留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用钻孔崩落数据再认识白鹤滩右岸地应力场特征

陈念 王成虎 陈平志 陈建林 周昊

陈念, 王成虎, 陈平志, 等, 2021. 利用钻孔崩落数据再认识白鹤滩右岸地应力场特征. 地质力学学报, 27 (3): 430-440. DOI: 10.12090/j.issn.1006-6616.2021.27.03.039
引用本文: 陈念, 王成虎, 陈平志, 等, 2021. 利用钻孔崩落数据再认识白鹤滩右岸地应力场特征. 地质力学学报, 27 (3): 430-440. DOI: 10.12090/j.issn.1006-6616.2021.27.03.039
CHEN Nian, WANG Chenghu, CHEN Pingzhi, et al., 2021. Re-analyzing the in-situ stress field in the right bank of the Baihetan hydroelectric power plant using the borehole breakout data. Journal of Geomechanics, 27 (3): 430-440. DOI: 10.12090/j.issn.1006-6616.2021.27.03.039
Citation: CHEN Nian, WANG Chenghu, CHEN Pingzhi, et al., 2021. Re-analyzing the in-situ stress field in the right bank of the Baihetan hydroelectric power plant using the borehole breakout data. Journal of Geomechanics, 27 (3): 430-440. DOI: 10.12090/j.issn.1006-6616.2021.27.03.039

利用钻孔崩落数据再认识白鹤滩右岸地应力场特征

doi: 10.12090/j.issn.1006-6616.2021.27.03.039
基金项目: 

国家自然科学基金面上项目 41574088

详细信息
    作者简介:

    陈念(1997-), 男, 硕士研究生, 主要从事地应力与数值模拟等相关研究。E-mail: chennian19@mails.ucas.ac.cn

    通讯作者:

    王成虎(1978-), 男, 博士, 研究员, 主要从事地应力与地质力学、断层力学等相关研究。E-mail: huchengwang@163.com

  • 中图分类号: P553

Re-analyzing the in-situ stress field in the right bank of the Baihetan hydroelectric power plant using the borehole breakout data

Funds: 

the General Programs of National Natural Science Foundation of China 41574088

  • 摘要: 白鹤滩水电站是仅次于三峡水电站的第二大水电站,位于中国西南地区川滇菱形块体内的金沙江上。通常地壳应力状态是影响地下工程安全的重要地质因素,对地下硐室稳定性分析具有重要意义。在水电站右岸厂房建设过程中,为了水电站的长期安全运营,采用超声波井下电视录井测试系统对白鹤滩右岸厂房锚固洞内7处钻孔进行测试,基于钻孔崩落数据计算了现今白鹤滩右岸厂房区域上方工程岩体的主应力方向。研究结果表明:白鹤滩右岸厂房区域最大水平主应力(SH)方向为北北东—南南西方向,主要受到构造应力、自重应力、河流剥蚀作用以及岸坡卸荷作用的共同影响,属于局部构造应力场。

     

  • 图  1  白鹤滩水电站区域地质构造图

    Figure  1.  Regional tectonic structure of the Baihetan hydroelectric power plant

    F1-South section of the Zemuhe fault; F2-North section of the Xiaojiang fault; F3-The Lianfeng fault; F4-The Zhaotong-ludian fault; F5-South section of the Daliangshan fault; F6-The Dagiaohe-Puduhe fault; F7-The Ninghui fault

    图  2  钻孔破坏(钻孔崩落与钻孔诱发张裂隙)形成原理

    Figure  2.  Schematic diagram of borehole failure (borehole breakouts and drilling-induced tensile fractures)

    图  3  井下电视图像示例图

    Figure  3.  Example of integrative ultrasonic borehole imaging system

    图  4  右岸厂房顶拱超声波测试点布置示意图(俯视)

    Figure  4.  Schematic diagram of the ultrasonic testing point layout in the roof arch of the right bank workshop (from top)

    图  5  钻孔破坏(钻孔崩落、钻孔诱发张裂隙)现象展示图

    Figure  5.  Display diagram of the borehole failures (borehole breakouts and drilling-induced tensile fractures)

    图  6  钻孔崩落方位角玫瑰图

    a—钻孔CZZK 03; b—钻孔QXZK 03; c—钻孔CZZK 05; d—钻孔CZZK 07; e—钻孔CZZK 04; f—钻孔CZZK 08; g—钻孔CZZK 10

    Figure  6.  Rose diagram of the borehole breakout directions. (a) Borehole CZZK 03. (b) Borehole QXZK 03. (c) Borehole CZZK 05. (d) Borehole CZZK 07. (e) Borehole CZZK 04. (f) Borehole CZZK 08. (g) Borehole CZZK 10.

    图  7  钻孔崩落方位角分布散点图

    Figure  7.  Scatter diagram of the borehole breakout azimuths

    图  8  钻孔CZZK 05三个深度段的方位角玫瑰图

    a—0~10 m;b—10~20 m;c—20~26 m

    Figure  8.  Rose diagram of azimuth at three depths in the borehole CZZK 05

    图  9  钻孔CZZK 05的崩落分布散点图

    Figure  9.  Scatter diagram of the borehole breakout azimuths in the borehole CZZK 05

    图  10  钻孔CZZK 05钻孔崩落宽度分布直方图

    Figure  10.  Histogram of borehole breakout opening angles in the borehole CZZK 05

    图  11  钻孔诱发张裂隙分布散点图

    Figure  11.  Scatter diagram of the drilling-induced tensile fractures. (a) Borehole CZZK 03. (b) Borehole CZZK 05

    表  1  白鹤滩右岸厂房区域钻孔崩落最大水平主应力方向

    Table  1.   Direction of the maximum horizontal principal stress from the borehole breakouts in the area of the right bank cavern of the Baihetan hydroelectric power plant

    钻孔编号 崩落数目/个 数据采集范围/m 崩落总长度/m 平均SH方向/(°) 标准差/(°)
    CZZK 03 17 0~26.2 1.52 25 14.18
    QXZK 03 2 0~35.0 0.19 47 1.40
    CZZK 05 76 0~26.0 9.75 31 12.49
    CZZK 07 24 0~25.0 2.84 31 13.39
    CZZK 04 2 0~23.5 0.55 17 0.79
    CZZK 08 19 0~23.5 3.83 36 13.08
    CZZK 10 24 0~23.5 6.27 25 6.65
    下载: 导出CSV
  • AMADEI B, STEPHANSSON O, 1997. Rock stress and its measurement[M]. London: Chapman & Hall.
    BELL J S, 1996. Petro geoscience 2. In situ stresses in sedimentary rocks (part 2): Applications of stress measurements[J]. Geoscience Canada, 23(3): 135-153. http://www.researchgate.net/publication/279888920_Petro_geoscience_2_In_situ_stresses_in_sedimentary_rocks_part_2_Applications_of_stress_measurements
    BELL J S, GOUGH D I, 1979. Northeast-southwest compressive stress in Alberta evidence from oil wells[J]. Earth and Planetary Science Letters, 45(2): 475-482. doi: 10.1016/0012-821X(79)90146-8
    BRUDY M, ZOBACK M D, 1999. Drilling-induced tensile wall-fractures: implications for determination of in-situ stress orientation and magnitude[J]. International Journal of Rock Mechanics and Mining Sciences, 36(2): 191-215. doi: 10.1016/S0148-9062(98)00182-X
    CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905015.htm
    CUI X F, XIE F R, ZHANG H Y, 2006. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest[J]. Acta Seismologica Sinica, 28(5): 451-461. (in Chinese with English abstract)
    DUAN S Q, FENG X T, JIANG Q, et al., 2017. Failure modes and mechanisms for rock masses with staggered zones of Baihetan underground caverns under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 36(4): 852-864. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201704009.htm
    GAO A J, XU Z H, CHEN J G, 1990. Horizontal principal stress axes in Sichuan basin deduced from oil-well breakouts[J]. Acta Seismologica Sinica, 12(2): 140-147. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB199002003.htm
    HAN G, ZHAO Q H, PENG S Q, 2011. In-situ stress field evolution of deep fracture rock mass at dam area of Baihetan hydropower station[J]. Rock and Soil Mechanics, 32(S1): 583-589. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX2011S1103.htm
    HE H L, FANG Z J, LI P, 1993. A Preliminary approach to the fault activity of southern segment on Xiaojiang west branch fault[J]. Journal of Seismological Research, 16(3): 291-298. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ199303009.htm
    HEIDBACH O, TINGAY M, BARTH A, et al., 2010. Global crustal stress pattern based on the World Stress Map database release 2008[J]. Tectonophysics, 482(1-4): 3-15. doi: 10.1016/j.tecto.2009.07.023
    HOU J, YU D X, 2018. Analysis of stress field characteristics in source region using the image logging in borehole3 of Wenchuan earthquake fault zone scientific drilling (WFSD-3)[J]. Progress in Geophysics, 33(6): 2234-2240. (in Chinese with English abstract)
    HUANG Y R, XU Z H, GAO A J, et al., 1994. Study on tectonic stress field in Zhongyuan Oilfield by borehole breakout[J]. Acta Seismologica Sinica, 16(2): 195-203. (in Chinese)
    JIANG Q, FENG X T, XU D P, et al., 2011. Evaluation method of general geostress based on spalling features of wall rock[J]. Rock and Soil Mechanics, 32(5): 1452-1459. (in Chinese with English abstract) http://www.researchgate.net/publication/287790113_Evaluation_method_of_general_geostress_based_on_spalling_features_of_wall_rock
    JIANG Q, FENG X T, LI S J, et al., 2019. Cracking-restraint design method for large underground caverns with hard rock under high geostress condition and its practical application[J]. Chinese Journal of Rock Mechanics and Engineering, 38(6): 1081-1101. (in Chinese with English abstract)
    JIN C Y, FENG X T, ZHANG C S, 2010. Research on initial stress field of Baihetan hydropower station[J]. Rock and Soil Mechanics, 31(3): 845-850, 855. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-YTLX201003033.htm
    JU W, SHEN J, QIN Y, et al., 2017. In-situ stress state in the Linxing region, eastern Ordos Basin, China: implications for unconventional gas exploration and production[J]. Marine and Petroleum Geology, 86: 66-78. doi: 10.1016/j.marpetgeo.2017.05.026
    JU W, LI Z L, SUN W F, et al., 2018. In-situ stress orientations in the Xiagou tight oil reservoir of Qingxi Oilfield, Jiuxi Basin, northwestern China[J]. Marine and Petroleum Geology, 98: 258-269. doi: 10.1016/j.marpetgeo.2018.08.020
    KAN R J, ZHANG S C, YAN F T, et al., 1977. Present tectonic stress field and its relation to the characteristics of recent tectonic activity in southwestern China[J]. Acta Geophysica Sinica, 20(2): 96-109. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX197702001.htm
    LI P W, CUI J W, WANG L J, et al., 2005. The determination of in-situ stress from wellbore breakouts in the main borehole of the Chinese Continental Scientific Drilling[J]. Acta Petrologica Sinica, 21(2): 421-426. (in Chinese with English abstract) http://www.researchgate.net/publication/289281463_The_determination_of_in-situ_stress_from_wellbore_breakouts_in_the_main_borehole_of_the_Chinese_Continental_Scientific_Drilling
    LIN T Q, RONG G, XU H L, et al., 2015. Analysis of distribution law of in-situ stress field in asymmetric valley of Baihetan Dam site[J]. Yangtze River, 46(4): 51-55. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-RIVE201504012.htm
    MOOS D, ZOBACK M D, 1990. Utilization of observations of well bore failure to constrain the orientation and magnitude of crustal stresses: Application to continental, Deep Sea Drilling Project, and Ocean Drilling Program boreholes[J]. Journal of Geophysical Research: Solid Earth, 95(B6): 9305-9325. doi: 10.1029/JB095iB06p09305
    PÖPPELREITER M, CARMEN G C, KRAAIJVELD M, 2010. Borehole image log technology: application across the exploration and production life cycle[M]//PÖPPELREITER M, GARCÍA-CARBALLIDO C, KRAAIJVELD M. Dipmeter and borehole image log technology. Denver, Colorado, USA: American Association of Petroleum Geologists: 81-112.
    RONG G, WANG S J, WANG E Z, et al., 2009. Study of evolutional simulation of Baihetan river valley and evaluation of engineering quality of jointed basalt P2β3[J]. Rock and Soil Mechanics, 30(10): 3013-3019. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200910024.htm
    TAN C X, ZHANG P, LU S L, et al., 2019. Significance and role of in-situ crustal stress measuring and real-time monitoring in earthquake prediction research[J]. Journal of Geomechanics, 25(5): 866-876. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905016.htm
    VERNIK L, NUR A, 1992. Petrophysical analysis of the Cajon Pass Scientific Well: implications for fluid flow and seismic studies in the continental crust[J]. Journal of Geophysical Research: Solid Earth, 97(B4): 5121-5134. doi: 10.1029/91JB01672
    WANG L J, CUI J W, ZHANG X W, et al., 2006. In-situ stress state in the main borehole of the Chinese continental scientific drilling[J]. Earth Science-Journal of China University of Geosciences, 31(4): 505-512. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DQKX200604006.htm
    WEI J B, DENG J H, WANG D K, et al., 2010. Characterization of deformation and fracture for rock mass in underground powerhouse of Jinping I hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 29(6): 1198-1205. (in Chinese with English abstract) http://www.researchgate.net/publication/288570631_Characterization_of_deformation_and_fracture_for_rock_mass_in_underground_powerhouse_of_Jinping_I_hydropower_station
    WU H Y, MA K F, ZOBACK M, et al., 2007. Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs[J]. Geophysical Research Letters, 34(1): L01303. doi: 10.1029/2006GL028050
    YIN J M, LI Y S, CHEN J P, et al., 2012. In-situ stress field analysis based on miulte-source information integration[J]. Chinese Journal of Rock Mechanics and Engineering, 31(S2): 3950-3958. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX2012S2067.htm
    YU Y X, XU Z H, 1994. A study on orientations of horizontal principal stress in Jizhong depression using borehole breakout data[J]. Petroleum Exploration and Development, 21(2): 48-55. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK402.008.htm
    ZANG A, STEPHANSSON O, 2013. Stress field of the earth's crust[M]. TIAN J Y, WANG C H, trans. Beijing: Seismological Press: 66-67, 136. (in Chinese)
    ZHANG X, WANG Y S, 2017. Activities of Xiaojiang fault zone in Baihetan hydropower station reservoir[J]. Journal of Engineering Geology, 25(2): 531-540. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201702033.htm
    ZOBACK M D, BARTON C A, BRUDY M, et al., 2003. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1049-1076. doi: 10.1016/j.ijrmms.2003.07.001
    阿尔诺·赞格, 奥韦·斯特凡松, 2013. 地壳应力场[M]. 田家勇, 王成虎, 译. 北京: 地震出版社: 66-67, 136.
    陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5): 853-865. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905015.htm
    崔效锋, 谢富仁, 张红艳, 2006. 川滇地区现代构造应力场分区及动力学意义[J]. 地震学报, 28(5): 451-461. doi: 10.3321/j.issn:0253-3782.2006.05.001
    段淑倩, 冯夏庭, 江权, 等, 2017. 高地应力下白鹤滩地下洞室群含错动带岩体破坏模式及机制研究[J]. 岩石力学与工程学报, 36(4): 852-864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201704009.htm
    高阿甲, 许忠淮, 陈家庚, 1990. 用钻孔崩落推断四川盆地的水平主应力方向[J]. 地震学报, 12(2): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB199002003.htm
    韩刚, 赵其华, 彭社琴, 2011. 白鹤滩水电站坝区深部破裂岩体地应力演化特征[J]. 岩土力学, 32(S1): 583-589. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1103.htm
    何宏林, 方仲景, 李玶, 1993. 小江断裂带西支断裂南段新活动初探[J]. 地震研究, 16(3): 291-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ199303009.htm
    侯颉, 余大新, 2018. 利用汶川地震断裂带科学钻探3号井(WFSD-3)成像测井资料分析震源区应力场特征[J]. 地球物理学进展, 33(6): 2234-2240. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201806006.htm
    黄雨蕊, 许忠淮, 高阿甲, 等, 1994. 利用钻孔崩落研究中原油田的构造应力场[J]. 地震学报, 16(2): 195-203. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB402.008.htm
    江权, 冯夏庭, 徐鼎平, 等, 2011. 基于围岩片帮形迹的宏观地应力估计方法探讨[J]. 岩土力学, 32(5): 1452-1459. doi: 10.3969/j.issn.1000-7598.2011.05.026
    江权, 冯夏庭, 李邵军, 等, 2019. 高应力下大型硬岩地下洞室群稳定性设计优化的裂化-抑制法及其应用[J]. 岩石力学与工程学报, 38(6): 1081-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906002.htm
    金长宇, 冯夏庭, 张春生, 2010. 白鹤滩水电站初始地应力场研究分析[J]. 岩土力学, 31(3): 845-850, 855. doi: 10.3969/j.issn.1000-7598.2010.03.032
    阚荣举, 张四昌, 晏凤桐, 等, 1977. 我国西南地区现代构造应力场与现代构造活动特征的探讨[J]. 地球物理学报, 20(2): 96-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX197702001.htm
    李朋武, 崔军文, 王连捷, 等, 2005. 中国大陆科学钻探主孔钻孔崩落与现场应力状态的确定[J]. 岩石学报, 21(2): 421-426. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502016.htm
    林太清, 荣冠, 徐海亮, 等, 2015. 白鹤滩坝址区不对称河谷地应力场演化规律分析[J]. 人民长江, 46(4): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201504012.htm
    荣冠, 王思敬, 王恩志, 等, 2009. 白鹤滩河谷演化模拟及P2β3玄武岩级别评估[J]. 岩土力学, 30(10): 3013-3019. doi: 10.3969/j.issn.1000-7598.2009.10.022
    谭成轩, 张鹏, 路士龙, 等, 2019. 原位地应力测量与实时监测在地震预报研究中的作用和意义[J]. 地质力学学报, 25(5): 866-876. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905016.htm
    王连捷, 崔军文, 张晓卫, 等, 2006. 中国大陆科学钻主孔现今地应力状态[J]. 地球科学-中国地质大学学报, 31(4): 505-512. doi: 10.3321/j.issn:1000-2383.2006.04.007
    魏进兵, 邓建辉, 王俤剀, 等, 2010. 锦屏一级水电站地下厂房围岩变形与破坏特征分析[J]. 岩石力学与工程学报, 29(6): 1198-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006016.htm
    尹健民, 李永松, 陈建平, 等, 2012. 基于多源信息集成的地应力场分析研究[J]. 岩石力学与工程学报, 31(S2): 3950-3958. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2067.htm
    俞言祥, 许忠淮, 1994. 用钻孔崩落法研究冀中坳陷水平主应力方向[J]. 石油勘探与开发, 21(2): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK402.008.htm
    张欣, 王运生, 2017. 白鹤滩水电站库区小江断裂带活动性研究[J]. 工程地质学报, 25(2): 531-540. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702033.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  115
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 修回日期:  2021-01-10
  • 刊出日期:  2021-06-28

目录

    /

    返回文章
    返回