Volume 27 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
WANG Yanbin, WANG Hao, REN Liudong, et al., 2021. Zircon U-Pb ages of the mafic gneiss and leucogneiss from the Bailey Peninsula: Constraints on the timing of the tectonothermal events related to the amalgamation of Rodinia in the Windmill Islands, East Antarctica. Journal of Geomechanics, 27 (5): 768-782. DOI: 10.12090/j.issn.1006-6616.2021.27.05.063
Citation: WANG Yanbin, WANG Hao, REN Liudong, et al., 2021. Zircon U-Pb ages of the mafic gneiss and leucogneiss from the Bailey Peninsula: Constraints on the timing of the tectonothermal events related to the amalgamation of Rodinia in the Windmill Islands, East Antarctica. Journal of Geomechanics, 27 (5): 768-782. DOI: 10.12090/j.issn.1006-6616.2021.27.05.063

Zircon U-Pb ages of the mafic gneiss and leucogneiss from the Bailey Peninsula: Constraints on the timing of the tectonothermal events related to the amalgamation of Rodinia in the Windmill Islands, East Antarctica

doi: 10.12090/j.issn.1006-6616.2021.27.05.063
Funds:

the National Natural Science Foundation of China 40773042

the National Natural Science Foundation of China 41073014

the National Natural Science Foundation of China 41373052

the National Natural Science Foundation of China 41773049

the Polar Office of the State Oceanic Bureau of China CHINARE-IC201707

More Information
  • Received: 2021-06-28
  • Revised: 2021-08-23
  • Available Online: 2021-12-31
  • Published: 2021-10-28
  • We report new geochronological data of the mafic gneiss and leucogneiss from the Windmill Islands, East Antarctica, in order to unravel the tectonothermal events related to the amalgamation of Rodinia. SHRIMP zircon U-Pb dating from the mafic gneiss (Hbl-Cpx-Opx-Bt-Pl-Qtz-Mag-Zrn) yielded early Mesoproterozoic magmatic ages of 1403±28 Ma from igneous cores, and middle Mesoproterozoic metamorphic ages of 1318±34 Ma from overgrown rims. The leucogneiss (Pl-Kfs-Qtz-Bt-Zrn) in the Bailey Peninsula has intrusive ages of 1257±51 Ma from magmatic origin zircon cores, and metamorphic ages of 1197±26 Ma from overgrown rims and/or structureless grains. The intrusive age of mafic gneiss indicates the existence of a ca.1.40 Ga igneous activity in the Windmill Islands. This is likely the earliest igneous record of the Windmill Islands, possibly relating to the final period of igneous activity of the Mawson Continent. The age of high-grade metamorphism of the mafic gneiss from the Bailey Peninsula can be constrained by the metamorphic zircon overgrowth at 1318±34 Ma, suggesting that the Windmill Islands was possibly involved in the Albany-Fraser-Windmill (East Antarctic) orogeny during the 1375~1151 Ma period. This study further supports the tectonic model in which the Windmill Islands and the Albany-Fraser Orogeny are parallel convergence during the Mesoproterozoic Rodinia amalgamation.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • AITKEN A R A, BETTS P G, YOUNG D A, et al., 2016. The Australo-Antarctic Columbia to Gondwana transition[J]. Gondwana Research, 29(1): 136-152. doi: 10.1016/j.gr.2014.10.019
    AITKEN A R A, YOUNG D A, FERRACCIOLI F, et al., 2014. The subglacial geology of Wilkes land, East Antarctica[J]. Geophysical Research Letters, 41(7): 2390-2400. doi: 10.1002/2014GL059405
    BLIGHT D F, OLIVER R L, 1977. The metamorphic geology of the Windmill Islands, Antarctica: a preliminary account[J]. Journal of the Geological Society of Australia, 24(5-6): 239-262. doi: 10.1080/00167617708728986
    BLIGHT D F, OLIVER R L, 1982. Aspects of the geologic history of the Windmill Islands, Antarctica[M]//CRADDOCK C. ed. Antarctic geoscience. Madison: University of Wisconsin Press: 445-454.
    BOGER S D, 2011. Antarctica-Before and after Gondwana[J]. Gondwana Research, 19(2): 335-371. doi: 10.1016/j.gr.2010.09.003
    CLARK D J, HENSEN B J, KINNY P D, 2000. Geochronological constraints for a two-stage history of the Albany-Fraser Orogen, Western Australia[J]. Precambrian Research, 102(3-4): 155-183. doi: 10.1016/S0301-9268(00)00063-2
    FITZSIMONS I C W, 2000. A review of tectonic events in the East Antarctic Shield and their implications for Gondwana and earlier supercontinents[J]. Journal of African Earth Sciences, 31(1): 3-23. doi: 10.1016/S0899-5362(00)00069-5
    FITZSIMONS I C W, 2003. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica[J]. Geological Society, London, Special Publications, 206(1): 93-130. doi: 10.1144/GSL.SP.2003.206.01.07
    ARRIS L B, 1995. Correlation between the Albany, Fraser And Darling mobile belts of western Australia and Mirny to Windmill Islands in the east Antarctic Shield: Implications for Proterozoic Gondwanaland reconstructions[M]//YOSHIDA S M. India and Antarctica during the Precambrian. Memoir of the Geological Society of India, vol. 34. Bangalore: Geological Society of India: 47-71.
    HAWKESWORTH C, CAWOOD P, KEMP T, et al., 2009. A matter of preservation[J]. Science, 323(5910): 49-50. doi: 10.1126/science.1168549
    HE X F, HAND M, SANTOSH M, et al., 2018. Long-lived metamorphic P-T-t evolution of the Highland Complex, Sri Lanka: insights from mafic granulites[J]. Precambrian Research, 316: 227-243. doi: 10.1016/j.precamres.2018.08.008
    HIRAYAMA E, TSUNOGAE T, MALAVIARACHCHI S P K, et al., 2020. Prolonged Neoproterozoic high-grade metamorphism of the Wanni Complex, Sri Lanka: New insights from petrology, phase equilibria modelling, and zircon U-Pb geochronology of partially melted cordierite gneiss from Walpita[J]. Geological Journal, 55(9): 6147-6168. doi: 10.1002/gj.3792
    KADOWAKI H, TSUNOGAE T, HE X F, et al., 2019. Pressure-temperature-time evolution of ultrahigh-temperature granulites from the Trivandrum Block, southern India: Implications for long-lived high-grade metamorphism[J]. Geological Journal, 54(5): 3041-3059. doi: 10.1002/gj.3422
    KILPATRICK J A, ELLIS D J, 1992. C-type magmas: igneous charnockites and their extrusive equivalents[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 155-164. doi: 10.1017/S0263593300007847
    KINNY P D, WIJBRANS J R, FROUDE D O, et al., 1990. Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia[J]. Australian Journal of Earth Sciences, 37(1): 51-69. doi: 10.1080/08120099008727905
    LI Z X, BOGDANOVA S V, COLLINS A S, et al., 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 160(1-2): 179-210. doi: 10.1016/j.precamres.2007.04.021
    LIU Y B, LI Z X, PISAREVSKY S A, et al., 2018. First Precambrian palaeomagnetic data from the Mawson Craton (East Antarctica) and tectonic implications[J]. Scientific Reports, 8: 16403. doi: 10.1038/s41598-018-34748-2
    LUDWIG K R. 2001. Squid 1.02: A user's manual[M]. Bakeley Geochronology Center Special Publication: 1-19.
    MAAS R, KINNY P D, WILLIAMS I S, et al., 1992. The Earth's oldest known crust: a geochronological and geochemical study of 3900~4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia[J]. Geochimica et Cosmochimica Acta, 56(3): 1281-1300. doi: 10.1016/0016-7037(92)90062-N
    MARITATI A, HALPIN J A, WHITTAKER J M, et al., 2019. Fingerprinting Proterozoic Bedrock in Interior Wilkes Land, East Antarctica[J]. Scientific Reports, 9: 10192. doi: 10.1038/s41598-019-46612-y
    MÖLLER A, POST N J, HENSEN B J, 2002. Crustal residence history and garnet Sm-Nd ages of high-grade metamorphic rocks from the Windmill Islands area, East Antarctica[J]. International Journal of Earth Sciences, 91(6): 993-1004. doi: 10.1007/s00531-002-0291-x
    MORRISSEY L J, HAND M, KELSEY D E, 2017a. A curious case of agreement between conventional thermobarometry and phase equilibria modelling in granulites: New constraints on P-T estimates in the Antarctica segment of the Musgrave-Albany-Fraser-Wilkes Orogen[J]. Journal of Metamorphic Geology, 35(9): 1023-1050. doi: 10.1111/jmg.12266
    MORRISSEY L J, PAYNE J L, HAND M, et al., 2017b. Linking the Windmill Islands, east Antarctica and the Albany-Fraser Orogen: insights from U-Pb zircon geochronology and Hf isotopes[J]. Precambrian Research, 293: 131-149. doi: 10.1016/j.precamres.2017.03.005
    OLIVER R L, COOPER J A, TRUELOVE A J, 1983. Petrology and zircon geochronology of Herring Island and Commonwealth Bay and evidence for Gondwana reconstruction[C]//OLIVER R L, JAMES P R, JAGO J B. Proceedings of the 4th International Symposium on Antarctic Earth Sciences. Cambridge: Cambridge University Press: 64-68.
    PAUL E, STÜWE K, TEASDALE J, et al., 1995. Structural and metamorphic geology of the Windmill Islands, east Antarctica: field evidence for repeated tectonothermal activity[J]. Australian Journal of Earth Sciences, 42(5): 453-469. doi: 10.1080/08120099508728216
    PAYNE J L, HAND M, BAROVICH K M, et al., 2009. Correlations and reconstruction models for the 2500~1500 Ma evolution of the Mawson Continent[M]//REDDY S M, MAZUMDER R, EVANS D A D, et al., Geological Society, London, Special Publications, 323(1): 319-355.
    POST N J, 2000. Unravelling Gondwana fragments: An integrated structural, isotopic and petrographic investigation of the Windmill Islands, East Antarctica[D]. Sydney: University of New South Wales.
    POST N J, HENSEN B J, KINNY P D, 1997. Two metamorphic episodes during a 1340~1180 Ma convergent tectonic event in the Windmill Islands, East Antarctica[M]//RICCI C A. The Antarctic Region: Geological Evolution and Processes. Sienna: Terra Antarctica Publication: 157-161.
    SONG B, 2015. SHRIMP zircon U-Pb age measurement: Sample preparation, measurement, data processing and explanation[J]. Geological Bulletin of China, 34(10): 1777-1788. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201510001.htm
    SPAGGIARI C V, KIRKLAND C L, PAWLEY M J, et al., 2011. The geology of the east Albany-Fraser Orogen: a field guide[M]. Perth: Geological Survey of Western Australia.
    SPAGGIARI C V, SMITHIES R H, 2015. Eucla basement stratigraphic drilling results release workshop: Extended abstracts[M]. Perth: Geological Survey of Western Australia.
    STARK J C, WANG X C, LI Z X, et al., 2018. In situ U-Pb geochronology and geochemistry of a 1.13 Ga mafic dyke suite at Bunger Hills, East Antarctica: The end of the Albany-Fraser Orogeny[J]. Precambrian Research, 310: 76-92. doi: 10.1016/j.precamres.2018.02.023
    TUCKER N M, HAND M, CLARK C, 2020. The Bunger Hills: 60 years of geological and geophysical research[J]. Antarctic Science, 32(2): 85-106. doi: 10.1017/S0954102019000403
    TUCKER N M, HAND M, KELSEY D E, et al., 2018. A tripartite approach to unearthing the duration of high temperature conditions versus peak metamorphism: An example from the Bunger Hills, East Antarctica[J]. Precambrian Research, 314: 194-220. doi: 10.1016/j.precamres.2018.06.006
    TUCKER N M, PAYNE J L, CLARK C, et al., 2017. Proterozoic reworking of Archean (Yilgarn) basement in the Bunger Hills, east Antarctica[J]. Precambrian Research, 298: 16-38. doi: 10.1016/j.precamres.2017.05.013
    WEBB A W, MCDOUGALL I, COOPER J A, 1963. Potassium-argon dates from the Vincennes Bay region and Oates Land[C]//ADIE R J. Proceedings of the 1st international symposium on Antarctic geology. North Holland, Amsterdam: 597-602.
    WILLIAMS I S, COMPSTON W, Collerson K D, et al. 1983. A reassessment of the age of the Windmill metamorphics, Casey area[C]//OLIVER R L. JAMES P R. JAGO J B. eds. Antarctic earth science, Australian Academy of Science, Canberra: 3-76.
    WHITNEY D L, EVANS B W, 2010. Abbreviations for names of rock-forming minerals[J]. American Mineralogist, 95(1): 185-187. doi: 10.2138/am.2010.3371
    WILLIAMS I S, 1998. U-Th-Pb geochronology by ion microprobe[M]//MCKIBBEN M A, SHANKS W C III, RIDLEY W I. Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology, 7: 1-35.
    WILLIAMS I S, 2001. Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia[J]. Australian Journal of Earth Sciences, 48(4): 557-580. doi: 10.1046/j.1440-0952.2001.00883.x
    WILLIAMS I S, BUICK I S, CARTWRIGHT I, 1996. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia[J]. Journal of Metamorphic Geology, 14(1): 29-47. http://www.onacademic.com/detail/journal_1000034680705310_e156.html
    WILLIAMS I S, CLAESSON S, 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides: II. Ion microprobe zircon U-Th-Pb[J]. Contributions to Mineralogy and Petrology, 97(2): 205-217. doi: 10.1007/BF00371240
    XU Q Q, ZHAO L, NIU B G, 2015. Determination of the early Paleozoic granite in Zhifang area, East Junggar, Xinjiang and its geological implications[J]. Journal of Geomechanics, 21(4): 502-516. (in Chinese with English abstract)
    ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25(5): 722-745. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905008.htm
    ZHANG S H, ZHAO Y, LIU X C, et al., 2012. U-Pb geochronology and geochemistry of the bedrocks and moraine sediments from the Windmill Islands: implications for Proterozoic evolution of East Antarctica[J]. Precambrian Research, 206-207: 52-71. doi: 10.1016/j.precamres.2012.02.019
    宋彪, 2015. 用SHRIMP测定锆石U-Pb年龄的工作方法[J]. 地质通报, 34(10): 1777-1788. doi: 10.3969/j.issn.1671-2552.2015.10.002
    徐芹芹, 赵磊, 牛宝贵, 2015. 新疆东准噶尔纸房地区早古生代花岗岩的确定及其地质意义[J]. 地质力学学报, 21(4): 502-516. doi: 10.3969/j.issn.1006-6616.2015.04.006
    翟明国, 2019. 华北克拉通构造演化[J]. 地质力学学报, 25(5): 722-745. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190507&journal_id=dzlxxb
  • 加载中

Catalog

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (352) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return