地质力学学报  2020, Vol. 26 Issue (5): 615-633
引用本文
颜丹平, 孙铭, 巩凌霄, 周美夫, 邱亮, 李书兵, 张森, 古术航, 木红旭. 青藏高原东缘龙门山前陆逆冲带复合结构与生长[J]. 地质力学学报, 2020, 26(5): 615-633.
YAN Danping, SUN Ming, GONG Lingxiao, ZHOU Meifu, QIU Liang, LI Shubing, ZHANG Sen, GU Shuhang, MU Hongxu. Composite structure and growth of the Longmenshan foreland thrust belt in the eastern margin of the Qinghai-Tibet Plateau[J]. Journal of Geomechanics, 2020, 26(5): 615-633.
青藏高原东缘龙门山前陆逆冲带复合结构与生长
颜丹平1, 孙铭1, 巩凌霄1, 周美夫2, 邱亮1, 李书兵3, 张森1, 古术航1, 木红旭1    
1. 中国地质大学 (北京) 地质过程与矿产资源国家重点实验室, 北京 100083;
2. 香港大学地球科学系, 香港 999077;
3. 中石化集团西南油气分公司, 四川 成都 610000
摘要:位于青藏高原东缘的北东向龙门山逆冲带,研究已经证明是中生代与新生代前陆复合扩展和生长的结果。然而,2008年5·12汶川地震地表破裂、余震和滑坡等的单向和分段迁移现象,对龙门山复合逆冲带的结构认识提出了挑战。文章在已有研究成果基础上,针对龙门山复合生长下构建的特殊结构进行了野外调查和构造解析。结果表明,以中生代与新生代两期前陆逆冲带复合生长为基础,龙门山复合逆冲带具有特殊的、主要由前陆逆冲楔叠加后形成的复合结构,而且这种复合逆冲楔具有分级和时序特征;中生代前陆逆冲楔是以逆冲断层-褶皱为特征,并分别组合形成碧口厚皮逆冲推覆体、唐王寨薄皮逆冲推覆体和龙王庙逆冲推覆体,总体从晚三叠世以前开始,至~160 Ma向南递进扩展生长;新生代前陆逆冲楔由逆冲断层和逆冲岩片组成,分为约35~10 Ma和10 Ma以来两个阶段,向南东向递进扩展生长,并可能与川西盆地东侧龙泉山构造相连通。因此,龙门山逆冲带具有前陆逆冲带和生长过程的双重复合结构。
关键词龙门山前陆逆冲带    复合结构与生长    青藏高原东缘    前陆逆冲楔    汶川地震    
DOI10.12090/j.issn.1006-6616.2020.26.05.054     文章编号:1006-6616(2020)05-0615-19
Composite structure and growth of the Longmenshan foreland thrust belt in the eastern margin of the Qinghai-Tibet Plateau
YAN Danping1, SUN Ming1, GONG Lingxiao1, ZHOU Meifu2, QIU Liang1, LI Shubing3, ZHANG Sen1, GU Shuhang1, MU Hongxu1    
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China;
2. Department of Earth Sciences, University of Hong Kong, Hong Kong 999077, China;
3. Exploration and Development Institute, Southwest Oil and Gas Branch, China PetroChemical Corporation, Chengdu 610000, Sichuan, China
Abstract: It has been proved that the NE-trending Longmenshan thrust belt in the eastern margin of the Qinghai-Tibet Plateau was a composite of the expansion and growth of the Mesozoic and Cenozoic foreland thrust belts. However, puzzle is remained for the unidirectional and segmented migration of earth surface failures, aftershocks, and landslides of the Wenchuan earthquake on May 12, 2008. This puzzle challenges the understanding for the texture of the Longmenshan composite thrust belt. Based on the previous studies, this paper applied geological investigation and structural analysis focusing on a possible special texture produced by the composite growth of the Longmenshan thrust belt. The results reveal a composite texture produced by the growth of the Cenozoic foreland thrust belt superimposed over the Mesozoic foreland thrust belt with foundation of the composite thrust wedge. The composite thrust wedge could be graded with formational sequence. The Mesozoic foreland thrust wedges are characterized by thrust fault-related anticlines. Thrust complexes of Bikou, Tangwangzhai and Longwangmiao, which are combined by foreland thrust wedges, were initiated before the late Triassic (237 Ma) and terminated at ~160 Ma. The Cenozoic foreland thrust wedge is composed of thrust fault and sheet, and was staged produced by SE-ward progressive propagation at about 35~10 Ma and 10 Ma, respectively. This thrust wedge propagation might result in the Longquanshan uplift in the east of the western Sichuan basin. Therefore, the Longmenshan foreland thrust belt has characteristics of composite texture and composite growth.
Key words: Longmenshan foreland thrust belt    composite texture and growth    eastern margin of the Qinghai-Tibet Plateau    foreland thrust wedge    Wenchuan earthquake    
0 引言

位于青藏高原东缘的现代龙门山逆冲构造带呈北东走向,构成青藏高原东部松潘-甘孜地块与华南板块的地质、地貌和地球物理边界(四川省地质矿产局,1991许志琴等,1992国家汶川地震专家委员会,2008)。2008年5·12汶川地震后,龙门山逆冲构造带作为最为活跃的构造边界和青藏高原周缘生长的关键区域,成为全球构造地质学家研究逆冲构造与高原隆升和生长机制的重要地区(Sun et al., 2018)。

目前,关于龙门山逆冲构造的研究形成多种不同的认识。总结起来,早期罗志立(1984, 1991)提出了C型俯冲造成龙门山的崛起,强调是一种复杂构造背景基础上的板内俯冲模式控制了龙门山构造带的形成。随后,通过地震剖面解释和区域构造平衡分析得到的结果,提出了龙门山逆冲带的逆冲增厚与抬升模式(Hubbard and Shaw, 2009)。在青藏高原中下地壳通道流(Mid-lower crustal ductile channel flow)模式提出后,特别是汶川地震发生后,根据青藏高原东部地震波速度结构和不同圈层变形特征,先后提出了多种中下地壳通道流成因模式(Clark and Royden, 2000; Burchfiel et al., 2008; Bai et al., 2010颜丹平等,2010)。特别是2008年5·12汶川特大地震发生后,其地表破裂、地震余震,以及滑坡体均表现为指向北东的单向和分段式扩展,并终止于碧口逆冲推覆体以南(Huang et al., 2008; 国家汶川地震专家委员会,2008颜丹平等,2010)。

不同的构造认识模式反映了龙门山逆冲构造带结构和形成过程的复杂性。综合过去数十年的研究表明,学界普遍接受认为目前北东向的龙门山逆冲构造带中,在扬子板块西缘新元古代罗迪尼亚造山作用和古生代被大陆边缘基础上,先后发育中生代秦岭-大别造山带西南前陆扩展作用和青藏高原的向东和向南扩展和生长变形,表明龙门山逆冲构造带经历了多次的前陆扩展和生长过程(四川省地质矿产局,1991许志琴等,1992Burchfiel et al., 1995; Chen et al., 1995; Chen and Wilson, 1996; Zhou et al., 2002; Li et al., 2007; Yan et al., 2011, 2018a, 2018b)。因此,龙门山逆冲构造带本质上是一条复合前陆逆冲构造带。

本文在已有研究基础上,主要针对中生代以来的两次前陆逆冲扩展作用和复合过程,对龙门山前陆逆冲带的结构和生长展开研究。在充分总结、分析和利用已有相关构造成果基础上,特别是在2011年和2018年(Yan et al., 2011, 2018a)构造运动学模式基础上,根据新获得的部分构造资料和两件40Ar/39Ar年代学分析结果,解剖中生代和新生代两次前陆逆冲扩展的构造样式叠加和运动学过程改造和复合关系,提出了前陆逆冲楔复合和前陆逆冲带生长复合构造新模式。

1 区域地质背景

龙门山复合逆冲带北以阿尼玛卿-勉略缝合带与秦岭-大别造山带相隔,西以茂汶逆冲断层和岷山逆冲断层与松潘-甘孜地块相接,东则以灌县-安县断层与扬子板块(华南板块西部)西部的川西坳陷过渡(图 1)。

图 1 青藏高原东部与扬子板块西部区域构造图(Yan et al., 2018b;底图据四川省区域地质志,1991和黄崇轲,2001修改) Fig. 1 Geological map of the eastern Qinghai-Tibet Plateau and the western Yangtze block (Yan et al., 2018b; Base map is modified after SBGMR, 1991; Huang, 2001)
1.1 秦岭-大别造山带和阿尼玛卿-勉略缝合带

与龙门山复合逆冲带北部相邻的为秦岭-大别造山带西南部分。造山带中零星出露有太古宙—古元古代变质基底,变质作用一般达到麻粒岩相、角闪岩相和绿片岩相,其上不整合覆盖震旦纪冰碛砾岩和碳酸盐岩,以及古生代—中三叠世台地碳酸盐岩和碎屑岩,局部地区发育有白垩纪—新生代山间盆地砾岩沉积(Meng and Zhang, 2000; Li et al., 2015a, 2015b; Yan et al., 2018a, 2018b)。中生代晚三叠世—早侏罗世(220~180 Ma)花岗岩和岩脉侵位普遍发育(Zhou and Graham, 1996; Zhang et al., 2007; 吕崧等,2010; Wang et al., 2013)。秦岭-大别造山带西段以向北倾斜的逆冲断层和一系列逆冲岩片为主要特征,从东向西分别形成大巴山、米仓山和碧口等向南突出弧形逆冲构造系统(图 1Ratschbacher et al., 2003; Li et al., 2007, 2013, 2014)。

三叠纪阿尼玛卿-勉略缝合带总体为向北倾斜的弧形构造带,其中断续发育蛇绿混杂岩和高压变质岩,构成秦岭-大别造山带与松潘-甘孜地块的界线(Meng and Zhang, 2000; Ratschbacher et al., 2003; Zhang et al., 2004; Xu et al., 2008a),沿青川-平武断层发现的三叠纪蓝片岩带可能表明碧口地块卷入了缝合带中,因此缝合带可能是一条宽阔的构造带(图 1魏春景,1994Xu et al., 2020修改中)。阿尼玛卿-勉略缝合带大致沿走向东西延伸,至汉南杂岩以北东,通过镇巴逆冲构造带融入大巴山前陆逆冲带中。缝合带总体向北倾斜,倾角变化较大,主要由一系列古生代—三叠纪蛇绿混杂岩包括剪切带切割的蛇绿岩块、弧火山岩、古生代和前寒武纪岩石碎块组成(Meng and Zhang, 2000; Xu et al., 2008a; Liu et al., 2015)。阿尼玛卿-勉略缝合带中蛇绿岩碎块中硅质岩中的放射虫时代为早石炭世(Meng and Zhang, 2000),多种定年方法测得变质火山岩形成时间为242~220 Ma(Li et al., 2007)。因此,一般认为阿尼玛卿-勉略缝合带是华北—华南板块间古特提斯分支洋关闭和板块碰撞缝合的产物(Meng and Zhang, 2000; Zhang et al., 2004; Yan et al., 2011)。

1.2 松潘-甘孜地块

松潘-甘孜地块北以阿尼玛卿-勉略缝合带与秦岭-大别造山带分隔,向东与扬子板块间的界线即是龙门山复合逆冲带(Dewey et al., 1988; Burchfiel et al., 1989; Chang, 2000; Yin and Harrison, 2000; Zhang et al., 2004; Harrowfield and Wilson, 2005; Xu et al., 2008a; Yan et al., 2018a, 2018b)。松潘-甘孜地块总体为一个三角形态,西从帕米尔、昆仑山造山带以南延伸至华南板块以西,其实质上是二叠纪—三叠纪古特提斯造山带的组成部分(图 1Burchfiel et al., 1995; Cao et al., 2015)。

松潘-甘孜地块最具特色的是发育有5~15 km厚的三叠纪西康群复理石(Rao et al., 1987; Mattauer et al., 1992; Nie et al., 1994; Zhou and Graham, 1996; Bruguier et al., 1997; Chang, 2000; Roger et al., 2008; Zhang et al., 2008; Zhou et al., 2008)。对于这套复理石碎屑物质来源,相关学者进行了大量的研究。综合研究结果表明可能是多源的,包括昆仑山造山带、华北板块、华南板块(包括扬子板块)和秦岭-大别造山带都曾经提供了物源(图 1Yin and Nie, 1993; Zhou and Graham, 1996; Weislogel et al., 2006, 2010; Enkelmann et al., 2007; Zhang et al., 2008)。一般认为西康群复理石与下伏的扬子板块西缘古生代被动大陆边缘浅海沉积地层呈整合、或者不整合接触(四川省地质矿产局,1991许志琴等,1992Burchfiel et al., 1995; Yan et al., 2003a)。松潘-甘孜地块在古特提斯洋关闭(220~200 Ma)过程中和新生代晚期青藏高原生长过程中,至少经历了两次褶皱-逆冲作用而被加厚(Roger et al., 2008, 2011; Li et al., 2015b)。

松潘-甘孜地块内发育一系列钙碱性、碱性、过碱性和过铝质酸性侵入岩体(de Sigoyer et al., 2014)。其中226~215 Ma的埃达克类岩石和I型花岗岩大致呈东西向分布于松潘-甘孜地块东南部和碧口逆冲推覆体中,而211~205 Ma的A型花岗岩侵入体主要发育于松潘-甘孜地块西部(图 1四川省地质矿产局,1991; Huang et al., 2003; Roger et al., 2004, 2010, 2011; Zhang et al., 2006, 2007; Xbyan2018iao et al., 2007; 吕崧等,2010; Yuan et al., 2010; de Sigoyer et al., 2014)。

1.3 四川盆地和扬子板块

四川盆地位于扬子板块西部,位于其中的川西前陆盆地是指龙门山复合逆冲带前缘与龙泉山隆起之间的部分。四川盆地变质基底主要由太古界和古元古—新元古界组成。其中新元古代地层层序完整,主要为硬砂岩和板岩,强烈褶皱但变质程度不深(Sun et al., 2009),一般称之为褶皱基底(四川地质矿产局,1991),其上不整合覆盖的包括新元古代晚期南华系—震旦系,直到新生界的盖层沉积序列。震旦系—奥陶系为碎屑岩和碳酸盐岩,并为上覆石炭系—中三叠统碳酸盐岩和变质火山岩(>7 km)不整合覆盖(四川地质矿产局,1991;许志琴等, 1992; Yan et al., 2003b, 2009)。上三叠统、侏罗系、白垩系和新生界则全部转化为陆相碎屑岩沉积(湖北省地质矿产局,1990四川省地质矿产局,1991)。

1.4 龙门山复合逆冲带

龙门山复合逆冲带总体呈北东走向,向北逐渐转为北东东向,并融合至秦岭-大别造山带前陆逆冲带中,向南被北西走向鲜水河左行走滑断层错断后,继续向南为弧顶指向南南东的盐源-木里弧形复合逆冲带(图 1)。本文讨论的龙门山复合逆冲带暂不包括盐源-木里弧形复合逆冲带。

北东向北川-映秀逆冲断层将龙门山复合逆冲带分割为北西侧的腹陆构造带和南东侧的前陆构造带,前陆构造带以断续出露的灌县-安县断层与四川盆地西部的川西前陆盆地分隔(Chen and Wilson, 1996; Worley and Wilson, 1996; Arne et al., 1997; Meng et al., 2005; 金文正等, 2007; Yan et al., 2011, 2018)。

龙门山复合逆冲带中的主要逆冲断层均以糜棱岩叠加碎裂岩和断层泥为特征。北东走向的北川-映秀断层以逆冲作用为主,延伸超过350 km,倾向北西向,倾角40°—60°(Burchfiel et al., 2008; Parsons et al., 2008; Jin et al., 2010; Zheng et al., 2016),是2008年汶川地震发震断层,曾经历了三叠纪以来的各次构造运动(Dirks et al., 1994; Burchfiel et al., 1995; Arne et al., 1997; Kirby et al., 2002; Xu et al., 2008b; Zheng et al., 2016; Yan et al., 2008a, 2011, 2018a)。自220 Ma以来一直活动的北东向茂汶断层以逆冲作用为主,晚中新世以来叠加右行走滑作用,延伸约275 km,倾向北西向,倾角30°—50°(Burchfiel et al., 1995; Chen et al., 1995; Worley et al., 1996; Kirby et al., 2002; Yan et al., 2008a; Airaghi et al., 2018; Sun et al., 2018)。北东东走向的青川-平武断层延伸约200 km,倾向北北西向,但倾角变化较大,中晩三叠世以来以逆冲作用为主,早中侏罗世转化为南东东向的正断层,新生代则表现为左行走滑-逆冲作用(图 1刘鹤等, 2008; Yan et al., 2008a, 2018b)。灌县-安县断层是川西前陆盆地与龙门山复合逆冲带的界线,向北西倾斜,倾角30°—50°。由于新生界覆盖,灌县-安县断层地表断续出露(四川省地质矿产局,1991; Li et al., 2003; Xu et al., 2008b; Yan et al., 2008a, 2008b)。

在腹陆构造带中发育一系列与扬子板块基底变质岩具有亲缘性的变质穹隆体,从北向南包括碧口逆冲推覆体上盘核部,以及摩天岭、彭灌-雪隆包、宝兴和丹巴等穹隆体(图 1图 2)。各穹隆体核部变质杂岩主要包括古元古代至新元古代片麻岩、石英片岩、矽线石-石榴石片麻岩、斜长角闪岩、大理岩和石英岩等,大致相当于扬子板块内部康定杂岩的岩石组成(四川省地质矿产局,1991Huang et al., 2003; Yan et al., 2003a, 2008a, 2018b; Zhou et al., 2006; Weller et al., 2013; Jolivet et al., 2015; Billerot et al., 2017)。腹陆构造带和前陆构造带发育相似的盖层岩石,包括震旦系变质碎屑岩、白云岩和杂砂岩,其上覆盖寒武系—奥陶系火山岩、碳酸盐岩和硅质岩,志留系茂县岩群千糜岩,泥盆系危关岩群石英岩,以及石炭系和二叠系碳酸盐岩和玄武岩(四川地质矿产局,1991; Yan et al., 2008a, 2008b)。然而,中生代沉积序列发生分野,腹陆构造带三叠系为西康群复理石,侏罗系和白垩系完全缺失,而前陆构造带则为中下三叠统陆相浅海碳酸盐岩、上三叠统陆相碎屑岩(T3x须家河组),以及角度不整合覆盖的侏罗系—白垩系陆相碎屑岩(图 2图 3Li et al., 2003; Mu et al., 2019)。

图 2 龙门山复合逆冲带逆冲推覆构造图及ABC构造剖面图(据Yan et al., 2018a修改) Fig. 2 Regional tectonic map of the Longmenshan Tectonic Complex and the ABC geological section (modified after Yan et al., 2018a)

图 3 龙门山复合逆冲构造带及邻近各主要构造单元区域地层层序与接触关系(据Yan et al, 2018b四川省地质矿产局,1991修改) Fig. 3 Stratigraphic correlation diagram of the Longmenshan Tectonic Complex and its adjacent main structural units (modified after Yan et al, 2018b; SBGMR, 1991)

在腹陆构造带震旦系—古生界浅变质岩与新元古界角闪岩相变质杂岩间,普遍发育一条运动学指向南东的拆离断层。拆离断层中发育不同变质程度的糜棱岩和碎裂岩,局部断层泥,并造成震旦系—古生界不同程度构造缺失,推测为初始的低角度正断层(Zhou et al., 2002, 2008; Yan et al., 2003a, 2008a, 2008b; 刘鹤等,2008)。值得指出的是,目前对这条拆离断层的研究不深,对其成因和构造意义认识还有分歧。

2 复合前陆逆冲带扩展构造样式与运动学

综合已有研究成果,在龙门山复合逆冲带中,中生代以来至少识别出两期主要的逆冲构造D1和D3,并在两期构造之间可能还发育有一期伸展构造D2。关于三期构造的变形样式、构造运动学与变形时间等,已有文献进行了详细的描述和报道(Burchfiel et al., 1995, 2008; Worley and Wilson, 1996; Arne et al., 1997; Jia et al., 2006, 2010; Yan et al., 2011, 2018a, 2018b)。以下主要就D1期和D3期逆冲构造几何样式、运动学进行补充描述,并在此基础上,就两期逆冲构造的复合关系进行综合分析。

2.1 D1期逆冲构造

D1期从北向南由碧口厚皮逆冲推覆体、唐王寨和龙王庙薄皮推覆体,以及可能的更南侧的推覆构造组成,大体呈叠瓦状组合样式依次排列(图 2)。每个逆冲推覆体内部由1个或者多个前陆逆冲楔组成,前陆逆冲楔主要样式是逆冲断层-断层相关褶皱(Sun et al., 2016)。D1期构造总体表现为叠瓦状指向南的前展式(in-sequence)推覆构造样式,即叠瓦状逆冲构造组合样式和逆冲楔向南扩展的运动学特征(Yan et al., 2018a)。

碧口逆冲推覆体平面上呈三角形状,由北侧阿尼玛卿-勉略缝合带中段向北倾斜的右行走滑-逆冲断层、南侧向北倾斜的青川-平武左行走滑-逆冲断层和西侧虎牙-雪山-岷山断层所围限(图 2)。推覆体内部是一个以新元古界碧口群浅变质岩为核,古生界和局部卷入的三叠系为翼,轴面向北倾斜的不对称复式背斜,复式背斜自北向南发育“Z”型、“M”型和“S”型次级褶皱,沿褶皱转折端发育透入性或者分划性轴面劈理和韧性剪切带,但基底碧口群透入性程度明显高于盖层(图 2图 4a—4d)。一系列近东西走向和向北倾斜的逆冲断层与次级褶皱组合形成断层相关褶皱,包括断展褶皱和断弯褶皱等,并统一指示为向南或者向南南西的逆冲作用(图 4a4b)。根据向东核部出露地层变老,核部地层出露变宽,以及向西两翼地层变年轻和轴迹西倾等综合判断,复式背斜总体向西倾伏和向南斜歪(图 2)。由于基底变质岩卷入变形,因此碧口推覆体为总体指向南的厚皮褶皱推覆构造。根据在青川-平武断层出露三叠纪蓝片岩等高压变质岩的事实(魏春景,1994Xu et al., 2020),区域上碧口逆冲推覆体本质上可能为阿尼玛卿-勉略缝合内部的一个大型的前陆逆冲楔。

a—碧口群D1期不对称褶皱指示向南逆冲,褶皱并被D2期长英质岩脉切割;b—文县北侧三叠系中的断展褶皱指示向南的逆冲;c—WX-073花岗质糜棱岩及其S-C组构,沿组构生长的白云母单矿物用于40Ar/39Ar测年;d—推覆体下盘震旦系中发育的糜棱岩及其S-C组构,沿组构生长的白云母单矿物用于40Ar/39Ar测年(WX-103);e—泥盆系中脆韧性剪切带与S-C组构,指示向SW的逆冲构造;f—泥盆系中发育的小型断坪-断坡构造;g—泥盆系中发育的不对称至倒转背斜和沿倒转翼发育的三角带构造,指示可能转化为运动学向南的逆冲断层;h—龙王庙逆冲推覆体综合的小断层与擦痕线理等,总体指示向SSE—SW的逆冲构造 图 4 碧口(a—d)、唐王寨(e—f)和龙王庙(g—h)逆冲推覆体构造样式照片与组构测量(照片位置见图 2;数据据Yan et al., 2018a) Fig. 4 Photographs and structural fabrics of Bikou (a-d), Tangwangzhai (e-f) and Longwangmiao (g-h) thrust complex with locations in Fig. 2 (Data are from Yan et al., 2018a)

碧口厚皮逆冲推覆构造中,基底碧口群变形的透入程度与应变强度均明显高于盖层(图 2中剖面AB,图 4a—4d)。基底主要表现为韧性和脆—韧性变形,但盖层以分划性劈理、韧—脆性和断层-褶皱变形为主。这种盖层与基底变形的差异可能受构造层次与岩石组合的的双重控制。

唐王寨逆冲推覆体的北西和南东两侧分别为北川-映秀断层和灌县-安县断层限制切割,形成一个宽仅10余千米的北东向长条形状。北东向构造剖面表明,唐王寨推覆体是由至少三个南南西指向的、由褶皱推覆体组成的前陆逆冲楔构成,每一个前陆逆冲楔均由上盘以泥盆系—石炭系为核的倒转背斜和沿倒转翼发育的逆冲断层组成,并组合形成叠瓦状逆冲构造组合(图 2中剖面ABC)。倒转背斜转折端部位发育正扇形或者平行的分划性劈理。沿逆冲断层发育的脆韧性剪切带中的S-C组构和沿倒转翼发育的断坪-断坡组合均指示为向南南西逆冲(图 4c4d)。因为卷入最老地层为泥盆系,所以唐王寨逆冲推覆体为指向南南西向的薄皮叠瓦状褶皱逆冲推覆构造。

龙王庙逆冲推覆体北西侧至茂汶断层,南东侧被灌县-安县断层限制切割。ABC剖面中BC段构造样式组合表明,龙王庙逆冲推覆体是由3~5个南南西指向的、由褶皱推覆体组成的前陆逆冲楔构成,每一个前陆逆冲楔由上盘以震旦系—古生界不同时代地层为核的倒转背斜和沿倒转翼发育的逆冲断层组成,并组合形成叠瓦状逆冲构造组合(图 2中剖面ABC)。倒转背斜转折端部位发育正扇形或者平行的分划性劈理。沿逆冲断层发育脆韧性剪切带组构,并逐渐过渡为脆性断层,不同断层和脆韧性剪切带中面理和矿物拉伸线理关系表明,沿倒转翼发育的断坪-断坡组合均指示为向南南东—南南西向逆冲(图 4e4f)。唐王寨逆冲推覆体仅卷入盖层层序,为总体指向南的薄皮叠瓦状褶皱逆冲推覆构造。

2.2 D3期逆冲构造

不同尺度的构造研究表明,D3期以发育指向南东的逆冲断层-相关褶皱、间隔劈理为主,并发育一系列飞来峰、构造窗等推覆构造(图 1图 2图 5)。露头尺度上,主要呈断坪-断坡逆冲断层与褶皱构造组合(图 5a),沿断层主要发育断层角砾岩、碎裂岩和断层泥等(图 5b),因此推测是由断层相关褶皱和逆冲岩片组成的前陆逆冲楔。较年轻活动断层的断层面及断层擦痕线理测量结果表明,其运动学表现为逆冲与右行走滑特征(图 5a)。

a—歇马坪-清平断层和断层相关褶皱,以及断层在擦痕线理等指示向SE逆冲作用和右行走滑作用;b—断坡及断层岩组成;c—穿过龙门山复合逆冲带主要构造带的深地震反射剖面及构造解释(Feng et al., 2016, 位置见图 2剖面DE) 图 5 D3期逆冲推覆样式与运动学(野外照片位置见图 2) Fig. 5 Structural style and kinematics of the D3 thrust (Photograph of locations are shown in Fig. 2)

区域尺度上,茂汶断层、北川-映秀断层和灌县-安县断层均以浅表层次高角度逆冲断层为主,大约在深度20 km左右产状变缓,形成区域性拆离断层,因此总体上呈断坪-断坡样式(图 5c)。深地震反射剖面解释结果显示,茂汶断层、北川—映秀断层和灌县—安县断层形成叠瓦状逆冲组合,具有从北西向南东的前展式构造运动学特征。前展式运动学组合在继续向南东扩展过程中,一方面在四川盆地的川西坳陷西侧形成新的隐伏逆冲断层,另一方面,可能通过拆离断层与川西坳陷东侧的龙泉山隆起建立连接(图 5c)。可见,四川前陆盆地正在被逐渐卷入到龙门山前陆逆冲带的前陆扩展变形中。

3 40Ar/39Ar年代分析

为约束D1期逆冲构造变形起始与持续时间,运用40Ar/39Ar方法对D1期同逆冲构造变质白云母进行了时间测定。年代学分析在中国地质大学(北京)40Ar/39Ar实验室完成。

3.1 40Ar/39Ar分析原理 3.1.1 样品

两件用于40Ar/39Ar年代测定的白云母单矿物样品分别取自碧口逆冲推覆体上盘和下盘(图 2)。样品WX-073(32°44′33″N, 105°20′29″E)采自碧口逆冲推覆体上盘侵位于新元古代碧口群的糜棱岩化花岗岩,花岗岩中发育间隔劈理和矿物生长线理,白云母既可以发育于微劈石中,也可以沿劈理域中的矿物伸长线理发育(图 4c)。WX-103(32°17′53″N, 104°45′37″E)采自碧口逆冲推覆体下盘震旦系中的糜棱岩(图 2),白云母沿糜棱岩的S1面理发育(图 4d)。

3.1.2 40Ar/39Ar测年原理

样品粉碎、筛选后,用蒸馏水在超声腔中洗涤一小时后干燥,在双目镜下挑选出单矿物。将挑选的白云母与Fish Canyon透长石(28.02 Ma; Lanphere and Baadsgaard, 1997)和ZHB黑云母(133.3 Ma; 富云莲等, 1988)一起置入中国原子能研究院辐射中心照射9个小时。

辐照后的样品过两个月放置,到放射性剂量降至安全操作范围时,从每件样品中挑选25~38 mg白云母单矿物置入中国地质大学(北京)40Ar/39Ar实验室MM-5400惰性气体质谱仪中,进行阶段升温测试。在对温控表和炉内温度进行校正后,采用温度范围为750~1400 ℃。在每一特定温度阶段在持续高温下抽取氩气10分钟。通过Ar峰值外推为零和大气氩测量值归一化至40Ar/36Ar的大气比值(295.5),对中子诱导自K的40Ar、自Ca的39Ar和36Ar、自Cl的36Ar进行校正(Onstott and Peacock, 1987)。用于同位素反应的校正参数:(40Ar/39Ar)K=(5.84±0.89)×10-3,(36Ar/37Ar)Ca=(2.78±0.079)×10-4,(39Ar/37Ar)Ca=(7.26±0.08)×10-4

3.2 40Ar/39Ar测年结果

WX-073和WX-103白云母单矿物40Ar/39Ar测年结果如表 1图 6。对两件样品的年龄结果讨论如下:

表 1 40Ar/39Ar测年结果 Table 1 40Ar/39Ar dating results

a—WX-073白云母40Ar/39Ar测年结果;b—WX-103白云母40Ar/39Ar测年结果;c—据Yan et al., 2018a修改的各逆冲推覆体起始与结束时间关系图 图 6 龙门山复合逆冲带形成时间 Fig. 6 Formation time of the Longmenshan Tectonic Complex

WX-073白云母给出一个楼梯状的年龄谱,并在中等温度台阶上有一个相当平坦的坪,给出加权平均年龄(WMA)为352±17 Ma(95% conf., MSWD=3.0)。等时年龄为351±29 Ma,虽然约束程度不是很好,但在误差范围内与WMA是一致的。初始40Ar/36Ar为310±53,与大气无显著差异(图 6a)。虽然在高温阶段年龄谱时有中断,且WX-073并没有坪,但可将WMA(352±17 Ma)作为花岗质糜棱岩变形(冷却)的估计年龄。

WX-103白云母给出无坪年龄的楼梯状年龄谱,总气体年龄为203.5 Ma。意义不明确的逆等时线年龄为223±27 Ma,初始40Ar/36Ar为1099±320(MSWD=54)(图 6b)。这种楼梯状年龄谱也许暗示在低温韧性变形下白云母长期的结晶和生长,谱系中不同的年龄也许反映了白云母从形成至生长的时间范围(Kirschner et al., 1996; Castonguay et al., 2007)。因此,将逆等时线年龄223±27 Ma解释为D1期韧性变形中的一个时间点。

4 讨论

龙门山复合逆冲带经历了多期构造的叠加和改造,但其构造格架主要是文中所描述的D1期和D3期逆冲推覆构造叠加生长的结果。因此,本文重点讨论两期构造的几何学与运动学复合关系。对于更早期的构造背景,以及目前尚存争议的D2期构造性质和影响,本文暂且略过。

4.1 龙门山复合逆冲带的生长过程

D1期构造在文献中曾有过很多的描述。无论是松潘-甘孜地块和龙门山复合逆冲带的区域构造调查与研究(四川省地质矿产局,1991许志琴等,1992Burchfiel et al., 1995; Harrowfield and Wilson, 2005),还是典型变形的构造解析(Chen et al., 1995; Chen and Wilson, 1996; Yan et al., 2003a),都证明了中生代早期构造变形的普遍存在。对彭灌穹隆体中杂岩变形的精细构造解析表明,D1期变形组构表现为多阶段递进演变(Chen et al., 1995; Chen and Wilson, 1996);龙门山逆冲带典型构造变形与松潘-甘孜地块区域变形相结合,初步可以确定其由北向南运动学的大体轮廓(Burchfiel et al., 1995; Harrowfield and Wilson, 2005);将区域地质调查数据与典型区域解析相结合,从北向南共识别出碧口、唐王寨和龙王庙三个逆冲推覆体,各逆冲推覆体还可进一步细分出由断坪-断坡式断层与上盘紧闭甚至倒转背斜组成的、具有褶皱推覆体性质的前陆逆冲楔。进一步的研究确定了碧口逆冲推覆体为断层相关复式背斜组成的厚皮逆冲推覆构造,唐王寨逆冲推覆体和龙王庙逆冲推覆体则为多个前陆逆冲楔组成的薄皮逆冲推覆构造,所有逆冲推覆体均具有一致的指向南南东—南西的逆冲方向(图 4Yan et al., 2011, 2018a)。对各逆冲推覆体和前陆逆冲楔的多种方法,包括区域地层关系、同构造期变质白云母和黑云母、角闪石40Ar/39Ar,以及同构造期岩脉的综合约束表明,从北向南的前陆逆冲扩展可能早至237 Ma以前,本研究中从花岗质糜棱岩中新获得的352 Ma坪年龄是D1期变形还是更早期构造的产物,还有待厘定;结束时间则于早侏罗世末(174 Ma),甚至在更南段丹巴穹隆区是否发育晚侏罗世初(~160 Ma)的逆冲推覆构造,值得进一步探讨(图 6cZhou et al., 2008; Zheng et al., 2016; Airaghi et al., 2018; Yan et al., 2011, 2018a; Xu et al., 2020)。

晚三叠世须家河陆相盆地被证明为中生代前陆逆冲带耦合发育的前陆盆地。据地层层序、沉积物源、水流方向和沉积相带的综合研究,须家河组一段至五段沉积相带和盆地沉降中心均表现为向南逐步迁移特征,但盆地主要物源供给却始终稳定在其北侧,因此,须家河陆相盆地主要为D1期前陆逆冲带耦合的前陆盆地(Liu et al., 2015; Mu et al., 2019)。然而,由于晚三叠纪须家河盆地层序被北川-映秀断层切割,其向西延伸后与松潘-甘孜复理石盆地的衔接过渡,以及随后的侏罗系盆地构造性质等问题,仍然有待进一步深入的研究。

D1期构造样式和样式组合、运动学及其年代约束等均主要保存在当前北东向龙门山复合逆冲构造带的前陆逆冲带中,在腹陆构造带中已经发现了与龙王庙逆冲推覆体相对应的构造遗迹(图 2Yan et al., 2018a)。在松潘-甘孜地块中,虽然经过了后期构造的强烈改造,但也保存有D1期构造变形遗迹,主要表现为指向南的弧形断层-褶皱系统和对应的轴面劈理、次生小褶皱等,其中的褶皱样式一般比较宽缓(Burchfiel et al., 1995; Harrowfield and Wilson, 2005)。然而,由于获得的数据较少和缺乏系统性,目前对于松潘-甘孜地块中D1期构造运动学、变形时间和变形过程的理解仍然较为薄弱。

沿龙门山逆冲带及其邻区广泛发育和统一指向南的构造运动学,以及中生代早期或者更早开始并从北向南逐步变年轻的变形趋势均表明,D1期构造代表了秦岭-大别造山带西南部分的前陆逆冲带,是前陆逆冲扩展的产物(Yan et al., 2018a)。虽然前陆扩展起始时间、前缘部位,以及最终终止时间和方式仍然有待厘定,其变形过程的应力-应变关系也有待更加深入的调查和分析,但是造山带前陆逆冲带的基本轮廓和构造动力学可以基本确定。

碧口厚皮逆冲推覆体是由前缘青川-平武断层与后缘阿尼玛卿-勉略缝合带中段夹持的复式背斜,总体构成断展褶皱样式(图 2及剖面AB),复式背斜中的一系列次级褶皱与断层组合属于断展褶皱样式组合(图 4a4b),可见碧口逆冲推覆构造从区域上看只是一个大的逆冲楔,但可以进一步划分若干次级的逆冲楔。由于复式背斜核部卷入新元古界碧口群,甚至更老的岩层,所以属于厚皮逆冲推覆构造(Yan et al., 2018a)。另外,沿青川-平武断层发现的高压蓝片岩表明碧口逆冲推覆构造仍然处于阿尼玛卿-勉略缝合带中(魏春景,1994Xu et al., 2020)。可见,碧口厚皮逆冲推覆构造是属于秦岭-大别造山带腹陆部位的,由若干小规模逆冲楔组成的区域性厚皮逆冲楔。

唐王寨逆冲覆体至少识别出三个逆冲楔,且均由韧-脆性逆冲断层与上盘倒转背斜组成,倒转背斜核部地层一般为泥盆系,也可能卷入未出露的志留系(图 2图 4),因此属于前陆薄皮逆冲楔。龙王庙逆冲覆体至少识别出五个逆冲楔,且均由韧-脆性逆冲断层与上盘紧闭或者倒转背斜组成,倒转背斜核部地层为盖层层序(图 2图 4),因此也属于前陆薄皮逆冲楔。

D2期构造是以伸展拆离变形为主,主要包括指向南东的韧性和脆韧性拆离断层,断层下盘基底变质杂岩的隆升和上盘可能存在的侏罗纪盆-岭构造等(Yan et al., 2011)。这期构造不同程度地改造了D1期构造形态,并对后期变形形成一定程度的制约关系。由于这不是本文重点,在此不作详细讨论。

叠加于D1期构造之上的D3期构造,通过全面调查和研究,目前了解得比较深入。如本文和文献所描述,D3期构造主要表现为构造运动学指向南东的叠瓦状逆冲构造及其断层相关褶皱和逆冲岩片(图 5)。叠瓦状逆冲断层在地表和近地表均呈现向北西陡倾,倾角一般大于60°,结合汶川地震及其余震19 km的震源深度估算,表明北川-映秀断层等向深部切割至20 km左右转变为平坦样式(颜丹平等,2010)。5·12汶川地震震源机制解和逆冲断层擦痕线理等测量结果表明,目前活动的北川-映秀断层和灌县-安县断层均具有右行-逆冲性质(图 5a),结合磷灰石和锆石裂变径迹和(U-Th)/He低温年代学分析结果,确定松潘-甘孜地块和龙门山逆冲带新生代期间至少经历了始新世和中新世至今两个快速隆升和剥蚀阶段(Richardson et al., 2008; Yan et al., 2011; Wang et al., 2012; Tian et al., 2015, 2018)。对两期快速隆升过程进一步的构造分析表明,渐新世—中新世龙门山逆冲带主要表现为指向南东的逆冲作用;中新世晚期,~10 Ma开始与南侧形成的北西向左行走滑鲜水河断层呈共轭关系,龙门山逆冲带北川-映秀断层开始叠加右行走滑运动(Sun et al., 2018)。

在龙门山前陆逆冲带快速隆升的同时,其前陆扩展则加速进行。北川-映秀断层向南东向扩展过程中,不但卷入须家河组及其下伏地层,而且在南东侧新形成了近于平行的灌县-安县断层。从灌县-安县断层逐步向北东方向破裂扩张,以及古新统—始新统名山组砾岩主要发育于南部前陆盆地,而上新统大邑组砾岩则发育于北部前陆盆地等的分析表明,龙门山逆冲带的前陆扩展先是从南段开始的,然后向北发展直到影响到整个前陆逆冲带(孙铭,2018)。向南东向的扩展和应力场的调整还形成了楔顶构造和一系列隐伏逆冲断层,并可能导致沿基底的拆离断层与川西坳陷东侧的龙泉山构造相连通(Burchfiel et al., 2008; Hubbard and Shaw, 2009; Feng et al., 2016秦向辉等,2018)。这些结果表明,龙门山逆冲带向南东向的前陆扩展可能正在将川西坳陷盆地卷入变形之中。

D1和D3两期前陆扩展的叠加作用,表明龙门山逆冲带经历了结构与生长过程的复合。结构复合主要表现为两种不同逆冲推覆构造组合样式的叠加,而生长过程的复合则表现为构造运动学过程的改造。构造样式组合的叠加本质上就是(前陆)逆冲楔的叠加(Sun et al., 2016),其结果是导致目前轮廓主要表现为D3期北东向的龙门山复合前陆逆冲带具有分段的结构。分段结构的基本单元即为(前陆)逆冲楔,沿逆冲楔内部即为汶川地震余震、滑坡体发育部位,逆冲楔之间的部分则构成汶川地震余震的空歇部位。因此,5·12汶川地震余震和滑坡体单向迁移和分段迁移特征可能受龙门山复合逆冲带复合逆冲楔控制。

4.2 龙门山复合逆冲带结构模式

在已有文献资料总结基础上,综合本文构造样式和运动学解析、年代学限定和前陆逆冲带的结构与生长复合过程的讨论结果,特别是有关D1期和D3期逆冲楔结构与前陆逆冲带生长过程的新认识,提出一个新的龙门山逆冲带复合结构与生长模式(图 7)。新的结构和生长模式突出体现了前陆逆冲带逆冲楔的叠加和后期对前期构造扩展的改造过程,并对D3期可能的动力学机制进行了探讨(图 7)。

图 7 龙门山复合生长逆冲带结构模式图 Fig. 7 Tectonic model sketch of the Longmenshan Tectonic Complex

(1)   新的结构模式体现了龙门山的“山中山”复合结构特点。在现代北东向的龙门山前陆逆冲构造带中,完整保存了中生代早期发育的秦岭-大别造山带从腹陆到前陆逆冲带的构造遗迹。中生代逆冲带至少由三个逆冲推覆体,以及每个推覆体中由一至数个逆冲楔组成,具有厚皮—薄皮和褶皱逆冲构造的构造样式组合,可以递次划分不同级别的(前陆)逆冲楔,正是逆冲楔的递进发展,从北向南形成分段结构。在新生代前陆逆冲叠加改造下,中生代前陆逆冲构造总体表现为弧顶向南的弧形形态。而新生代的前陆逆冲构造是以高角度逆冲断层,或者逆冲-右行走滑断层与逆冲岩片的构造组合为特点。

(2)  经历了双向扩展与生长过程。中生代与新生代两条前陆逆冲构造均发育和保存有较完整的由逆冲断层和上盘构造组合形成的(前陆)逆冲楔,并均发育耦合前陆盆地。不同尺度下的构造运动学,包括断层相关褶皱倒向、断层擦痕与矿物生长线理指向和各逆冲推覆体形成时间与序列均一致确定中生代前陆逆冲带总体运动学指向南,并从北向南扩展,与新生代向南东扩展的前陆逆冲带呈大角度,或者近于直交。因此,龙门山复合逆冲带经历了双向扩展和生长改造过程。

(3)  深部结构表明,中下地壳通道流可能主导了新生代的变形。对于中生代前陆逆冲带向南的扩展机制,目前认识仍然较为薄弱。但综合深部低速层的存在、5·12汶川地震震源深度分布等现象,新生代前陆扩展机制应当为中地壳通道流(Mid-crustal ductile channel flow)驱动(Royden et al., 1997Clark and Royden, 2000; 颜丹平等,2008; Burchfiel et al., 2008; Bai et al., 2010),是否还存在下地壳的通道流,抑或存在多层次的通道流形式等,还有待探讨。

5 主要结论

综合本研究与已有成果,得到以下主要结论:

(1) 龙门山复合逆冲构造带主要由中生代与新生代前陆逆冲构造带叠加而成,并受到了两期构造变形间伸展构造变形的改造和制约,从而形成龙门山的“山中山”。中生代前陆逆冲带表现为厚皮—薄皮和褶皱逆冲构造组合样式,可以划分为多个由逆冲断层与上盘相关背斜组成的逆冲楔。新生代前陆逆冲构造则表现为高角度逆冲-右行走滑构造组合,逆冲楔主要由高角度逆冲断层和上盘逆冲岩片组合形成逆冲楔。

(2) 龙门山复合逆冲带经历了中生代指向南与新生代指向南东的递进扩展前陆逆冲带复合生长。中生代前陆逆冲带是以断层相关褶皱形式形成新的逆冲楔向南扩展生长,其最早的厚皮构造可能于237 Ma前即开始,并晚至~160 Ma结束,而新生代指向南东的前陆逆冲带主要以逆冲断层和逆冲岩片形式分两个阶段(35~10 Ma和10 Ma以来)扩展生长,并可能已经将川西前陆坳陷盆地及其东侧的龙泉山构造带卷入其中。两期构造运动学方向大角度相交。

(3) 中生代前陆扩展生长是秦岭-大别造山带前陆造山带扩展生长的组成部分,而新生代前陆扩展与生长可能受青藏高原东部存在的中地壳通道流驱动。

致谢: 谨以此文献给地质学前辈李四光先生。《地质力学学报》编辑部和邢树文研究员、胡健民研究员组织本专辑,董云鹏教授和一位匿名审稿人提出了建设性意见和建议,野外调查过程中,宁蒙、李喆明、许晨光、孙琦、石玉砚、周玉等一起参加了部分工作,中国地质大学(北京)王瑜教授协助完成了40Ar/39Ar年龄测试,在此一并表示感谢。

参考文献/References
AIRAGHI L, WARREN C J, DE SIGOYER J, et al., 2018. Influence of dissolution/reprecipitation reactions on metamorphic greenschist to amphibolite facies mica 40Ar/39Ar ages in the Longmen Shan (eastern Tibet)[J]. Journal of Metamorphic Geology, 36(7): 933-958. DOI:10.1111/jmg.12420
ARNE D, WORLEY B, WILSON C, et al., 1997. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau[J]. Tectonophysics, 280(3-4): 239-256. DOI:10.1016/S0040-1951(97)00040-1
BAI D H, UNSWORTH M J, MEJU M A, et al., 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3(5): 358-362. DOI:10.1038/ngeo830
BILLEROT A, DUCHENE S, VANDERHAEGHE O, et al., 2017. Gneiss domes of the Danba metamorphic complex, Songpan Ganze, eastern Tibet[J]. Journal of Asian Earth Sciences, 140: 48-74. DOI:10.1016/j.jseaes.2017.03.006
BRUGUIER O, LANCELOT J R, MALAVIEILLE J, 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China):provenance and tectonic correlations[J]. Earth and Planetary Science Letters, 152(1-4): 217-231. DOI:10.1016/S0012-821X(97)00138-6
BURCHFIEL B C, CHEN Z L, LIU Y P, et al., 1995. Tectonics of the Longmen Shan and adjacent regions, central China[J]. International Geology Review, 37(8): 661-735. DOI:10.1080/00206819509465424
BURCHFIEL B C, MOLNAR P, ZHAO Z Y, et al., 1989. Geology of the Ulugh Muztagh area, northern Tibet[J]. Earth and Planetary Science Letters, 94(1-2): 57-70. DOI:10.1016/0012-821X(89)90083-6
BURCHFIEL B C, ROYDEN L H, VAN DER HILST R D, et al., 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China[J]. GSA Today, 18(7): 4-11. DOI:10.1130/GSATG18A.1
CAO W T, YAN D P, QIU L, et al., 2015. Structural style and metamorphic conditions of the Jinshajiang metamorphic belt:Nature of the Paleo-Jinshajiang orogenic belt in the eastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 113: 748-765. DOI:10.1016/j.jseaes.2015.09.003
CASTONGUAY S, RUFFET G, TREMBLAY A, 2007. Dating polyphase deformation across low-grade metamorphic belts:An example based on 40Ar/39Ar muscovite age constraints from the southern Quebec Appalachians, Canada[J]. GSA Bulletin, 119(7-8): 978-992. DOI:10.1130/B26046.1
CHANG E Z, 2000. Geology and tectonics of the Songpan-Ganzi fold belt, Southwestern China[J]. International Geology Review, 42(9): 813-831. DOI:10.1080/00206810009465113
CHEN S F, WILSON C J L, 1996. Emplacement of the Longmen Shan Thrust-Nappe belt along the eastern margin of the Tibetan Plateau[J]. Journal of Structural Geology, 18(4): 413-430.
CHEN S F, WILSON C J L, WORLEY B A, 1995. Tectonic transition from the Songpan-Ganzê fold belt to the Sichuan basin, south-western China[J]. Basin Research, 7(3): 235-253. DOI:10.1111/j.1365-2117.1995.tb00108.x
CLARK M K, ROYDEN L H, 2000. Topographic ooze:building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706. DOI:10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
DE SIGOYER J, VANDERHAEGHE O, DUCHêNE S, et al., 2014. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan plateau, China[J]. Journal of Asian Earth Sciences, 88: 192-216. DOI:10.1016/j.jseaes.2014.01.010
DEWEY J F, SHACKLETON R M, CHANG C F, et al., 1988. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327(1594): 379-413. DOI:10.1098/rsta.1988.0135
DIRKS P H G M, WILSON C J L, CHEN S, et al., 1994. Tectonic evolution of the NE margin of the Tibetan Plateau; evidence from the central Longmen mountains, Sichuan province, China[J]. Journal of Southeast Asian Earth Sciences, 9(1-2): 181-192. DOI:10.1016/0743-9547(94)90074-4
ENKELMANN E, WEISLOGEL A, RATSCHBACHER L, et al., 2007. How was the Triassic Songpan-Ganzi basin filled? A provenance study[J]. Tectonics, 26(4): TC4007.
FENG S Y, ZHANG P Z, LIU B J, et al., 2016. Deep crustal deformation of the Longmen Shan, eastern margin of the Tibetan Plateau, from seismic reflection and Finite Element modeling[J]. Journal of Geophysical Research:Solid Earth, 121(2): 767-787. DOI:10.1002/2015JB012352
HARROWFIELD M J, WILSON C J L, 2005. Indosinian deformation of the Songpan Garzê fold belt, northeast Tibetan Plateau[J]. Journal of Structural Geology, 27(1): 101-117. DOI:10.1016/j.jsg.2004.06.010
HBGMR (Hubei Bureau of Geology and Mineral Resources), 1990. Regional geology of Hubei Province:Beijing. China[M]. Beijing: Geological Publishing House. (in Chinese)
HUANG C K, 2001. Spatial Database of 1: 2500000 Digital Geologic Map of People's Republic of China[G]. Geological Publishing House. (in Chinese)
HUANG C K, YE T Z, CHEN K Q, et al., 2002. Geological map of the people's Republic of China (1:2500000)[M]. Xi'an: China Cartographic Publishing House. (in Chinese)
HUANG M H, BUICK I S, HOU L W, 2003. Tectonometamorphic evolution of the Eastern Tibet plateau:evidence from the central Songpan-Ganzê orogenic belt, western China[J]. Journal of Petrology, 44(2): 255-278. DOI:10.1093/petrology/44.2.255
HUANG Y, WU J P, ZHANG T Z, et al., 2008. 2008. Relocation of the M8.0 Wenchuan earthquake and its aftershock sequence[J]. Science in China Series D:Earth Science, 51(12): 1703-1711. DOI:10.1007/s11430-008-0135-z
HUBBARD J, SHAW J H, 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake[J]. Nature, 458(7235): 194-197. DOI:10.1038/nature07837
JIA D, LI Y Q, LIN A M, et al., 2010. Structural model of 2008 MW 7.9 Wenchuan earthquake in the rejuvenated Longmen Shan Thrust Belt, China[J]. Tectonophysics, 491(1-4): 174-184. DOI:10.1016/j.tecto.2009.08.040
JIA D, WEI G Q, CHEN Z X, et al., 2006. Longmen Shan fold-thrust belt and its relation to the western Sichuan basin in central China:New insights from hydrocarbon exploration[J]. AAPG Bulletin, 90(9): 1425-1447. DOI:10.1306/03230605076
JIN W Z, TANG L J, WAN G M, et al., 2010. Structural styles of Longmen mountain Thrust belt, SW China[J]. Journal of Earth Science, 21(1): 19-31.
JOLIVET M, ROGER F, XU Z Q, et al., 2015. Mesozoic-Cenozoic evolution of the Danba dome (Songpan Garzê, East Tibet) as inferred from LA-ICPMS U-Pb and fission-track data[J]. Journal of Asian Earth Sciences, 102: 180-204. DOI:10.1016/j.jseaes.2015.02.009
KIRBY E, REINERS P W, KROL M A, et al., 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau:Inferences from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Tectonics, 21(1): 3-22.
KIRSCHNER D L, COSCA M A, MASSON H, et al., 1996. Staircase 40Ar/39Ar spectra of fine-grained white mica:Timing and duration of deformation and empirical constraints on argon diffusion[J]. Geology, 24(8): 747-750. DOI:10.1130/0091-7613(1996)024<0747:SAASOF>2.3.CO;2
LANPHERE M A, BAADSGAARD H, 1997. The Fish Canyon tuff: A standard for geochronology[C]//American geophysical union, fall meeting 2011. AGU.
LI J H, ZHANG Y Q, DONG S W, et al., 2013. Structural and geochronological constraints on the Mesozoic tectonic evolution of the North Dabashan zone, South Qinling, central China[J]. Journal of Asian Earth Sciences, 64: 99-114. DOI:10.1016/j.jseaes.2012.12.001
LI S Z, KUSKY T M, WANG L, et al., 2007. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen:Insights from the Mianlue suture[J]. Gondwana Research, 12(1-2): 121-143. DOI:10.1016/j.gr.2006.11.011
LI W P, LIU S F, QIAN T, et al., 2014. Analysis of structural deformation in the North Dabashan thrust belt, South Qinling, central China[J]. International Geology Review, 56(10): 1276-1294. DOI:10.1080/00206814.2014.935966
LI X W, MO X X, HUANG X F, et al., 2015a. U-Pb zircon geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Early Indosinian Tongren Pluton in West Qinling:Petrogenesis and geodynamic implications[J]. Journal of Asian Earth Sciences, 97: 38-50. DOI:10.1016/j.jseaes.2014.10.017
LI Y, ALLEN A, DENSMORE A L, et al., 2003. Evolution of the Longmen Shan Foreland basin (Western Sichuan, China) during the Late Triassic Indosinian orogeny[J]. Basin Research, 15(1): 117-138. DOI:10.1046/j.1365-2117.2003.00197.x
LI Y, YANG J S, DILEK Y, et al., 2015b. Crustal architecture of the Shangdan suture zone in the early Paleozoic Qinling orogenic belt, China:Record of subduction initiation and backarc basin development[J]. Gondwana Research, 27(2): 733-744. DOI:10.1016/j.gr.2014.03.006
LIU H, YAN D P, WEI G Q, 2008. Deformation and metamorphism sequence of Bikou terrane in the northwest Margin of Yangtze plate:implications for extension collapse and transition of Songpan-Garze Orogenic belt[J]. Acta Geologica Sinica, 82(4): 464-474. (in Chinese)
LIU S F, QIAN T, LI W P, et al., 2015. Oblique closure of the northeastern Paleo-Tethys in central China[J]. Tectonics, 34(3): 413-434. DOI:10.1002/2014TC003784
LUO Z L, 1984. A preliminary approach on C-subduction and its hydrocarbon prospecting[J]. Oil & Gas Geology, 5(4): 315-324. (in Chinese with English abstract)
LUO Z L, 1991. The dynamical model of the lithospheric evolution in Longmenshan orogenic belt[J]. Journal of Chengdu College of Geology, 18(1): 1-7. (in Chinese with English abstract)
LV S, YAN D P, WANG Y, et al., 2010. Geochemical and geochronological constraints on the Mashan and Mupi plutons in the South Qinling orogenic belt:Implications for tectonic nature of the Bikou terrane[J]. Acta Petrologica Sinica, 26(6): 1889-1991. (in Chinese with English abstract)
MATTAUER M, MALAVIEILLE J, CALASSOU S, et al., 1992. The Songpan-Ganze Triassic belt of west Sichuan and eastern Tibet-a decollement fold belt on passive margin[J]. Comptes Rendus de I' Academie des Sciences Serie II, 314: 619-626.
MENG Q R, WANG E, HU J M, 2005. Mesozoic sedimentary evolution of the northwest Sichuan basin:implication for continued clockwise rotation of the South China block[J]. GSA Bulletin, 117(3-4): 396-410.
MENG Q R, ZHANG G W, 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysics, 323(3-4): 183-196. DOI:10.1016/S0040-1951(00)00106-2
MU H X, YAN D P, QIU L, et al., 2019. Formation of the Late Triassic western Sichuan foreland basin of the Qinling Orogenic Belt, SW China:sedimentary and geochronological constraints from the Xujiahe Formation[J]. Journal of Asian Earth Sciences, 183: 103938. DOI:10.1016/j.jseaes.2019.103938
NIE S Y, YIN A, ROWLEY D B, et al., 1994. Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi flysch sequence, central China[J]. Geology, 22(11): 999-1002. DOI:10.1130/0091-7613(1994)022<0999:EOTDSU>2.3.CO;2
ONSTOTT T C, PEACOCK M W, 1987. Argon retentivity of hornblendes:A field experiment in a slowly cooled metamorphic terrane[J]. Geochimica et Cosmochimica Acta, 51(11): 2891-2903. DOI:10.1016/0016-7037(87)90365-6
PARSONS T, JI C, KIRBY E, 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin[J]. Nature, 454(7203): 509-510. DOI:10.1038/nature07177
QIN X H, CHEN Q C, MENG W, et al., 2018. Evaluating measured in-situ stress state changes associated with earthquakes and its implications:a case study in the Longmenshan fault zone[J]. Journal of Geomechanics, 24(3): 309-320. (in Chinese with English abstract)
RAO R B, XU J F, CHEN Y M, et al., 1987. The Triassic system of the Qianghai-Xizang Plateau[M]. Beijing: Geological Publishing House. (in Chinese)
RATSCHBACHER L, HACKER B R, CALVERT A, et al., 2003. Tectonics of the Qinling (Central China):tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 366(1-2): 1-53. DOI:10.1016/S0040-1951(03)00053-2
RICHARDSON N J, DENSMORE A L, SEWARD D, et al., 2008. Extraordinary denudation in the Sichuan Basin:Insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth, 113(B4): B04409.
ROGER F, JOLIVET M, CATTIN R, et al., 2011. Mesozoic-Cenozoic tectonothermal evolution of the eastern part of the Tibetan Plateau (Songpan-Garzê, Longmen Shan area):insights from thermochronological data and simple thermal modelling[J]. Geological Society, London, Special Publications, 353(1): 9-25. DOI:10.1144/SP353.2
ROGER F, JOLIVET M, MALAVIEILLE J, 2008. Tectonic evolution of the Triassic fold belts of Tibet[J]. Comptes Rendus Geoscience, 340(2-3): 180-189. DOI:10.1016/j.crte.2007.10.014
ROGER F, JOLIVET M, MALAVIEILLE J, 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present:A synthesis[J]. Journal of Asian Earth Sciences, 39(4): 254-269. DOI:10.1016/j.jseaes.2010.03.008
ROGER F, MALAVIEILLE J, LELOUP H, et al., 2004. Timing of granite emplacement and cooling in the Songpan-Ganzê fold belt (eastern Tibetan Plateau) with tectonic implications[J]. Journal of Asian Earth Sciences, 22(5): 465-481. DOI:10.1016/S1367-9120(03)00089-0
ROYDEN L H, BURCHFIEL B C, KING R W, et al., 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 276(5313): 788-790. DOI:10.1126/science.276.5313.788
SBGMR (Sichuan Bureau of Geology and Mineral Resources), 1991. Regional geology of Sichuan Province:Beijing, China[M]. Beijing: Geological Publishing House, 680. (in Chinese)
SUN C, JIA D, YIN H W, et al., 2016. Sandbox modeling of evolving thrust wedges with different preexisting topographic relief:Implications for the Longmen Shan Thrust Belt, eastern Tibet[J]. Journal of Geophysical Research:Solid Earth, 121(6): 4591-4614. DOI:10.1002/2016JB013013
SUN M, 2018. Typical Cenozoic tectonic association and its formation mechanism in the eastern margin of Tibetan publication[D]. Beijing: China University of Geosciences: 121. (in Chinese with English abstract)
SUN M, YIN A, YAN D P, et al., 2018. Role of pre-existing structures in controlling the Cenozoic tectonic evolution of the eastern Tibetan plateau:New insights from analogue experiments[J]. Earth and Planetary Science Letters, 491: 207-215. DOI:10.1016/j.epsl.2018.03.005
SUN W H, ZHOU M F, GAO J F, et al., 2009. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precambrian Research, 172(1-2): 99-126. DOI:10.1016/j.precamres.2009.03.010
TIAN Y T, KOHN B P, HU S B, et al., 2015. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau:implications for crustal dynamics[J]. Geophysical Research Letters, 42(1): 29-35. DOI:10.1002/2014GL062383
TIAN Y T, LI R, TANG Y, et al., 2018. Thermochronological constraints on the late Cenozoic morphotectonic evolution of the Min Shan, the eastern margin of the Tibetan Plateau[J]. Tectonics, 37(6): 1733-1749. DOI:10.1029/2017TC004868
WANG E, KIRBY E, FURLONG K P, et al., 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 5(9): 640-645. DOI:10.1038/ngeo1538
WANG X B, YU N, ZHU Y T, et al., 2008. Preliminary result of magnetotelluric sounding in the Longmen thrust belt of West Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 35(4): 398-403. (in Chinese with English abstract)
WANG X X, WANG T, ZHANG C L, 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China:Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 72: 129-151. DOI:10.1016/j.jseaes.2012.11.037
WEI C J, 1994. Metamorphism and its geological significance of the Bikou Group in the Shanxi-Gansu-Sichuan border region[J]. Acta Geologica Sinica, 68(3): 241-254. (in Chinese with English abstract)
WEISLOGEL A L, GRAHAM S A, CHANG E Z, et al., 2006. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex:Sedimentary record of collision of the North and South China blocks[J]. Geology, 34(2): 97-100.
WEISLOGEL A L, GRAHAM S A, CHANG E Z, et al., 2010. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China:Record of collisional tectonics, erosional exhumation, and sediment production[J]. GSA Bulletin, 122(11-12): 2041-2062. DOI:10.1130/B26606.1
WELLER O M, ST-ONGE M R, WATERS D J, et al., 2013. Quantifying Barrovian metamorphism in the Danba Structural Culmination of eastern Tibet[J]. Journal of Metamorphic Geology, 31(9): 909-935. DOI:10.1111/jmg.12050
WORLEY B A, WILSON C J L, 1996. Deformation partitioning and foliation reactivation during transpressional orogenesis, an example from the central Longmen Shan, China[J]. Journal of Structural Geology, 18(4): 395-411. DOI:10.1016/0191-8141(95)00095-U
XIAO L, ZHANG H F, CLEMENS J D, et al., 2007. Late Triassic Granitoids of the eastern margin of the Tibetan Plateau:geochronology, petrogenesis and implications for tectonic evolution[J]. Lithos, 96(3-4): 436-452. DOI:10.1016/j.lithos.2006.11.011
XU C G, WELLS M L, YAN D P, et al., 2020. Phase equilibria and geochronology of the Bikou blueschist:Insight into the Mesozoic evolution of the northwestern margin of the Yangtze Block[J]. Journal of Asia Earth Sciences, under revision.
XU J F, ZHANG B R, HAN Y W, 2008a. Geochemistry of the Mian-Lue ophiolites in the Qinling Mountains, central China:constraints on the evolution of the Qinling orogenic belt and collision of the North and South China Cratons[J]. Journal of Asian Earth Sciences, 32(5-6): 336-347. DOI:10.1016/j.jseaes.2007.11.004
XU Z Q, HOU L W, WANG C Q, et al., 1992. Orogenic processes of the Songpan Ganze orogenic belt of China[M]. Beijing: Geological Publishing House. (in Chinese with English abstract)
XU Z Q, JI S C, LI H B, et al., 2008b. Uplift of the Longmen Shan range and the Wenchuan earthquake[J]. Episodes, 31(3): 291-301. DOI:10.18814/epiiugs/2008/v31i3/002
YAN D P, LI S B, CAO W T, et al., 2010. Multi-layer detachment crustal structure in the Longmen Mountains:Evidences from neo-tectonic deformation and geophysical data[J]. Earth Science Frontiers, 17(5): 106-116. (in Chinese with English abstract)
YAN D P, QIU L, WELLS M L, et al., 2018a. Structural and geochronological constraints on the early Mesozoic north Longmen Shan Thrust Belt:Foreland fold-thrust propagation of the SW Qinling orogenic belt, northeastern Tibetan plateau[J]. Tectonics, 37(12): 4595-4624. DOI:10.1029/2018TC004986
YAN D P, ZHANG B, ZHOU M F, et al., 2009. Constraints on the depth, geometry and kinematics of blind detachment faults provided by fault-propagation folds:an example from the Mesozoic fold belt of South China[J]. Journal of Structural Geology, 31(2): 150-162. DOI:10.1016/j.jsg.2008.11.005
YAN D P, ZHOU M F, LI S B, et al., 2011. Structural and geochronological constraints on the Mesozoic-Cenozoic tectonic evolution of the Longmen Shan Thrust Belt, eastern Tibetan Plateau[J]. Tectonics, 30(6): TC6005.
YAN D P, ZHOU M F, SONG H L, et al., 2003a. Structural Style and tectonic significance of the Jianglang dome in the Eastern Margin of the Tibetan Plateau, China[J]. Journal of Structural Geology, 25(5): 765-779. DOI:10.1016/S0191-8141(02)00059-7
YAN D P, ZHOU M F, SONG H L, et al., 2003b. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China)[J]. Tectonophysics, 361(3-4): 239-254. DOI:10.1016/S0040-1951(02)00646-7
YAN D P, ZHOU M F, WEI G Q, et al., 2008a. The Pengguan tectonic dome of Longmen Mountains, Sichuan Province:Mesozoic denudation of a Neoproterozoic magmatic arc-basin system[J]. Science in China Series D:Earth Sciences, 51(11): 1545-1559. DOI:10.1007/s11430-008-0126-0
YAN D P, ZHOU M F, WEI G Q, et al., 2008b. Collapse of Songpan-Ganzê Orogenic belt resulted from Mesozoic middle-crustal ductile channel flow:evidences from deformation and metamorphism within Sinian-Paleozoic strata in hinterland of Longmenshan foreland thrust belt[J]. Earth Science Frontiers, 15(3): 186-198. DOI:10.1016/S1872-5791(08)60066-4
YAN D P, ZHOU Y, QIU L, et al., 2018b. The Longmenshan tectonic complex and adjacent tectonic units in the eastern margin of the Tibetan Plateau:A review[J]. Journal of Asian Earth Sciences, 164: 33-57. DOI:10.1016/j.jseaes.2018.06.017
YIN A, HARRISON T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. DOI:10.1146/annurev.earth.28.1.211
YIN A, NIE S Y, 1993. An indentation model for the North and South China collision and the development of the Tan-lu and Honam fault systems, eastern Asia[J]. Tectonics, 12(4): 801-813. DOI:10.1029/93TC00313
YUAN C, ZHOU M F, SUN M, et al., 2010. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China:Magmatic response to geodynamics of the deep lithosphere[J]. Earth and Planetary Science Letters, 290(3-4): 481-492. DOI:10.1016/j.epsl.2010.01.005
ZHANG G W, DONG Y P, LAI S C, et al., 2004. Mianlue tectonic zone and Mianliie suture zone on southern margin of Qinling-Dabie orogenic belt[J]. Science in China Series D-Earth Science-English Edition, 47(4): 300-316. DOI:10.1360/02YD0526
ZHANG H F, PARRISH R, ZHANG L, et al., 2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau:Implication for lithospheric delamination[J]. Lithos, 97(3-4): 323-335. DOI:10.1016/j.lithos.2007.01.002
ZHANG H F, ZHANG L, HARRIS N, et al., 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau:constraints on petrogenesis and tectonic evolution of the basement[J]. Contributions to Mineralogy and Petrology, 152(1): 75-88. DOI:10.1007/s00410-006-0095-2
ZHANG K J, LI B, WEI Q G, et al., 2008. Proximal provenance of the western Songpan-Ganzi turbidite complex (Late Triassic, eastern Tibetan plateau):Implications for the tectonic amalgamation of China[J]. Sedimentary Geology, 208(1-2): 36-44. DOI:10.1016/j.sedgeo.2008.04.008
ZHENG Y, LI H B, SUN Z M, et al., 2016. New geochronology constraints on timing and depth of the ancient earthquakes along the Longmen Shan fault belt, eastern Tibet[J]. Tectonics, 35(12): 2781-2806. DOI:10.1002/2016TC004210
ZHOU D, GRAHAM S A, 1996. The Songpan-Ganzi complex of the western Qinling Shan as a Triassic remnant ocean basin[M]//YIN A, HARRISON T M. The tectonic evolution of Asia. Cambridge: Cambridge University Press: 281-299.
ZHOU M F, YAN D P, KENNEDY A K, et al., 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196(1-2): 51-67. DOI:10.1016/S0012-821X(01)00595-7
ZHOU M F, YAN D P, VASCONCELOS P M, et al., 2008. Structural and geochronological constraints on the tectono-thermal evolution of the Danba domal terrane, eastern margin of the Tibetan plateau[J]. Journal of Asian Earth Sciences, 33(5-6): 414-427. DOI:10.1016/j.jseaes.2008.03.003
ZHOU M F, YAN D P, WANG C L, et al., 2006. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China):Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China[J]. Earth and Planetary Science Letters, 248(1-2): 286-300. DOI:10.1016/j.epsl.2006.05.032
富云莲, 罗修泉, 张思红等, 1988. 40Ar/39Ar定年法的实验技术与一些地质样品年龄的测定[J].中国地质科学院地质研究所文集, 1: 85-107.
国家汶川地震专家委员会, 2008. 汶川地震灾区地震地质灾害图集[M]. 北京: 地图出版社, 105.
湖北省地质矿产局, 1990. 湖北省区域地质志[M]. 北京: 地质出版社, 1-645.
黄崇轲, 2001.中华人民共和国1: 250万数字地质图空间数据库[G].地质出版社.
金文正, 汤良杰, 杨克明, 等, 2007. 川西龙门山褶皱冲断带分带性变形特征[J]. 地质学报, 08: 1072-1080.
刘鹤, 颜丹平, 魏国庆, 2008. 扬子板块西北缘碧口地块变形变质作用序列:松潘-甘孜造山带伸展垮塌事件的意义[J]. 地质学报, 82(4): 464-474.
罗志立, 1984. 试论中国型(C-型)冲断带及其油气勘探问题[J]. 石油与天然气地质, 5(4): 315-324.
罗志立, 1991. 龙门山造山带岩石圈演化的动力学[J]. 成都地质学院学报, 18(1): 1-7.
吕崧, 颜丹平, 王焰, 等, 2010. 碧口地块麻山、木皮岩体岩石地球化学与地质年代学:对构造属性的指示意义[J]. 岩石学报, 26(6): 1889-1991.
秦向辉, 陈群策, 孟文, 等, 2018. 大地震前后实测地应力状态变化及其意义:以龙门山断裂带为例[J]. 地质力学学报, 24(3): 309-320.
四川省地质矿产局, 1991. 四川省区域地质志[M]. 北京: 地质出版社, 680.
孙铭, 2018.青藏高原东缘典型新生代构造组合与形成机制研究[D].北京: 中国地质大学(北京): 121.
魏春景, 1994. 陕甘川交界区碧口群的变质作用及其地质意义[J]. 地质学报, 68(3): 241-254.
许志琴, 侯立伟, 王 崇起., 等, 1992. 中国松潘-甘孜造山带的造山过程[M]. 北京: 地质出版社, 137.
颜丹平, 刘鹤, 魏国庆, 等, 2008. 龙门山后山震旦系-古生界变形变质作用:松潘-甘孜造山带中生代伸展垮塌下的中地壳韧性流壳层[J]. 地学前缘, 03: 186-198.
颜丹平, 李书兵, 曹文涛, 等, 2010. 龙门山多层分层拆离地壳结构:新构造变形与深部构造证据[J]. 地学前缘, 17(5): 106-116.