地质力学学报  2020, Vol. 26 Issue (5): 731-741
引用本文
杨经绥. 大洋地幔橄榄岩-铬铁矿中的金刚石和深地幔再循环[J]. 地质力学学报, 2020, 26(5): 731-741.
YANG Jingsui. Diamond in oceanic peridotites-chromitites and recycled in deep mantle[J]. Journal of Geomechanics, 2020, 26(5): 731-741.
大洋地幔橄榄岩-铬铁矿中的金刚石和深地幔再循环
杨经绥1,2    
1. 南京大学地球科学与工程学院, 江苏 南京 210023;
2. 自然资源部深地动力学重点实验室地幔研究中心, 北京 100037
摘要:全球多地蛇绿岩型地幔橄榄岩和铬铁矿中发现微粒金刚石,并在中国西藏南部和俄罗斯乌拉尔北部的蛇绿岩铬铁矿中发现原位产出的金刚石,认为是地球上金刚石的一种新的产出类型,不同于金伯利岩型金刚石和超高压变质型金刚石。它们与呈斯石英假象的柯石英、高压相的铬铁矿和青松矿等高压矿物以及碳硅石和单质矿物等强还原矿物伴生,指示蛇绿岩中的这些矿物组合形成于深度150~300 km或者更深的地幔。金刚石具有很轻的C同位素组成(δ13C-18‰~-28‰),并出现多种含Mn矿物和壳源成分包裹体。研究认为它们曾是早期深俯冲的地壳物质,达到>300 km深部地幔或地幔过渡带后,经历了熔融并产生新的流体,后者在上升过程中结晶成新的超高压、强还原矿物组合,通过地幔对流或地幔柱作用被带回到浅部地幔,由此建立了一个俯冲物质深地幔再循环的新模式。蛇绿岩型地幔橄榄岩和铬铁矿中发现金刚石等深部矿物,质疑了蛇绿岩铬铁矿形成于浅部地幔的已有认识,引发了一系列新的科学问题,提出了新的研究方向。
关键词金刚石    铬铁矿    蛇绿岩    超高压矿物    强还原矿物    深地幔    深俯冲作用    
DOI10.12090/j.issn.1006-6616.2020.26.05.060     文章编号:1006-6616(2020)05-0731-11
Diamond in oceanic peridotites-chromitites and recycled in deep mantle
YANG Jingsui1,2    
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China;
2. Center for Advanced Research on Mantle(CARMA), Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Beijing 100037, China
Abstract: Microdiamonds have been recovered from mantle rocks and associated podiform chromitites in many ophiolites across the world and, in particular, in-situ diamonds were found in ophiolitic chromitites in Southern Tibet and Northern Ural. Microdiamonds in ophiolites present a new type occurrence of diamonds on Earth, different from those diamonds occurring in kimberlites and ultrahigh pressure metamorphic belts. The discoveries of pressure-sensitive minerals such as coesites with stishovite pseudomorph, high-pressure facies chromitites and Qingsongites (BN) indicate that ophiolitic chromitite may form at depths of >150~300 km or even deeper in the mantle. The very light C isotope composition (δ13C -18‰ to -28‰) of these ophiolitic diamonds, Mn-bearing mineral inclusions observed in these diamonds and coesite occurring in chromite all indicate the recycling of ancient continental or oceanic materials into the deep mantle (>300 km) or down to the mantle transition zone via subduction. These new observations and data strongly suggest that microdiamonds and their host podiform chromitite may have formed near the transition zone in the deep mantle, and that they were then transported upward into shallow mantle depths by convection processes. Thus, a new model has been proposed for deep subduction and recycling of oceanic crust in deep mantle. The discovery of diamonds and other UHP minerals from peridotites and chromitities in ophiolites doubts the current shallow genesis of ophiolitic chromitites and raises a serious of new scientific questions which leads to a new research direction.
Key words: diamond    chromitite    ophiolite    ultrahigh pressure mineral    super-reduced mineral    deep mantle    deep subduction    
0 引言

蛇绿岩是位于大陆边缘、岛弧或者增生楔的古老大洋岩石圈的残留,因其记录了古大洋形成、演化、消亡及板块碰撞历史,并产出豆荚状铬铁矿等重要矿床,多年来一直是国际上的研究热点(Dilek and Furness, 2011, 2014)。

蛇绿岩主要由地幔部分的大洋橄榄岩,壳幔过渡带的超基性-基性堆晶岩以及洋壳部分的辉长岩、席状岩墙群和枕状熔岩等基性岩石组成。许多蛇绿岩在大洋地幔橄榄岩和超基性堆晶岩中产出有豆荚状铬铁矿床。蛇绿岩最初被认为代表形成于海底扩张脊的大洋岩石圈残片(Gass, 1968; Nicolas, 1989),但之后的研究提出蛇绿岩能够形成于多种构造环境,包括大洋中脊(MOR)和俯冲带(SSZ),以及大陆边缘、岛弧和大洋高原等(Dilek and Furness, 2011)。无论形成于MOR还是SSZ环境的蛇绿岩及其中的豆荚状铬铁矿,均被认为是在上地幔浅部形成,成矿的岩浆作用发生在大洋下60~100 km深度(Lambertand Wyllie, 1970),或俯冲带上 < 50 km的深度(Zhou et al., 1996; Arai, 1997)。

然而,中国西藏和俄罗斯乌拉尔蛇绿岩型地幔橄榄岩、铬铁矿中发现的原位金刚石以及其他超高压(UHP)和强还原矿物组合,均表明它们形成于150~300 km的上地幔深部,或可达到地幔过渡带(Robinson et al., 2004, 2015; Yang et al., 2007, 2014a, 2015a, 2015b; Xu et al., 2009, 2015; Dobrzhinetskaya et al., 2009; Trumbull et al., 2009)。本文对这些蛇绿岩的最新发现进行了简短的回顾和展望。

1 全球多个蛇绿岩中分选出金刚石等超高压矿物

虽然蛇绿岩中较早发现过金刚石(Dresser, 1913; Shilo et al., 1978; Bai et al., 1993),但多年来没有引起注意和认可,原因是金刚石出自人工重砂样品,地质背景不清楚,且数量很少,被怀疑可能是混染的(Taylor et al., 1995切切斯特钻石公司考察团,1997)。

近10余年来,陆续在国内外近20处蛇绿岩的地幔橄榄岩和铬铁矿中发现了金刚石等超高压和强还原矿物组合。国内包括西藏南部雅鲁藏布江缝合带中的罗布莎、泽当、日喀则、当穷、普兰和东波等6处蛇绿岩,藏北的班公湖-怒江缝合带东段的丁青蛇绿岩,新疆的萨尔托海蛇绿岩和内蒙古的贺根山蛇绿岩;国外包括缅甸密支那,俄罗斯极地乌拉尔,阿尔巴尼亚,土耳其,印度和墨西哥等多地的蛇绿岩(图 1Yang et al., 2007, 2015a; 徐向珍等,2008杨经绥等,2011bDas et al., 2015, 2017; Tian et al., 2015Huang et al., 2015; Lian et al., 2017Wu et al., 2017Xiong et al., 2017)。尤其在罗布莎和乌拉尔铬铁矿中找到原位金刚石,证明了金刚石为天然产出,研究取得了突破性进展(Yang et al., 2014a, Yang et al., 2015a)。

图 1 发现金刚石等深部矿物的蛇绿岩分布图(连东洋等,2019) Fig. 1 Locations of microdiamonds-bearing ophiolites on Earth (Lian et al., 2019)

中国西藏雅鲁藏布江缝合带、班公湖-怒江缝合带和缅甸的蛇绿岩形成于特提斯洋在中生代的关闭(Şengör, 1979)时期;中国新疆萨尔托海、内蒙古贺根山及俄罗斯极地乌拉尔Ray-Iz蛇绿岩形成于早古生代,可能与古亚洲洋的关闭有关(Buslov et al., 2001; Xiao et al., 2010)。两条缝合带中的蛇绿岩空间展布和时代不同,表明蛇绿岩中所存在的金刚石等超高压矿物可能具有全球意义。

2 铬铁矿中原位金刚石的发现

通过人工重砂选样,首先在西藏罗布莎康金拉铬铁矿和俄罗斯乌拉尔Ray-Iz铬铁矿的矿石样品中分别找到了数千粒金刚石(图 2)。由此估算,金刚石的含量达0.03 g/t,即平均在1 kg的铬铁矿中含1粒金刚石,如此高含量的铬铁矿石样品可用来寻找原位金刚石。方法是先将铬铁矿石样品切割成小块,镶嵌在环氧树脂中制成光片(图 3a),而不是制作成光薄片;再采用自动抛磨机(图 3b),直接从该矿石样品光片中寻找原位金刚石。在磨制和观察了相当于24000个面积为4 cm2的光片后,最终在西藏和乌拉尔的铬铁矿中找到了6粒原位金刚石,并在西藏的橄榄岩中找到了原位的碳硅石等强还原矿物。

图 2 西藏罗布莎康金拉块状铬铁矿中发现的微粒金刚石(杨经绥等, 2014b) Fig. 2 Microdiamonds discovered from the chromitites in the Luobusa ophiolite, Tibet(Yang et al., 2014b)

图 3 铬铁矿中原位金刚石的发现 Fig. 3 Discovery of in-suit diamonds from chromite

乌拉尔Ray-Iz块状铬铁矿矿石中的原位金刚石为完好自形晶,粒度约0.5 mm,产在铬铁矿颗粒中,其周缘为非晶质碳包裹(图 4a4b)。成分扫描图显示非晶质碳呈散开状分布,在铬铁矿颗粒中多处可见(Yang et al., 2014a, 2015a; Yang et al., 2005b)。

Dia—金刚石;Chr—铬铁矿;Oli—橄榄石;红色为金刚石,黄色为非晶质碳
a、b—乌拉尔,Ray-Iz铬铁矿床;c、d—中国西藏,罗布莎铬铁矿床
图 4 显微镜下铬铁矿中原位金刚石和C元素成分面扫描图像(Yang et al., 2014a, 2015a) Fig. 4 Microphotos showing in-situ diamonds and carbon composition mapping (Yang et al., 2014a, 2015a)

西藏康金拉块状铬铁矿的矿石(样品07Y-454)中的原位金刚石为自形晶,显微镜单偏光下见到八面体突起的锥状体,视域中的金刚石直径约0.3 mm,周围被碳质包围(图 4c4d)。面扫描成分图显示金刚石为纯碳元素,其周边的碳质形成一个直径约0.5 mm的碳囊。碳囊中C的含量略低,其中有铬铁矿的棱角状小块体。

金刚石的产出和包裹体的特性表明它们是从一种富C的流体中结晶,流体与铬铁矿结晶时间相近。铬铁矿中原位金刚石的发现,不仅证明金刚石为天然产出,还表明蛇绿岩中的铬铁矿有可能为深地幔成因,并被证明形成于斯石英相(深度>380 km)(Yamamoto et al., 2009),不同于已有的铬铁矿浅部成因的观点(Zhou et al., 1996Arai et al., 1997)。

3 蛇绿岩中金刚石的C同位素和包裹体特征

蛇绿岩中的金刚石和碳硅石(SiC)是两种主要的含C矿物,分别为高压相和强还原条件下的矿物。它们的C同位素是决定C来源的重要指示。碳同位素分析分别在德国的波茨坦地学研究中心(GFZ)SIMS(二次离子质谱)实验室和澳大利亚西澳大学的SIMS实验室完成。分析结果表明,不同产地的蛇绿岩铬铁矿和地幔橄榄岩中的金刚石具有相似C同位素特征,δ13C变化于-18‰~-28‰之间(Yang et al., 2015a; Lian et al., 2018),与碳硅石的C同位素结果十分一致(Trumbull et al., 2009),不同于金伯利岩中来自地幔的金刚石(δ13C变化于-4‰~-8‰之间)和俯冲带变质榴辉岩中的金刚石(δ13C变化于-5‰~-18‰之间)(Cartigny et al., 2001; Cartigny, 2005)(图 5),因此认为蛇绿岩地幔橄榄岩和铬铁矿中金刚石的碳来源于俯冲下去的壳源物质。

图 5 西藏和俄罗斯极地乌拉尔蛇绿岩铬铁矿中不同产出类型金刚石的C同位素特征(数据引自Yang et al., 2015aCartigny, 2005) Fig. 5 Characteristics of carbon isotopes for different types of diamonds in ophiolitic chromite from Tibet and Ural. (Data are cited from Yang et al., 2015a; Cartigny, 2005)

金刚石中的矿物包裹体研究在德国波茨坦地学研究中心聚焦离子束(FIB)和透射电镜(TEM)实验室完成。结果在金刚石中发现了一些特殊的包裹体,包括Ni-Mn-Co合金,锰尖晶石、锰橄榄石和锰石榴石等含Mn的系列矿物(图 6),不同于金伯利岩金刚石中的包裹体,后者以出现镁橄榄石、镁铝榴石和铬尖晶石为特征;也不同于超高压变质金刚石中的矿物组合,但与现代大洋和蛇绿岩锰矿床中的矿物组合可以对比(Nakagawa et al., 2011)。

Mn-ga—锰石榴石;diamond—金刚石;Mn-ol—锰橄榄石;MnO—氧化锰;NiMnCo—锰金属合金
a—罗布莎铬铁矿中金刚石中的高Mn矿物包裹体;b—俄罗斯乌拉尔铬铁矿中金刚石中的柯石英(coesite)包裹体
图 6 蛇绿岩铬铁矿金刚石中的矿物包裹体 Fig. 6 Mineral inclusions in diamonds from ophiolitic chromitites

鉴于蛇绿岩中产出的金刚石不同于金伯利岩型金刚石和俯冲带变质成因的金刚石,认为蛇绿岩地幔橄榄岩中的金刚石是一种新的金刚石产出类型,建议命名为“蛇绿岩型金刚石”,或具有产地特色的“罗布莎型金刚石”(杨经绥等, 2011a, 2013)。

4 发现呈斯石英假象的柯石英和新矿物——青松矿(BN)

在罗布莎蛇绿岩铬铁矿床中发现典型的超高压矿物柯石英和蓝晶石,二者呈针柱状集合体产在钛铁合金颗粒的边部(图 7a)。研究表明,柯石英呈现的柱状外形仅是个假象,其内部是由不同排列方向的多个柯石英晶体组成(图 7b)。实验岩石学表明柯石英的高压相变矿物是斯石英,其特点是具有柱状外形,形成条件T=1000 ℃,P>9 GPa。由此推测该柯石英是由更高压相的斯石英在降压的环境中相变形成,不同于造山带中常见的板块俯冲增压过程中形成的柯石英(Yang et al., 2007; Liou et al., 2009)。

Coes—柯石英;Ky—蓝晶石;BN—青松矿;TiN—氮化钛;Fe—单质铁;cBN—立方晶系青松矿
a—西藏罗布莎铬铁矿中的TiFe合金;b—TiFe合金边部的呈斯石英假象的柯石英与蓝晶石交生;c—柯石英颗粒TEM图像,纳米级的立方晶系青松矿呈包裹体产在柯石英中,指示形成压力>10GPa (Yang et al., 2007; Dobrzhinetskaya et al., 2014);d—纳米级青松矿呈包裹体产于柯石英的氮化钛中
图 7 西藏罗布莎铬铁矿中的TiFe合金显微图像 Fig. 7 Microscopic images of TiFe alloy in the Luobusa chromitite

经进一步研究,在该柯石英中发现了合金矿物氮化硼(BN)(图 7c7d),国际新矿物委员会2013年批准该矿物为新矿物,命名为青松矿(Qingsongite)(批准号:IMA No. 2013-30)。青松矿是为了纪念中国地质科学院地质研究所的方青松研究员(1939—2010)而命名的新矿物,他在西藏罗布莎金刚石的发现中做出了杰出贡献。实验结果表明,青松矿的形成温度为1300 ℃,压力为10~15 GPa,即形成深度大于300 km (Dobrzhinetskaya et al., 2014)。

5 成因模式和新的科学问题

自蛇绿岩地幔橄榄岩和铬铁矿中发现金刚石等超高压矿物以来,国内外同行高度关注并开展合作研究,取得了一些重要进展(Dobrzhinetskaya et al., 2009; Yamamoto et al., 2009; Liou et al., 2014; Howell et al., 2015; Griffin et al., 2016; Rollinson, 2016; Moe et al., 2018)。另一方面,国际上一些团队也在开展有关的独立研究。例如,近期在雅鲁藏布江缝合带西段印度境内的Nidar蛇绿岩地幔橄榄岩中,新发现了金刚石和柯石英等超高压矿物以及其他深部成因证据,提出深部矿物来自地幔过渡带深度(Das et al., 2015, 2017)。该成果不仅为全球蛇绿岩中产出金刚石等超高压矿物增添了一个新的产地,还佐证了西藏雅鲁藏布江蛇绿岩含金刚石等超高压矿物带的西延。尤其有关蛇绿岩中金刚石和强还原矿物的成因及其侵位过程的讨论,引起国际上许多学者的兴趣,提出了不同的构造模式或计算机建模(Arai, 2013; Zhou et al., 2014; Griffin et al., 2016; Rollinson, 2016; Butler and Beaumont, 2017),或通过相关的高温高压实验岩石学研究,探讨和限制深部矿物及铬铁矿形成的物理化学条件(Wu et al., 2016; Zhang et al., 2017b)。而一个新事物的出现,不同观点的碰撞也是不可避免的,有兴趣可参看有关文章(Ballhaus et al., 2017; Yang et al., 2018a, 2019a; de-Pablo et al., 2018; Yang et al., 2019a; Litasov et al., 2019; Yang et al., 2020; Lian and Yang, 2019; Yang et al., 2020),这里就不再展开叙述。

5.1 蛇绿岩中深部矿物的成因模式

以上研究表明,蛇绿岩地幔橄榄岩中可能普遍含金刚石等深部矿物,它们的C同位素和成分特征表明,其物源可能是早期俯冲到地幔过渡带(410~660 km)或更深部的壳源物质。另一方面,作为金刚石等超高压矿物的寄主岩石地幔橄榄岩和铬铁矿也或多或少保留了曾经历过来自地幔深部超高压环境的证据(Yamamoto et al., 2009; Griffin et al., 2016; Zhang et al., 2016, 2017bDas et al., 2017)。这些成果不仅质疑了蛇绿岩地幔橄榄岩(即大洋地幔橄榄岩)来自浅部地幔的经典板块构造理论,重要的是,由此打开了研究俯冲物质深地幔再循环的新窗口。

这里提出了一个蛇绿岩中超高压矿物形成和侵位模式,简述如下。

在板块的汇聚边界深海沟,俯冲下去的地壳物质会携带大量的流体和U、Th、Pb等放射性物质(卢焕章,2019)。在地幔过渡带(410~660 km)深度,由于放射性生热和流体的作用,俯冲岩片被肢解和熔融,加入到周围的强还原熔体或流体中。与此同时,地幔物质在过渡带也将发生高度熔融,Cr等成矿元素从岩石矿物中释放。熔融物质上涌到过渡带顶部时,随温压等物理化学条件的改变,金刚石等超高压相矿物开始结晶并进入铬铁矿的稳定区,实验岩石学研究证实铬铁矿在14 GPa(约410 km深度)是稳定的(Wu et al., 2016)。之后,随地幔对流和地幔柱上涌,携带金刚石的铬铁矿和地幔岩石被带至浅部地幔。该过程中,深部强还原环境下形成的矿物一部分被保留,如金刚石和青松矿等;另一部分发生改变,如斯石英被相对低压相的柯石英替代,柯石英从高压相的高Si铬铁矿中出溶(图 8Yang et al., 2015b; Yamamoto et al., 2009)。在雅鲁藏布江缝合带西段印度境内Nidar蛇绿岩的地幔橄榄岩中最近也发现金刚石和柯石英,并认为来自地幔过渡带深度(Das et al., 2015, 2017)。

图 8 地幔对流和地幔柱上涌将深部形成的超高压和强还原矿物带回浅部地幔,其中包括早期深俯冲的壳源物质形成的矿物组合(Yang et al., 2015b) Fig. 8 A model to explain the presence of ophiolite-hosted diamonds in chromitites and mantle peridotites in MOR and BAB environments (Yang et al., 2015b)

关于蛇绿岩中铬铁矿的高压矿物的形成,也存在不同的成因解释。例如,有研究者认为是浅部形成的铬铁矿随俯冲岩片到达地幔过渡带,经历了深部变质作用,形成金刚石和高压铬铁矿,它们再通过深部地幔对流至浅部(Arai,2013Griffin et al., 2016),或由于洋内俯冲岩片的断离,深部物质上涌,携带超高压矿物进入浅部成因的铬铁矿(Zhou et al., 2014Robinson et al., 2015)。有关讨论这里不再详细展开,有兴趣的读者可参阅上述有关文献。

5.2 新的科学问题

蛇绿岩中发现深部矿物引发了新的科学问题,提出了新的研究方向。

5.2.1 记录板片俯冲达到的深度

地震层析资料显示俯冲板片可以到达地幔过渡带深度(Zhao and Ohtani, 2009),甚至到达下地幔直至核幔边界(Grand et al., 1997Rubie and Van der Hilst, 2001)。另一方面,也有研究者通过高温高压实验研究,模拟俯冲板片到达的深度及相应的压力矿物组合(Li et al., 2017Sun et al., 2018)。例如,毛河光先生的研究团队近年通过实验,认为核幔边界存在含氢过氧化铁矿物(FeO2HX),可用以解释核幔边界超低速带的成因(Liu et al., 2017; Mao et al., 2017)。蛇绿岩地幔橄榄岩中发现的高压矿物形成于深部地幔,记录了矿物形成时的压力和深度等物理化学条件,由此提供俯冲板片到达深度的矿物学证据。

5.2.2 探讨俯冲物质从深部地幔回到浅部的轨迹

实验岩石学和数字模拟研究表明,俯冲岩片在地幔过渡带会发生脱水和变质反应等作用,产生新的矿物组合,后者通过地幔对流上升到浅部地幔(Bercovici and Karato, 2003)。研究认为,俯冲到核幔边界的岩片,与地核之间存在巨大的温差,同样也会被肢解,产生流体和新的含水矿物,成为地幔柱的组成部分,上涌到地表,并认为深部地幔柱与浅部的大火成岩省空间的对应就是佐证(Hirose et al., 1999; Torsvik et al., 2010)。地幔中的早期壳源物质,在深部形成压力矿物后,随地幔柱或地幔对流从深部地幔回到地表的途中,矿物随温压条件的改变产生了相变,记录了运动的轨迹,例如上述提到的,从斯石英到柯石英的相变,以及高压铬铁矿中柯石英的出溶。

5.2.3 探讨板块运动动力学的新途径

根据板块运动理论,板块之间不断发生水平位移,它们的离散和分开形成了大洋,它们的汇聚与碰撞又形成山脉。但对板块运动的驱动力一直争议很大,认为其动力源来自海底的扩张,或来自下沉板片的拖曳作用;随着地震层析资料的丰富和大洋板块研究的深入,又提出地幔柱为板块的驱动力(例如,Courtillot et al., 2003李三忠等,2019)。蛇绿岩地幔岩中存在俯冲地壳物质,研究它们从深部地幔运移到浅部的路径和规律,有可能为探讨板块运动的动力学机制提供新的思考和途径。

5.2.4 追寻板块扩张和俯冲作用的起始时间

发生在现代大洋中脊的海底扩张和深海沟的板片俯冲作用是板块构造的经典表现,规模浩大,经久不衰,甚至可以追溯到古元古代和太古代(Dilek and Furnes, 2011Deng et al., 2019)。板块作用最早究竟从何时开始,尽管存在很大的争议,证据也不尽相同(Furnes et al., 2007; Tang et al., 2016Condie, 2018; Liu et al., 2019),但古洋壳蛇绿岩的存在无疑是海底扩张的关键证据。因此,如果能够从早期蛇绿岩地幔岩中找到俯冲下去的地壳物质,则将为更早的板片俯冲作用的存在提供重要证据。

6 研究展望

蛇绿岩地幔岩石中超高压矿物的新发现和研究成果,引起了全球蛇绿岩和金刚石问题研究者的关注,获得了国际地科联(IUGS)批准,启动了国际地球科学IGCP 649项目(Diamonds and Crustal Minerals in Ophiolitic Peridotites: Global Models for Mantle Dynamics)。该项目核心问题是“Diamonds and Recycled Mantle”(金刚石及地幔再循环)。项目组举办了塞浦路斯、古巴、新喀里多尼亚和阿曼等全球多个著名蛇绿岩的研讨会和野外考察,这些研究无疑将促进板块深俯冲和深地幔作用的研究和认识,有兴趣可参看有关报道(Yang et al., 2016, 2017, 2019b; Yang and Shen, 2018b; Niu et al., 2020)。

纵观这些年有关蛇绿岩中深地幔矿物的研究,虽然取得了一些突破性的进展,但总的来看,目前仍属起步阶段。对全球蛇绿岩中深地幔矿物的调查和研究还远远不够,对深地幔矿物的成因和侵位过程以及机制还知之甚少,尤其要达到理论上的突破,不仅仅需要借助高新技术开展更微观的观察和分析,还需要结合实验岩石学和计算机模拟。在此,借用著名蛇绿岩专家、美国科学院院士Robert Coleman教授的一个评论(Coleman, 2014),作为本文的结语:“最近在西藏蛇绿岩豆荚状铬铁矿中发现具有壳源同位素特征的金刚石和其他超高压矿物包裹体,开启了研究岩石圈中蛇绿岩地幔岩演化的一个全新的研究领域。通过俯冲作用进入地幔的蛇绿岩橄榄岩经历的地壳物质再循环的证据给地球科学界提供了一个极具挑战性的新的研究机遇。”

期待有更多感兴趣的研究者加入蛇绿岩深地幔矿物的研究,相信在不远的将来,深地幔矿物的研究将成为解开板块的深俯冲作用和深地幔物质循环之谜的一把钥匙。

致谢: 感谢张洪福院士及匿名审稿人对本文提出的宝贵意见及建议。感谢邢树文先生、胡健民先生的约稿和编辑部的细心工作。感谢学生王韵和李观龙协助整理图件和文献。

参考文献/References
ARAI S, 1997. Origin of podiform chromitites[J]. Journal of Asian Earth Sciences, 15(2-3): 303-310. DOI:10.1016/S0743-9547(97)00015-9
ARAI S, 2013. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling:A good inference[J]. Earth and Planetary Science Letters, 379: 81-87. DOI:10.1016/j.epsl.2013.08.006
BAI W J, ZHOU M F, ROBINSON P T, 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet[J]. Canadian Journal of Earth Sciences, 30(8): 1650-1659. DOI:10.1139/e93-143
BALLHAUS C, WIRTH R, FONSECA R O C, et al., 2017. Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes[J]. Geochemical Perspectives Letters, 5: 42-46.
BERCOVICI D, KARATO S I, 2003. Whole-mantle convection and the transition-zone water filter[J]. Nature, 425(6953): 39-44. DOI:10.1038/nature01918
BUSLOV M M, SAPHONOVA Y I, WATANABE T, et al., 2001. Evolution of the paleo-asian ocean (altai-sayan region, central asia) and collision of possible gondwana-derived terranes with the southern marginal part of the siberian continent[J]. Geosciences Journal, 5(3): 203-224.
BUTLER J P, BEAUMONT C, 2017. Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases[J]. Earth and Planetary Science Letters, 463: 101-117. DOI:10.1016/j.epsl.2017.01.025
CARTIGNY P, 2005. Stable isotopes and the origin of diamond[J]. Elements, 1(2): 79-84. DOI:10.2113/gselements.1.2.79
CARTIGNY P, DE CORTE K, SHATSKY V S, et al., 2001. The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan:a nitrogen and carbon isotopic study[J]. Chemical Geology, 176(1-4): 265-281. DOI:10.1016/S0009-2541(00)00407-1
CHICHEST INC, 1997. There are no primary or residual diamonds in the mantle peridotite of Lobusa or Dongqiao, Tibet[J]. Tibet Geology, (1): 103-112. (in Chinese)
COLEMAN R G, 2014. The ophiolite concept evolves[J]. Elements, 10(2): 82-84. DOI:10.2113/gselements.10.2.82
CONDIE K C, 2018. A planet in transition:The onset of plate tectonics on Earth between 3 and 2 Ga?[J]. Geoscience Frontiers, 9(1): 51-60. DOI:10.1016/j.gsf.2016.09.001
COURTILLOT V, DAVAILLE A, BESSE J, et al., 2003. Three distinct types of hotspots in the Earth's mantle[J]. Earth and Planetary Science Letters, 205(3-4): 295-308. DOI:10.1016/S0012-821X(02)01048-8
DAS S, BASU A R, MUKHERJEE B K, 2017. In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone[J]. Geology, 45(8): 755-758.
DAS S, MUKHERJEE B K, BASU A R, et al., 2015. Peridotitic minerals of the Nidar Ophiolite in the NW Himalaya:sourced from the depth of the mantle transition zone and above[J]. Geological Society, London, Special Publications, 412(1): 271-286. DOI:10.1144/SP412.12
DE PABLO J F, PROENZA J A, GONZÁLEZ-JIMÉNEZ J M, et al., 2018. A shallow origin for diamonds in ophiolitic chromitites[J]. Geology, 47(1): 75-78.
DENG Z B, CHAUSSIDON M, GUITREAU M, et al., 2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes[J]. Nature Geoscience, 12(9): 774-778. DOI:10.1038/s41561-019-0407-6
DILEK Y, FURNES H, 2011. Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 123(3-4): 387-411. DOI:10.1130/B30446.1
DILEK Y, FURNES H, 2014. Ophiolites and their origins[J]. Elements, 10(2): 93-100. DOI:10.2113/gselements.10.2.93
DOBRZHINETSKAYA L F, WIRTH R, YANG J S, et al., 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(46): 19233-19238. DOI:10.1073/pnas.0905514106
DOBRZHINETSKAYA L F, WIRTH R, YANG J S, et al., 2014. Qingsongite, natural cubic boron nitride:the first boron mineral from the Earth's mantle[J]. American Mineralogist, 99(4): 764-772. DOI:10.2138/am.2014.4714
DRESSER J A, 1913. Preliminary report on the serpentine and associated rocks of southern Quebec[R]. Geological Survey of Canada, 103. DOI: 10.1017/S0016756800153531.
FURNES H, DE WIT M, STAUDIGEL H, et al., 2007. A vestige of earth's oldest ophiolite[J]. Science, 315(5819): 1704-1707. DOI:10.1126/science.1139170
GASS I G, 1968. Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor?[J]. Nature, 220(5162): 39-42. DOI:10.1038/220039a0
GRAND S P, VAN DER HILST R D, WIDIYANTORO S, 1997. Global Seismic Tomography:A Snapshot of Convection in the Earth[J]. Geological Society of America Today, 7(4): 1-7.
GRIFFIN W L, AFONSO J C, BELOUSOVA E A, et al., 2016. Mantle recycling:transition zone metamorphism of tibetan ophiolitic peridotites and its tectonic implications[J]. Journal of Petrology, 57(4): 655-684. DOI:10.1093/petrology/egw011
HIROSE K, FEI Y W, MA Y Z, et al., 1999. The fate of subducted basaltic crust in the Earth's lower mantle[J]. Nature, 397(6714): 53-56. DOI:10.1038/16225
HOWELL D, GRIFFIN W L, YANG J S, et al., 2015. Diamonds in ophiolites:Contamination or a new diamond growth environment?[J]. Earth and Planetary Science Letters, 430: 284-295. DOI:10.1016/j.epsl.2015.08.023
HUANG Z, YANG J S, ROBINSON P T, et al., 2015. The Discovery of diamonds in chromitites of the hegenshan Ophiolite, inner Mongolia, China[J]. Acta Geologica Sinica (English Edition), 892(2): 341-350.
LAMBERT I B, WYLLIE P J, 1970. Low-velocity zone of the Earth's mantle:incipient melting caused by water[J]. Science, 169(3947): 764-766. DOI:10.1126/science.169.3947.764
LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-cenozoic tectonic evolution and plate reconstruction of the pacific plate[J]. Journal of Geomechanics, 25(5): 642-677. DOI:10.12090/j.issn.1006-6616.2019.25.05.060
LI Z Y, LI J, LANGE R, et al., 2017. Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle[J]. Earth and Planetary Science Letters, 457: 395-402. DOI:10.1016/j.epsl.2016.10.027
LIAN D Y, YANG J S, DILEK Y, et al., 2017. Deep mantle origin and ultra-reducing conditions in podiform chromitite:Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey[J]. American Mineralogist, 102(5): 1101-1113.
LIAN D Y, YANG J S, WIEDENBECK M, et al., 2018. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti-Karsanti chromitite, Turkey[J]. Contributions to Mineralogy and Petrology, 173: 72. DOI:10.1007/s00410-018-1499-5
LIAN D Y, YANG J S, LIU F, et al., 2019. Diamond Classification, Compositional Characteristics, and Research Progress:A Review[J]. Earth Science, 044(010): P.3409-3453.
LIAN D Y, YANG J S, 2019. Ophiolite-Hosted Diamond:A New Window for Probing Carbon Cycling in the Deep Mantle[J]. Engineering, 5(3): 351-594. DOI:10.1016/j.eng.2019.05.002
LIOU J G, ERNST W G, ZHANG R Y, et al., 2009. Ultrahigh-pressure minerals and metamorphic terranes-The view from China[J]. Journal of Asian Earth Sciences, 35(3-4): 199-231. DOI:10.1016/j.jseaes.2008.10.012
LIOU J G, TSUJIMORI T, YANG J S, et al., 2014. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths:a review[J]. Journal of Asian Earth Sciences, 96: 386-420. DOI:10.1016/j.jseaes.2014.09.011
LITASOV K D, KAGI H, VOROPAEV S A, et al., 2019. Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites:Assessing the role of contamination by synthetic materials[J]. Gondwana Research, 75: 16-27. DOI:10.1016/j.gr.2019.04.007
LIU H, SUN W D, ZARTMAN R, et al., 2019. Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago[J]. Nature Communications, 10: 3408. DOI:10.1038/s41467-019-11329-z
LIU J, HU Q Y, KIM D Y, et al., 2017. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones[J]. Nature, 551(7681): 494-497. DOI:10.1038/nature24461
LU H Z, 2019. Geofluids and across earth sphere structures[J]. Journal of Geomechanics, 25(6): 1003-1012. DOI:10.12090/j.issn.1006-6616.2019.25.06.083
MAO H K, HU Q Y, YANG L X, et al., 2017. When water meets iron at Earth's core-mantle boundary[J]. National Science Review, 4(6): 870-878. DOI:10.1093/nsr/nwx109
MOE K S, YANG J S, JOHNSON P, et al., 2018. Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite[J]. Lithosphere, 10(1): 133-141.
NAKAGAWA M, SANTOSH M, MARUYAMA S, 2011. Manganese formations in the accretionary belts of Japan:Implications for subduction-accretion process in an active convergent margin[J]. Journal of Asian Earth Sciences, 42(3): 208-222. DOI:10.1016/j.jseaes.2011.04.005
NICOLAS A, 1989. Structures of ophiolites and dynamics of oceanic lithosphere[M]. Netherlands: Springer, 367.
NIU X L, YANG J S, NASIR S, et al., 2020. A trip through Oceanic Lithosphere:2019 international workshop and field trip of IGCP 649 in Muscat, Oman[J]. Episodes, 43: 1-8.
ROBINSON P T, BAI W J, MALPAS J, et al., 2004. Ultrahigh-pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications[J]. Geological Society, London, Special Publication, 226(1): 247-271. DOI:10.1144/GSL.SP.2004.226.01.14
ROBINSON P T, TRUMBULL R B, SCHMITT A, et al., 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites[J]. Gondwana Research, 27(2): 486-506. DOI:10.1016/j.gr.2014.06.003
ROLLINSON H, 2016. Surprises from the top of the mantle transition zone[J]. Geology Today, 32(2): 58-64.
RUBIE D C, VAN DER HILST R D, 2001. Processes and consequences of deep subduction:introduction[J]. Physics of the Earth and Planetary Interiors, 127(1-4): 1-7. DOI:10.1016/S0031-9201(01)00217-5
ŞENGöR A M C, 1979. Mid-Mesozoic closure of Permo-Triassic tethys and its implications[J]. Nature, 279(5714): 590-593. DOI:10.1038/279590a0
SHILO N A, KAMINSKIY F V, PALANDZHYAN S, et al., 1978. First diamond finds in Alpine-type ultrabasic rocks in the Northeastern USSR[J]. Doklady Earth Sciences, 241: 179-182.
SUN W D, HAWKESWORTH C J, YAO C, et al., 2018. Carbonated mantle domains at the base of the Earth's transition zone[J]. Chemical Geology, 478: 69-75. DOI:10.1016/j.chemgeo.2017.08.001
TANG M, CHEN K, RUDNICK R L, 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics[J]. Science, 351(6271): 372-375. DOI:10.1126/science.aad5513
TAYLOR W R, MILLEDGE H J, GRIFFIN B J, et al., 1995. Characteristics of microdiamonds from ultramafic massifs in Tibet:authentic ophiolitic diamonds or contamination? Sixth international kimberlite conference; extended abstracts[J]. Proceedings of the International Kimberlite Conference, 6: 623-624.
TIAN Y Z, YANG J S, ROBINSON P T, et al., 2015. Diamond discovered in High-Al chromitites of the sartohay ophiolite, Xinjiang province, China[J]. Acta Geologica Sinica (English Edition), 89(2): 332-340. DOI:10.1111/1755-6724.12433
TORSVIK T H, BURKE K, STEINBERGER B, et al., 2010. Diamonds sampled by plumes from the core-mantle boundary[J]. Nature, 466(7304): 352-355. DOI:10.1038/nature09216
TRUMBULL R B, YANG J S, ROBINSON P T, et al., 2009. The carbon isotope composition of natural SiC (moissanite) from the Earth's mantle:New discoveries from ophiolites[J]. Lithos, 113(3-4): 612-620. DOI:10.1016/j.lithos.2009.06.033
WU W W, YANG J S, MA C Q, et al., 2017. Discovery and significance of diamonds and Moissanites in Chromitite within the Skenderbeu massif of the Mirdita zone Ophiolite, west Albaznia[J]. Acta Geologica Sinica (English Edition), 91(3): 882-897. DOI:10.1111/1755-6724.13316
WU Y, XU M J, JIN Z M, et al., 2016. Experimental constraints on the formation of the Tibetan podiform chromitites[J]. Lithos, 245: 109-117. DOI:10.1016/j.lithos.2015.08.005
XIAO W J, HUANG B C, HAN C M, et al., 2010. A review of the western part of the Altaids:A key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 18(2-3): 253-273. DOI:10.1016/j.gr.2010.01.007
XIONG F H, YANG J S, ROBINSON P T, et al., 2017. Diamonds discovered from High-Cr Podiform chromitites of Bulqiza, eastern Mirdita Ophiolite, Albania[J]. Acta Geologica Sinica (English Edition), 91(2): 455-468. DOI:10.1111/1755-6724.13111
XU X Z, YANG J S, BA D Z, et al., 2008. Diamond discovered from the Kangjinla chromitite in the Yarlung Zangbo ophiolite belt, Tibet[J]. Acta Petrologica Sinica, 24(7): 7. (in Chinese with English abstract)
XU X Z, YANG J S, CHEN S Y, et al., 2009. Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet[J]. Journal of Earth Sciences, 20(2): 284-302.
XU X Z, YANG J S, ROBINSON P T, et al., 2015. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 27(2): 686-700. DOI:10.1016/j.gr.2014.05.010
YAMAMOTO S, KOMIYA T, HIROSE K, et al., 2009. Coesite and clinopyroxene exsolution lamellae in chromites:In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 109(3-4): 314-322. DOI:10.1016/j.lithos.2008.05.003
YANG J S, DILEK Y, ROBINSON P T, 2014a. Diamonds in ophiolites:a little-known diamond occurrence[J]. Elements, 10: 123-126.
YANG J S, DOBRZHINETSKAYA L, BAI W J, et al., 2007. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 35(10): 875-878. DOI:10.1130/G23766A.1
YANG J S, LIAN D Y, ROBINSON P T, et al., 2019a. Comment on "A shallow origin for diamonds in ophiolitic chromitites"[J]. Geology, 47(8): e475-e475. DOI:10.1130/G46446C.1
YANG J S, MENG F C, XU X Z, et al., 2015a. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 27(2): 459-485. DOI:10.1016/j.gr.2014.07.004
YANG J S, PEARCE J, DILEK Y, 2016. Probing the Troodos ophiolite:IGCP-649 workshop and field excursion held in Agros-Cyprus[J]. Acta Geologica Sinica (English Edition), 90(3): 1041-1044. DOI:10.1111/1755-6724.12744
YANG J S, QIU T, CASTRO A I L, 2017. Report on the third IGCP-649 international workshop on the mayarí-baracoa ophiolites and chromitites, cuba[J]. Acta Geologica Sinica (English Edition), 91(6): 2305-2309. DOI:10.1111/1755-6724.13466
YANG J S, ROBINSON P T, DILEK Y, 2015b. Diamond-bearing ophiolites and their geological occurrence[J]. Episodes, 38(4): 344-364. DOI:10.18814/epiiugs/2015/v38i4/82430
YANG J S, SHEN T T, 2018b. IGCP-649 project held 2018 international workshop and field trip in Brisbane, Australia and New Caledonia[J]. Episodes, 41(4): 259-265. DOI:10.18814/epiiugs/2018/v41i4/005
YANG J S, SHEN T T, ZHANG C, et al., 2019b. Preface:introduction of IGCP 649 project-diamonds and recycled mantle[J]. Journal of Earth Science, 30(3): 429-430. DOI:10.1007/s12583-019-1229-6
YANG J S, SIMAKOV S K, MOE K, et al., 2020. Comment on "Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites:Assessing the role of contamination by synthetic materials" by Litasov et al., 2019[J]. Gondwana Research, 79: 301-303. DOI:10.1016/j.gr.2019.09.010
YANG J S, TRUMBULL R B, ROBINSON P T, et al., 2018a. Comment on "Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes"[J]. Geochemical Perspectives Letters, 8: 6-7. DOI:10.7185/geochemlet.1820
YANG J S, XU X Z, BAI W J, et al., 2014B. Features of diamond in ophiolite[J]. Acta Petrologica Sinica, 30(8): 2113-2124. (in Chinese with English abstract)
YANG J S, XU X Z, LI Y, et al., 2011A. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet:A proposal for a new type of diamond occurrence[J]. Acta Petrologica Sinica, 27(11): 3171-3178. (in Chinese with English abstract)
YANG J S, XU X Z, LI Y, et al., 2011B. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet and its implications[J]. Acta Petrologica Sinica, 27(11): 3207-3222. (in Chinese with English abstract)
YANG J S, XU X Z, ZHANG Z M, et al., 2013. Ophiolite-type diamond and deep genesis of chromitite[J]. Acta Geoscientia Sinica, 34(6): 643-653. (in Chinese with English abstract)
ZHANG R Y, SHAU Y H, YANG J S, et al., 2017a. Discovery of clinoenstatite in the Luobusa ophiolitic mantle peridotite recovered from a drill hole, Tibet[J]. Journal of Asian Earth Sciences, 145: 605-612. DOI:10.1016/j.jseaes.2017.07.003
ZHANG R Y, YANG J S, ERNST W G, et al., 2016. Discovery of in situ super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet:New insights into the deep upper mantle and mantle transition zone[J]. American Mineralogist, 101(5-6): 1285-1294.
ZHANG Y F, JIN Z M, GRIFFIN W L, et al., 2017b. High-pressure experiments provide insights into the Mantle Transition Zone history of chromitite in Tibetan ophiolites[J]. Earth and Planetary Science Letters, 463: 151-158. DOI:10.1016/j.epsl.2017.01.036
ZHAO P D, OHTANI E, 2009. Deep slab subduction and dehydration and their geodynamic consequences:evidence from seismology and mineral physics[J]. Gondwana Research, 16(3-4): 401-413. DOI:10.1016/j.gr.2009.01.005
ZHOU M F, ROBINSON P T, MALPAS J, et al., 1996. Podiform chromitites in the Luobusa Ophiolite (southern Tibet):implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 37(1): 3-21. DOI:10.1093/petrology/37.1.3
ZHOU M F, ROBINSON P T, SU B X, et al., 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits:The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 26(1): 262-283. DOI:10.1016/j.gr.2013.12.011
李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报, 25(5): 642-677. DOI:10.12090/j.issn.1006-6616.2019.25.05.060
连东洋, 杨经绥, 刘飞, 等, 2019. 金刚石分类, 组成特征以及我国金刚石研究展望[J]. 地球科学, 044(010): P.3409-3453.
卢焕章, 2019. 地球中的流体和穿越层圈构造[J]. 地质力学学报, 25(6): 1003-1012. DOI:10.12090/j.issn.1006-6616.2019.25.06.083
切切斯特钻石公司考察团, 1997. 西藏罗布莎和东巧地幔橄榄岩中不存在原生或残留的金刚石[J]. 西藏地质, (1): 103-112.
徐向珍, 杨经绥, 巴登珠, 等, 2008. 雅鲁藏布江蛇绿岩带的康金拉铬铁矿中发现金刚石[J]. 岩石学报, 24(7): 1453-1462.
杨经绥, 徐向珍, 李源, 等, 2011a. 西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石:蛇绿岩型金刚石分类的提出[J]. 岩石学报, 27(11): 3171-3178. DOI:10.1016/S1002-0160(11)60127-6
杨经绥, 徐向珍, 李源, 等, 2011b. 西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石及其意义[J]. 岩石学报, 27(11): 3207-3222.
杨经绥, 徐向珍, 张仲明, 等, 2013. 蛇绿岩型金刚石和铬铁矿深部成因[J]. 地球学报, 34(6): 643-653.
杨经绥, 徐向珍, 白文吉, 等, 2014b. 蛇绿岩型金刚石的特征[J]. 岩石学报, 30(8): 2113-2124.