters, 198(3-4): 307-322. DOI:10.1016/S0012-821X(02)00489-2
GAO S, ZHANG B R, GU X M, et al., 1995. Silurian-Devonian provenance changes of South Qinling basins:implications for accretion of the Yangtze (South China) to the North China cratons[J]. Tectonophysics, 250(1-3): 183-197. DOI:10.1016/0040-1951(95)00051-5
GRIFFIN W L, O'REILLY S Y, RYAN C G, 1999. The composition and origin of sub-continental lithospheric mantle[M]//FEI Y W, BERTKA C M, MYSEN B O. Mantle petrology: field observations and high-pressure experimentation. Stony Brook: The Geochemical Society: 13-45.
GUO J L, GAO S, WU Y B, et al., 2014. 3.45 Ga granitic gneisses from the Yangtze Craton, South China:Implications for Early Archean crustal growth[J]. Precambrian Research, 242: 82-95. DOI:10.1016/j.precamres.2013.12.018
HALL R, 1996. Reconstructing Cenozoic SE Asia[J]. Geological Society, London, Special Publications, 106(1): 153-184. DOI:10.1144/GSL.SP.1996.106.01.11
HE L J, 2015. Thermal regime of the North China Craton:implications for craton destruction[J]. Earth-Science Reviews, 140: 14-26. DOI:10.1016/j.earscirev.2014.10.011
HERZBERG C, 2004. Geodynamic information in peridotite petrology[J]. Journal of Petrology, 45(12): 2507-2530. DOI:10.1093/petrology/egh039
HERZBERG C, RUDNICK R, 2012. Formation of cratonic lithosphere:an integrated thermal and petrological model[J]. Lithos, 149: 4-15. DOI:10.1016/j.lithos.2012.01.010
HUANG J L, ZHAO D P, 2006. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research:Solid Earth, 111(B9): B09305.
HUANG S Q, DONG S W, HU J M, et al., 2016. The formation and tectonic evolution of the Mongol-Okhotsk belt[J]. Acta Geologica Sinica, 90(9): 2192-2205. (in Chinese with English abstract)
HUANG Z X, LI H Y, ZHENG Y J, et al., 2009. The lithosphere of North China Craton from surface wave tomography[J]. Earth and Planetary Science Letters, 288(1-2): 164-173. DOI:10.1016/j.epsl.2009.09.019
KLOOTWIJK C T, CONAGHAN P J, POWELL C M, 1985. The Himalayan Arc:large-scale continental subduction, oroclinal bending and back-arc spreading[J]. Earth and Planetary Science Letters, 75(2-3): 167-183. DOI:10.1016/0012-821X(85)90099-8
KRAVCHINSKY V A, COGNÉ J P, HARBERT W P, et al., 2002. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 148(1): 34-57. DOI:10.1046/j.1365-246x.2002.01557.x
KURITANI T, OHTANI E, KIMURA J I, 2011. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation[J]. Nature Geoscience, 4(10): 713-716. DOI:10.1038/ngeo1250
KUSKY T M, WINDLEY B F, WANG L, et al., 2014. Flat slab subduction, trench suction, and craton destruction:Comparison of the North China, Wyoming, and Brazilian cratons[J]. Tectonophysics, 630: 208-221. DOI:10.1016/j.tecto.2014.05.028
LEBEDEV S, NOLET G, 2003. Upper mantle beneath Southeast Asia from S velocity tomography[J]. Journal of Geophysical Research:Solid Earth, 108(B1): 2048.
LEE C T A, 2003. Compositional variation of density and seismic velocities in natural peridotites at STP conditions:implications for seismic imaging of compositional heterogeneities in the upper mantle[J]. Journal of Geophysical Research:Solid Earth, 108(B9): 2441. DOI:10.1029/2003JB002413
LEE C T A, 2006. Geochemical/petrologic constraints on the origin of cratonic mantle[M]//BENN K, MARESCHAL J C, CONDIE L C. Archean geodynamics and environments. Washington: Geophysical Monograph Series: 89-114.
LEE C T A, LUFFI P, CHIN E J, 2011. Building and destroying continental mantle[J]. Annual Review of Earth and Planetary Sciences, 39: 59-90. DOI:10.1146/annurev-earth-040610-133505
LEE C T, YIN Q Z, RUDNICK R L, et al., 2001. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States[J]. Nature, 411(6833): 69-73. DOI:10.1038/35075048
LI J Y, ZHENG J, LIU J F, et al., 2019. Crustal tectonic framework of China and its formation processes:constraints from stuctural deformation[J]. Journal of Geomechanics, 25(5): 678-698. (in Chinese with English abstract)
LI L, SANTOSH M, LI S R, 2015a. The 'Jiaodong type' gold deposits:Characteristics, origin and prospecting[J]. Ore Geology Reviews, 65: 589-611. DOI:10.1016/j.oregeorev.2014.06.021
LI S G, JAGOUTZ E, CHEN Y Z, et al., 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China[J]. Geochimica et Cosmochimica Acta, 64(6): 1077-1093. DOI:10.1016/S0016-7037(99)00319-1
LI T D, 2010. Principal characteristics of the lithosphere of China[J]. Earth Science Frontiers, 17(3): 1-13. (in Chinese with English abstract)
LI X H, LI W X, LI Z X, et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in south china:constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174(1-2): 117-128. DOI:10.1016/j.precamres.2009.07.004
LI X Y, ZHENG J P, SUN M, et al., 2014. The cenozoic lithospheric mantle beneath the interior of south china block:constraints from mantle xenoliths in guangxi province[J]. Lithos, 210-211: 14-26. DOI:10.1016/j.lithos.2014.09.028
LI Y, YANG J S, DILEK Y, et al., 2015b. Crustal architecture of the Shangdan suture zone in the early Paleozoic Qinling orogenic belt, China:Record of subduction initiation and backarc basin development[J]. Gondwana Research, 27(2): 733-744. DOI:10.1016/j.gr.2014.03.006
LI Z, LIU S F, ZHANG J F, et al., 2003. Typical basin-fill sequences and basin migration in Yanshan, North China[J]. Science in China Series D:Earth Sciences, 47(2): 181-192.
LI Z X, LI X H, KINNY P D, et al., 1999. The breakup of Rodinia:did it start with a mantle plume beneath South China?[J]. Earth and Planetary Science Letters, 173(3): 171-181. DOI:10.1016/S0012-821X(99)00240-X
LIN A B, ZHENG J P, PENG S K, 2018. Nature and processes of microcontinents:Primary derivation for the heterogeneity of lithospheric mantle beneath northeastern China[J]. Acta Petrologica Sinica, 34(1): 143-156. (in Chinese with English abstract)
LIU C Z, LIU Z C, WU F Y, et al., 2012a. Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications:geochemical and Re-Os isotopic results from Ningyuan mantle xenoliths[J]. Chemical Geology, 291: 186-198. DOI:10.1016/j.chemgeo.2011.10.006
LIU C Z, WU F Y, SUN J, et al., 2012b. The Xinchang peridotite xenoliths reveal mantle replacement and accretion in southeastern China[J]. Lithos, 150: 171-187. DOI:10.1016/j.lithos.2012.03.019
LIU D Y, NUTMAN A P, COMPSTON W, et al., 1992. Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton[J]. Geology, 20(4): 339-342. DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
LIU J G, RUDNICK R L, WALKER R J, et al., 2011. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths:An example from the North China Craton[J]. Geochimica et Cosmochimica Acta, 75(13): 3881-3902. DOI:10.1016/j.gca.2011.04.018
LIU S F, LI Z, ZHANG J F, 2004. Evolution and tectonic system of Mesozoic basins in Yanshan area[J]. Science in China Series D Earth Sciences, 47(S2): 24-38.
LIU Y S, GAO S, HU Z C, et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. DOI:10.1093/petrology/egp082
MAO J W, XIE G Q, ZHANG Z H, et al., 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica, 21(1): 169-188. (in Chinese with English abstract)
MARUYAMA S, ISOZAKI Y, KIMURA G, et al., 2006. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750 Ma to the present[J]. Island Arc, 6(1): 121-142.
MENG Q R, ZHANG G W, 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysics, 323(3-4): 183-196. DOI:10.1016/S0040-1951(00)00106-2
METCALFE I, 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:the Korean Peninsula in context[J]. Gondwana Research, 9(1-2): 24-46. DOI:10.1016/j.gr.2005.04.002
NORTHRUP C J, ROYDEN L H, BURCHFIEL B C, 1995. Motion of the Pacific Plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J]. Geology, 23(8): 719-722. DOI:10.1130/0091-7613(1995)023<0719:Motppr>2.3.Co;2
PARK Y, JUNG H, 2015. Deformation microstructures of olivine and pyroxene in mantle xenoliths in Shanwang, eastern China, near the convergent plate margin, and implications for seismic anisotropy[J]. International Geology Review, 57(5-8): 629-649. DOI:10.1080/00206814.2014.928240
PEARSON D G, WITTIG N, 2008. Formation of Archaean continental lithosphere and its diamonds:The root of the problem[J]. Journal of the Geological Society, 165(5): 895-914. DOI:10.1144/0016-76492008-003
PING X Q, ZHENG J P, TANG H Y, et al., 2018. Hadean continental crust in the southern North China Craton:evidence from the Xinyang felsic granulite xenoliths[J]. Precambrian Research, 307: 155-174. DOI:10.1016/j.precamres.2017.10.011
RAPP R P, NORMAN M D, LAPORTE D, et al., 2010. Continent formation in the Archean and chemical evolution of the cratonic lithosphere:melt-rock reaction experiments at 3-4 GPa and petrogenesis of Archean Mg-diorites (Sanukitoids)[J]. Journal of Petrology, 51(6): 1237-1266. DOI:10.1093/petrology/egq017
REISBERG L, ZHI X C, LORAND J P, et al., 2005. Re-Os and S systematics of spinel peridotite xenoliths from east central China:Evidence for contrasting effects of melt percolation[J]. Earth and Planetary Science Letters, 239(3-4): 286-308. DOI:10.1016/j.epsl.2005.09.010
REN J Y, TAMAKI K, LI S T, et al., 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 344(3-4): 175-205. DOI:10.1016/S0040-1951(01)00271-2
RUDNICK R L, GAO S, LING W L, et al., 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton[J]. Lithos, 77(1-4): 609-637. DOI:10.1016/j.lithos.2004.03.033
SAFONOVA I Y, SANTOSH M, 2014. Accretionary complexes in the Asia-Pacific region:Tracing archives of ocean plate stratigraphy and tracking mantle plumes[J]. Gondwana Research, 25(1): 126-158. DOI:10.1016/j.gr.2012.10.008
SHU L S, 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31(7): 1035-1053. (in Chinese with English abstract)
SIMON N S C, CARLSON R W, PEARSON D G, et al., 2007. The origin and evolution of the Kaapvaal cratonic lithospheric mantle[J]. Journal of Petrology, 48(3): 589-625. DOI:10.1093/petrology/egl074
SUN J, LIU C Z, WU F Y, et al., 2012. Metasomatic origin of clinopyroxene in Archean mantle xenoliths from Hebi, North China Craton:Trace-element and Sr-isotope constraints[J]. Chemical Geology, 328: 123-136. DOI:10.1016/j.chemgeo.2012.03.014
SUN M D, XU Y G, WILDE S A, et al., 2015. The Permian Dongfanghong island-arc gabbro of the Wandashan Orogen, NE China:Implications for Paleo-Pacific subduction[J]. Tectonophysics, 659: 122-136. DOI:10.1016/j.tecto.2015.07.034
SUN W D, DING X, HU Y H, et al., 2017. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 26(3-4): 533-542.
TANG Y C, OBAYASHI M, NIU F L, et al., 2014. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling[J]. Nature Geoscience, 7(6): 470-475. DOI:10.1038/ngeo2166
TANG Y J, ZHANG H F, YING J F, et al., 2013. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle[J]. Earth-Science Reviews, 118: 45-68. DOI:10.1016/j.earscirev.2013.01.004
TAPPONNIER P, MOLNAR P, 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature, 264(5584): 319-324. DOI:10.1038/264319a0
TOMURTOGOO O, WINDLEY B F, KRÖNER A, et al., 2005. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia:constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen[J]. Journal of the Geological Society, 162(1): 125-134. DOI:10.1144/0016-764903-146
WAN Y S, LIU D Y, WANG W, et al., 2011. Provenance of Meso-to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton:An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry[J]. Gondwana Research, 20(1): 219-242. DOI:10.1016/j.gr.2011.02.009
WANG C M, DENG J, SANTOSH M, et al., 2015. Timing, tectonic implications and genesis of gold mineralization in the Xincheng gold deposit, China:C-H-O isotopes, pyrite Rb-Sr and zircon fission track thermochronometry[J]. Ore Geology Reviews, 65: 659-673. DOI:10.1016/j.oregeorev.2014.04.022
WANG Q C, LIU J S, DU Z L, et al., 2009a. Tectonic framework and deep structure of South China and their constraint to oil-gas field distribution[J]. Acta Geologica Sinica, 83(1): 170-178. DOI:10.1111/j.1755-6724.2009.00019.x
WANG T, ZHENG Y D, ZHANG J J, et al., 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia:Perspectives from metamorphic core complexes[J]. Tectonics, 30(6): TC6007.
WANG W, ZHOU M F, YAN D P, et al., 2012. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China[J]. Precambrian Research, 192-195: 107-124. DOI:10.1016/j.precamres.2011.10.010
WANG W, ZHOU M F, YAN D P, et al., 2013. Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen, South China[J]. Precambrian Research, 235: 1-19. DOI:10.1016/j.precamres.2013.05.013
WANG X C, LI X H, LI W X, et al., 2007. Ca.825 Ma komatiitic basalts in South China:First evidence for > 1500℃ mantle melts by a Rodinian mantle plume[J]. Geology, 35(12): 1103-1106. DOI:10.1130/G23878A.1
WANG X C, LI X H, LI W X, et al., 2009b. Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China:A review[J]. Gondwana Research, 15(3-4): 381-395. DOI:10.1016/j.gr.2008.08.003
WANG Y C, DONG S W, SHI W, et al., 2016. An analysis of late mesozoic tectonic evolution process in Northern China:based on basin sedimentary records in northern Taihang mountains[J]. Acta Geoscientica Sinica, 37(1): 35-45. (in Chinese with English abstract)
WINDLEY B F, ALEXEIEV D, XIAO W J, et al., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31-47. DOI:10.1144/0016-76492006-022
WU F Y, WALKER R J, REN X W, et al., 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China[J]. Chemical Geology, 196(1-4): 107-129. DOI:10.1016/S0009-2541(02)00409-6
WU Y B, HANCHAR J M, GAO S, et al., 2009. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China[J]. Earth and Planetary Science Letters, 277(3-4): 345-354. DOI:10.1016/j.epsl.2008.10.031
WU Y B, ZHENG Y F, 2013. Tectonic evolution of a composite collision orogen:An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China[J]. Gondwana Research, 23(4): 1402-1428. DOI:10.1016/j.gr.2012.09.007
XIA Q K, XING L B, FENG M, et al., 2010. Water content and element geochemistry of peridotite xenoliths hosted by Early-Jurassic basalt in Ningyuan, Hunan Province[J]. Acta Petrologica et Mineralogica, 29(2): 113-124. (in Chinese with English abstract)
XIANG L, ZHENG J P, SIEBEL W, et al., 2018. Unexposed Archean components and complex post-Archean accretion/reworking processes beneath the southern Yangtze Block revealed by zircon xenocrysts from the Paleozoic lamproites, South China[J]. Precambrian Research, 316: 174-196. DOI:10.1016/j.precamres.2018.08.003
XIAO W J, WINDLEY B F, SUN S, et al., 2015. A tale of amalgamation of three permo-triassic collage systems in central Asia:oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43: 477-507. DOI:10.1146/annurev-earth-060614-105254
XU G, ZHAO Y, GAO R, et al., 2006. Mesozoic basin deformation of Yanshan folded fault belt-records of the intraplate deformation process:a case study of Xiabancheng, Chengde-Shangbancheng and Beitai basins[J]. Acta Geoscientica Sinica, 27(1): 1-12. (in Chinese with English abstract)
XU R, LIU Y S, TONG X R, et al., 2013. In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton:Insights into Pacific slab subduction-related mantle modification[J]. Chemical Geology, 354: 107-123. DOI:10.1016/j.chemgeo.2013.06.022
XU X S, GRIFFIN W L, O'REILLY S Y, et al., 2008b. Re-Os isotopes of sulfides in mantle xenoliths from eastern China:progressive modification of lithospheric mantle[J]. Lithos, 102(1-2): 43-64. DOI:10.1016/j.lithos.2007.06.010
XU X S, O'REILLY S Y, GRIFFIN W L, et al., 2007. The crust of Cathaysia:Age, assembly and reworking of two terranes[J]. Precambrian Research, 158(1-2): 51-78. DOI:10.1016/j.precamres.2007.04.010
XU Y G, 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china:evidence, timing and mechanism[J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10): 747-757. DOI:10.1016/S1464-1895(01)00124-7
XU Y G, BLUSZTAJN J, MA J L, et al., 2006. In searching for old lithospheric relict beneath North China craton:Sr-Nd-Os isotopic composition of peridotite xenoliths from Yangyuan[J]. Geochimica et Cosmochimica Acta, 70(S18): A714.
XU Y G, BLUSZTAJN J, MA J L, et al., 2008a. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton:Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi[J]. Lithos, 102(1-2): 25-42. DOI:10.1016/j.lithos.2007.04.005
XU Y G, LIN C Y, SHI L B, et al., 1995. Upper mantle geotherm for eastern China and its geological implications[J]. Science in China (Series B), 38(12): 1482-1492.
XU Y G, MENZIES M A, THIRLWALL M F, et al., 2003. "Reactive" harzburgites from Huinan, NE China:products of the lithosphere-asthenosphere interaction during lithospheric thinning?[J]. Geochimica et Cosmochimica Acta, 67(3): 487-505. DOI:10.1016/S0016-7037(02)01089-X
YANG J H, O'REILLY S Y, WALKER R J, et al., 2010. Diachronous decratonization of the Sino-Korean craton:Geochemistry of mantle xenoliths from North Korea[J]. Geology, 38(9): 799-802. DOI:10.1130/G30944.1
YANG Z Y, MA X H, HUANG B C, et al., 1998. Apparent polar wander path and tectonic movement of the North China Block in Phanerozoic[J]. Science in China Series D:Earth Sciences, 41(S2): 51-65. DOI:10.1007/BF02984513
YIN A, NIE S Y, 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions[M]//YIN A, HARRISON T M. The tectonic evolution of Asia. New York: Cambridge University Press: 442-485.
YU J H, O'REILLY S Y, WANG L J, et al., 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China:evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments[J]. Precambrian Research, 181(1-4): 97-114. DOI:10.1016/j.precamres.2010.05.016
YU J H, O'REILLY S Y, ZHOU M F, et al., 2012. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China:implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block[J]. Precambrian Research, 222-223: 424-449. DOI:10.1016/j.precamres.2011.07.014
YU Y, XU X S, GRIFFIN W L, et al., 2011. H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block, SE China[J]. Lithos, 126(3-4): 182-197. DOI:10.1016/j.lithos.2011.07.009
ZHAI G W, GUO A L, WANG Y J, et al., 2013. Tectonics of South China continent and its implication[J]. Science China Earth Sciences, 56(11): 1804-1828. DOI:10.1007/s11430-013-4679-1
ZHAI M G, 2008. Lower crust and lithospheric mantle beneath the North China Craton before the Mesozoic lithospheric disruption[J]. Acta Petrologica Sinica, 24(10): 2185-2204. (in Chinese with English abstract)
ZHAI M G, 2011. Cratonization and the ancient North China continent:a summary and review[J]. Science China Earth Sciences, 54(8): 1110-1120. DOI:10.1007/s11430-011-4250-x
ZHAI M G, 2019. Tectonic evolution of the North China craton[J]. Journal of Geomechanics, 25(5): 722-745. (in Chinese with English abstract)
ZHAI M G, SANTOSH M, 2011. The early Precambrian odyssey of the North China Craton:A synoptic overview[J]. Gondwana Research, 20(1): 6-25. DOI:10.1016/j.gr.2011.02.005
ZHANG H F, 2009. Peridotite-melt interaction:a key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 54(19): 3417-3437.
ZHANG H F, GOLDSTEIN S L, ZHOU X H, et al., 2008. Evolution of subcontinental lithospheric mantle beneath eastern China:Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts[J]. Contributions to Mineralogy and Petrology, 155(3): 271-293. DOI:10.1007/s00410-007-0241-5
ZHANG H F, SUN M, LU F X, et al., 2001. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China[J]. Geochemical Journal, 35(5): 315-331. DOI:10.2343/geochemj.35.315
ZHANG H F, SUN M, ZHOU M F, et al., 2004. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton:evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks[J]. Geological Magazine, 141(1): 55-62. DOI:10.1017/S0016756803008331
ZHANG H F, SUN Y L, TANG Y J, et al., 2012. Melt-peridotite interaction in the Pre-Cambrian mantle beneath the western North China Craton:Petrology, geochemistry and Sr, Nd and Re isotopes[J]. Lithos, 149: 100-114. DOI:10.1016/j.lithos.2012.01.027
ZHANG S H, ZHAO Y, DAVIS G A, et al., 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton:Implications for lithospheric thinning and decratonization[J]. Earth-Science Reviews, 131: 49-87. DOI:10.1016/j.earscirev.2013.12.004
ZHANG Y Q, DONG S W, 2008. Mesozoic tectonic evolution history of the Tan-Lu fault zone, China:Advances and new under standing[J]. Geological Bulletin of China, 27(9): 1371-1390. (in Chinese with English abstract)
ZHANG Y Q, DONG S W, 2019. East Asia multi-plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5): 613-641. (in Chinese with English abstract)
ZHANG Y Q, LIAO C Z, 2006. Transition of the Late Mesozoic-Cenozoic tectonic regimes and modification of the Ordos basin[J]. Geology in China, 33(1): 28-40. (in Chinese with English abstract)
ZHAO D P, TIAN Y, LEI J S, et al., 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia:Role of big mantle wedge above the stagnant Pacific slab[J]. Physics of the Earth and Planetary Interiors, 173(3-4): 197-206. DOI:10.1016/j.pepi.2008.11.009
ZHAO D P, YU S, OHTANI E, 2011. East Asia:seismotectonics, magmatism and mantle dynamics[J]. Journal of Asian Earth Sciences, 40(3): 689-709. DOI:10.1016/j.jseaes.2010.11.013
ZHAO G C, CAWOOD P A, 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia block; implications for Neoproterozoic collision-related assembly of the South China Craton[J]. American Journal of Science, 299(4): 309-339.
ZHAO G C, CAWOOD P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-54. DOI:10.1016/j.precamres.2012.09.017
ZHAO G C, SUN M, WILDE S A, et al., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 136(2): 177-202. DOI:10.1016/j.precamres.2004.10.002
ZHAO G C, WILDE S A, CAWOOD P A, et al., 2001. Archean blocks and their boundaries in the North China Craton:lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 107(1-2): 45-73. DOI:10.1016/S0301-9268(00)00154-6
ZHAO Y, ZHENG J P, XIONG Q, et al., 2018. Destruction of the North China Craton triggered by the Triassic Yangtze continental subduction/collision:a review[J]. Journal of Asian Earth Science, 164: 72-82. DOI:10.1016/j.jseaes.2018.05.029
ZHENG J P, 1999. Mesozoic-cenozoic mantle replacement and lithospheric thinning beneath the eastern China[M]. Wuhan: China University of Geosciences Press. (in Chinese)
ZHENG J P, 2009. Comparison of mantle-derived matierals from different spatiotemporal settings:Implications for destructive and accretional processes of the North China Craton[J]. Chinese Science Bulletin, 54(19): 3397-3416.
ZHENG J P, DAI H K, 2018. Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton[J]. Science China Earth Sciences, 61(4): 406-424. DOI:10.1007/s11430-017-9166-8
ZHENG J P, DAI H K, ZHANG H, 2019. Refertilization and replacement of lithospheric mantle beneath the eastern China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(2): 201-216. (in Chinese with English abstract)
ZHENG J P, GRIFFIN W L, LI L S, et al., 2011. Highly evolved Archean basement beneath the western Cathaysia Block, South China[J]. Geochimica et Cosmochimica Acta, 75(1): 242-255. DOI:10.1016/j.gca.2010.09.035
ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2006d. A refractory mantle protolith in younger continental crust, east-central China:Age and composition of zircon in the Sulu ultrahigh-pressure peridotite[J]. Geology, 34(9): 705-708. DOI:10.1130/G22569.1
ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2006c. Mineral chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere:constraints on mantle evolution beneath eastern China[J]. Journal of Petrology, 47(1): 2233-2256.
ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2004a. 3.6 Ga lower crust in central China:New evidence on the assembly of the North China craton[J]. Geology, 32(3): 229-232.
ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2006a. Widespread Archean basement beneath the Yangtze craton[J]. Geology, 34(6): 417-420. DOI:10.1130/G22282.1
ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2006b. Zircons in mantle xenoliths record the Triassic Yangtze-North China continental collision[J]. Earth and Planetary Science Letters, 247(1-2): 130-142. DOI:10.1016/j.epsl.2006.05.011
ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis[J]. Geochimica et Cosmochimica Acta, 71(21): 5203-5225. DOI:10.1016/j.gca.2007.07.028
ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2008a. Continental collision and accretion recorded in the deep lithosphere of central China[J]. Earth and Planetary Science Letters, 269(3-4): 497-507. DOI:10.1016/j.epsl.2008.03.003
ZHENG J P, LEE C T A, LU J G, et al., 2015. Refertilization-driven destabilization of subcontinental mantle and the importance of initial lithospheric thickness for the fate of continents[J]. Earth and Planetary Science Letters, 409: 225-231. DOI:10.1016/j.epsl.2014.10.042
ZHENG J P, O'REILLY S Y, GRIFFIN W L, et al., 1998. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong Peninsula, Sino-Korean Craton, Eastern China[J]. International Geology Review, 40(6): 471-499. DOI:10.1080/00206819809465220
ZHENG J P, O'REILLY S Y, GRIFFIN W L, et al., 2001. Relict refractory mantle beneath the eastern North China block:significance for lithosphere evolution[J]. Lithos, 57(1): 43-66. DOI:10.1016/S0024-4937(00)00073-6
ZHENG J P, O'REILLY S Y, GRIFFIN W L, et al., 2004B. Nature and evolution of mesozoic-cenozoic lithospheric mantle beneath the cathaysia block, SE china[J]. Lithos, 74(1-2): 41-65. DOI:10.1016/j.lithos.2003.12.008
ZHENG J P, SUN M, GRIFFIN W L, et al., 2008b. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China:Petrogenetic and geodynamic implications[J]. Chemical Geology, 247(1-2): 282-304. DOI:10.1016/j.chemgeo.2007.10.023
ZHENG J P, TANG H Y, XIONG Q, et al., 2014. Linking continental deep subduction with destruction of a cratonic margin:strongly reworked North China SCLM intruded in the Triassic Sulu UHP belt[J]. Contributions to Mineralogy and Petrology, 168(1): 1-21.
ZHENG Y F, 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin, 53(20): 3081-3104.
ZHENG Y F, FU B, GONG B, et al., 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime[J]. Earth-Science Reviews, 62(1-2): 105-161. DOI:10.1016/S0012-8252(02)00133-2
ZHOU X M, SUN T, SHEN W Z, et al., 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:a response to tectonic evolution[J]. Episodes, 29(1): 26-33. DOI:10.18814/epiiugs/2006/v29i1/004
ZHU B Q, WANG H F, CHEN Y W, et al., 2004. Geochronological and geochemical constraint on the Cenozoic extension of Cathaysian lithosphere and tectonic evolution of the border sea basins in East Asia[J]. Journal of Asian Earth Sciences, 24(2): 163-175. DOI:10.1016/j.jseaes.2003.10.006
ZHU G, NIU M L, XIE C L, et al., 2010. Sinistral to normal faulting along the Tan-Lu fault zone:evidence for geodynamic switching of the East China continental margin[J]. The Journal of Geology, 118(3): 277-293.
ZHU G, WANG Y S, LIU G S, et al., 2005. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China[J]. Journal of Structural Geology, 27(8): 1379-1398. DOI:10.1016/j.jsg.2005.04.007
ZHU J S, CAI X L, CAO J M, et al., 2005. Three-dimensional structure and evolution of the lithosphere in South China and East China Sea[M]. Beijing: Geological Publishing House. (in Chinese)
ZHU R X, ZHU G, LI J W, et al., 2020. North China Craton destruction[M]. Beijing: Science Press. (in Chinese)
ZOU D Y, ZHANG H F, HU Z C, et al., 2019. Complex metasomatism of lithospheric mantle by asthenosphere-derived melts:Evidence from peridotite xenoliths in Weichang at the northern margin of the North China Craton[J]. Lithos, 264: 210-223.
邓晋福, 莫宣学, 赵海玲, 等, 1994. 中国东部岩石圈根/去根作用与大陆"活化":东亚型大陆动力学模式研究计划[J]. 现代地质, 8(3): 349-356.
邓晋福, 赵国春, 苏尚国, 等, 2005. 燕山造山带燕山期构造叠加及其大地构造背景[J]. 大地构造与成矿学, 29(2): 157-165.
黄始琪, 董树文, 胡健民, 等, 2016. 蒙古-鄂霍次克构造带的形成与演化[J]. 地质学报, 90(9): 2192-2205.
李锦轶, 张进, 刘建峰, 等, 2019. 中国地壳结构构造与形成过程:来自构造变形的约束[J]. 地质力学学报, 25(5): 678-698.
李延栋, 2010. 中国岩石圈的基本特征[J]. 地学前缘, 17(3): 1-13.
李忠, 刘少峰, 张金芳, 等, 2003. 燕山典型盆地充填序列及迁移特征:对中生代构造转折的响应[J]. 中国科学(D辑), 33(10): 931-940.
林阿兵, 郑建平, 潘少逵, 2018. 微陆块属性及过程:我国东北地区岩石圈地幔性质差异之根本[J]. 岩石学报, 34(1): 143-156.
刘少峰, 李忠, 张金芳, 2004. 燕山地区中生代盆地演化及构造体制[J]. 中国科学D辑:地球科学, 34(S1): 19-31.
毛景文, 谢桂青, 张作衡, 等, 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 21(1): 169-188.
舒良树, 2012. 华南构造演化的基本特征[J]. 地质通报, 31(7): 1035-1053.
王永超, 董树文, 施炜, 等, 2016. 华北晚中生代构造演化过程:根据太行山北部盆地沉积记录[J]. 地球学报, 37(1): 35-45.
夏群科, 邢凌波, 冯敏, 等, 2010. 湖南宁远早侏罗世玄武岩中橄榄岩包体的含水性和元素地球化学特征[J]. 岩石矿物学杂志, 29(2): 113-124.
徐刚, 赵越, 高锐, 等, 2006. 燕山褶断带中生代盆地变形-板内变形过程的记录:以下板城、承德-上板城、北台盆地为例[J]. 地球学报, 27(1): 1-12.
翟明国, 2008. 华北克拉通中生代破坏前的岩石圈地幔与下地壳[J]. 岩石学报, 24(10): 2185-2204.
翟明国, 2011. 克拉通化与华北陆块的形成[J]. 中国科学:地球科学, 41(8): 1037-1046.
翟明国, 2019. 华北克拉通构造演化[J]. 地质力学学报, 25(5): 722-745.
张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题[J]. 中国科学:地球科学, 43(10): 1553-1582.
张宏福, 2009. 橄榄岩-熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键[J]. 科学通报, 54(14): 2008-2026.
张岳桥, 廖昌珍, 2006. 晚中生代-新生代构造体制转换与鄂尔多斯盆地改造[J]. 中国地质, 33(1): 28-40.
张岳桥, 董树文, 2008. 郯庐断裂带中生代构造演化史:进展与新认识[J]. 地质通报, 27(9): 1371-1390.
张岳桥, 董树文, 2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展[J]. 地质力学学报, 25(5): 613-641.
郑建平, 1999. 中国东部地幔置换作用与中新生代岩石圈减薄[M]. 武汉: 中国地质大学出版社.
郑建平, 2009. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J]. 科学通报, 54(14): 1990-2007.
郑建平, 戴宏坤, 2018. 西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆-山耦合[J]. 中国科学:地球科学, 48(6): 436-456.
郑建平, 戴宏坤, 张卉, 2019. 中国东部岩石圈地幔的富化和置换过程[J]. 矿物岩石地球化学通报, 38(2): 201-216.
郑永飞, 2008. 超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例[J]. 科学通报, 53(18): 2129-2152.
朱介寿, 蔡学林, 曹家敏, 等, 2005. 中国华南及东海地区岩石圈三维结构及演化[M]. 北京: 地质出版社.
朱日祥, 朱光, 李建威, 等, 2020. 华北克拉通破坏[M]. 北京: 科学出版社.