留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤海钻孔物源示踪和河流沉积物扩散研究: 碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束

林旭 刘静 吴中海 李长安 刘海金

林旭, 刘静, 吴中海, 等, 2021. 渤海钻孔物源示踪和河流沉积物扩散研究: 碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束. 地质力学学报, 27 (2): 304-316. DOI: 10.12090/j.issn.1006-6616.2021.27.02.028
引用本文: 林旭, 刘静, 吴中海, 等, 2021. 渤海钻孔物源示踪和河流沉积物扩散研究: 碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束. 地质力学学报, 27 (2): 304-316. DOI: 10.12090/j.issn.1006-6616.2021.27.02.028
LIN Xu, LIU Jing, WU Zhonghai, et al., 2021. Study on borehole provenance tracing and fluvial sediment diffusion in the Bohai Sea: Double constraints from detrital zircon U-Pb age and in-situ geochemical element of apatite grains. Journal of Geomechanics, 27 (2): 304-316. DOI: 10.12090/j.issn.1006-6616.2021.27.02.028
Citation: LIN Xu, LIU Jing, WU Zhonghai, et al., 2021. Study on borehole provenance tracing and fluvial sediment diffusion in the Bohai Sea: Double constraints from detrital zircon U-Pb age and in-situ geochemical element of apatite grains. Journal of Geomechanics, 27 (2): 304-316. DOI: 10.12090/j.issn.1006-6616.2021.27.02.028

渤海钻孔物源示踪和河流沉积物扩散研究: 碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束

doi: 10.12090/j.issn.1006-6616.2021.27.02.028
基金项目: 

国家自然科学基金 41702178

国家自然科学基金 41972212

详细信息
    作者简介:

    林旭(1984-), 男, 博士, 副教授, 从事大河物源示踪研究。E-mail: hanwuji-life@163.com

    通讯作者:

    吴中海(1974-), 男, 博士, 研究员, 从事新构造与构造地貌研究。E-mail: wzhh4488@sina.com

  • 中图分类号: P534.63

Study on borehole provenance tracing and fluvial sediment diffusion in the Bohai Sea: Double constraints from detrital zircon U-Pb age and in-situ geochemical element of apatite grains

Funds: 

the National Natural Science Foundation of China 41702178

the National Natural Science Foundation of China 41972212

  • 摘要: 锆石和磷灰石是河流沉积物中常见的副矿物,由于各自的U-Pb年龄组成和原位地球化学元素组成在不同区域内存在显著差异,是进行河流物源示踪研究的理想矿物。基于此,利用在环渤海湾盆地主要汇入河流已发表的碎屑锆石U-Pb年龄,结合盆地晚第四纪钻孔的近地表碎屑物质的锆石U-Pb年龄,综合Kolmogorov-Smirnov统计方法的多维判别图(MDS),系统对比分析了辽东湾、渤海中央盆地和莱州湾的物质来源。结果显示,辽东湾的物质主要来自辽河;渤海中央盆地和莱州湾的碎屑物质主要来自黄河。同时,利用激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS),对黄河下游(n=70)、胶东半岛的威海湾(n=120)、银滩湾(n=60)的现代河流沉积物和海岸砂开展了碎屑磷灰石微区原位(in situ)主微量元素分析。结果发现黄河与威海湾、银滩湾的碎屑物质不存在物源关系,结合该区域碎屑钾长石原位主微量元素的已有分析结果,进一步说明黄河与胶东半岛的海湾内的碎屑物质不存在物源关系。新的研究结果表明,将碎屑锆石、磷灰石原位地球化学分析相结合有助于更精准地判定河流的物源关系。

     

  • 图  1  渤海湾盆地地理位置图

    1—9河流碎屑锆石(Nie et al., 2015; 林旭等, 2020a);①—③碎屑钾长石(林旭等, 2020a);A—D碎屑磷灰石(此次研究);CK3—渤海湾钻孔(Xiao et al., 2020),JY268—辽东湾钻孔(Huang et al., 2020),T80、S1—渤海中央盆地钻孔(李孟芸, 2017; Huang et al., 2020),T87—莱州湾钻孔(Huang et al., 2020)

    Figure  1.  Geographical location map of the Bohai Bay Basin.

    Fluvial detrital zircon data 1-8 were quoted from Lin et al., 2020a, data 9 from Nie et al., 2015. ①-③ represent the in-situ geochemical analysis of detrital K-feldspar (Lin et al., 2020a); A-D represent the study of in-situ geochemistry of detrital apatite (in this study); Figures CK3, JY268, T80, S1 and T87 represent the boreholes located in the Bohai Bay, Liaodong Bay, Bohai Central Basin and Laizhou Bay, respectively (Li, 2017; Huang et al., 2020; Xiao et al., 2020)

    图  2  渤海湾盆地海底地貌类型图(据吴忱, 2008修改)

    Figure  2.  Submarine geomorphologic map of the Bohai Bay Basin (modified after Wu, 2008)

    图  3  胶东半岛地质简图(据中国1∶250万地质图修改,2004)

    Figure  3.  Geological sketch map of the Jiaodong Peninsula, modified after the China 1∶250, 000 geological map (China Geological Survey, 2004)

    图  4  磷灰石背散射图像(圆圈为样品分析点)

    Figure  4.  Representative back scattering images of detrital apatite grains from the Yellow River(a), Liugong Island(b), Weihai Bay (c) and Yintan Bay(d). Circles indicate analytical spots for major and trace elements dating.

    图  5  磷灰石主、微量元素含量二维散点图

    a—CaO和P2O5;b—SiO2和P2O5;c—Y和Ce;d—Sm和Nd;e—Sr/Y和∑REE;f—Ce/Yb和∑REE

    Figure  5.  Two-dimensional scatter plots for the contents of CaO and P2O5(a), SiO2 and P2O5(b), Y and Ce(c), Sm and Nd(d), Sr/Y and ∑REE(e), Ce/Yb and ∑REE(f) in apatites

    图  6  碎屑锆石U-Pb年龄概率分布图

    a—辽河、b—滦河、c—海河(林旭等, 2020a);d—黄河(Nie et al., 2015);e—辽东湾钻孔(Huang et al., 2020);f—胶东半岛基岩(Zhao et al., 2018);g—胶东半岛碎屑(林旭等, 2020a);h—中新世中央盆地钻孔(李孟芸, 2017);i—晚第四纪中央盆地钻孔;j—莱州湾钻孔(Huang et al., 2020)

    Figure  6.  Probability distribution of U-Pb ages of detrital zircons.

    (a-c) The Liaohe River, Luanhe River and Haihe River (Lin et al., 2020a). (d)The Yellow River (Nie et al., 2015). (f, g) Bedrock and detrital from the Jiaodong Peninsula (Zhao et al., 2018; Lin et al., 2020a). (h) A Miocene borehole in the Bohai Central Basin. (e, i, j) boreholes in the Liaodong Bay, Bohai Central Basin and Laizhou Bay (Huang et al., 2020)

    图  7  锆石U-Pb年龄之间的K-S统计距离多维判别图(MDS)

    Figure  7.  MDS plot showing the K-S distances between the zircon U-Pb ages

    表  1  磷灰石LA-ICP-MS数据统计表

    Table  1.   Descriptive statistics of the LA-ICP-MS data for apatite grains

    黄河(n=70) 刘公岛(n=60) 威海(n=60) 银滩(n=60)
    最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值
    SiO2/×10-2 0.2 1.0 0.37 0.1 0.3 0.2 0.1 0.4 0.2 0.3 0.6 0.2
    P2O5/×10-2 41.1 43.3 42.5 42.5 44.2 43.4 42.8 45.8 44.4 43.2 45.1 44.0
    CaO/×10-2 39.2 57.1 56.0 55.2 56.9 56.0 53.8 56.3 55.0 54.4 56.1 55.4
    Sr/×10-6 95.0 5526.0 717.0 104.0 5446.0 451.0 108.0 5466.0 578.0 180.0 1163.0 536.0
    Y/×10-6 27.0 2876.0 632.0 12.0 2576.0 555.0 19.0 1766.0 292.0 9.8 1484.0 250.7
    Ce/×10-6 13.0 7593.0 1502.0 24.0 1799.0 237.0 17.0 2427.0 300.0 0.5 220.0 41.0
    Yb/×10-6 1.2 247.0 41.0 1.0 297.0 42.0 1.3 130.0 21.7 0.1 138.0 23.6
    Sm/×10-6 11.0 822.0 200.0 4.0 339.0 64.5 3.0 302.0 53.0 0.3 99.0 20.0
    Nd/×10-6 21.0 3657.0 973.0 18.0 1225.0 203.0 13.0 1638.0 235.0 0.7 222.0 48.0
    ∑REE/×10-6 117.0 10995.0 3015.0 87.9 4295.0 708.0 99.5 5687.0 792.0 4.5 875.0 175.0
    下载: 导出CSV
  • ALLENM B, MACDONALD D M, XUN Z, et al., 1997. Early cenozoic two-phase extension and late cenozoic thermal subidence and inversion of the Bohai Basin, northern China[J]. Marine and Petroleum Geology, 14(7-8): 951-972. doi: 10.1016/S0264-8172(97)00027-5
    BELOUSOVA E A, GRIFFIN W L, O'REILLY S Y et al., 2002. Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 76(1): 45-69. doi: 10.1016/S0375-6742(02)00204-2
    BRACCIALI L, PARRISH R R, HORSTWOOD M S A et al., 2013. U-Pb LA-(MC)-ICP-MS dating of rutile: New reference materials and applications to sedimentary provenance[J]. Chemical Geology, 347: 82-101. doi: 10.1016/j.chemgeo.2013.03.013
    BRUAND E, FOWLER M, STOREY C, et al, 2017. Apatite trace element and isotope applications to petrogenesis and provenance[J]. American Mineralogist, 102(1): 75-84. doi: 10.2138/am-2017-5744
    CHEN L R. 2008. Sediment mineralogy of the China Sea[M]. Beijing: China Ocean Press, 40-57. (in Chinese)
    CHENG Y, LI X Q, ZHAO Z Y, et al, 2018. Detrital zircon U-Pb age and its provenance significance in the TZK3 core from the Yangtze River Delta[J]. Journal of Geomechanics, 24(5): 635-644. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZLX201805066.htm
    CHOI T, LEE Y I, ORIHASHI Y et al., 2013. The provenance of the southeastern Yellow Sea sediments constrained by detrital zircon U-Pb age[J]. Marine Geology, 337: 182-194. doi: 10.1016/j.margeo.2013.01.007
    CHOI T, LEE Y I, ORIHASHI Y, 2016. Crustal growth history of the Korean Peninsula: Constraints from detrital zircon ages in modern river sediments[J]. Geoscience Frontiers, 7(5): 707-714. doi: 10.1016/j.gsf.2016.05.003
    China Geological Survey. 2004. Geological map of the People's Republic of China (1: 2.5 million)[M]. Beijing: China map publishing house: 1. (in Chinese)
    DING B, LIU H X, LI P, et al, 2019. The tectonic activity in the southern margin of the Ili Basin and its constraints on sandstone-type uranium deposits: evidence from apatite fission track and U-Pb dating[J]. Journal of Geomechanics, 25(S1): 84-89. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1015.htm
    FYHN M B W, THOMSEN T B, KEULEN N et al., 2019. Detrital zircon ages and heavy mineral composition along the Gulf of Tonkin-Implication for sand provenance in the Yinggehai-Song Hong and Qiongdongnan basins[J]. Marine and Petroleum Geology, 101: 162-179. doi: 10.1016/j.marpetgeo.2018.11.051
    GENG X L, GAO S, CHEN C, 2011. Crustal growth of the eastern North China Craton and sulu orogen as revealed by U-Pb dating and Hf isotopes of detrital zircons from modern rivers[J]. Earth Science-Joumal of China University of Geosciences, 36(3): 483-499. (in Chinese with English abstract) http://www.cqvip.com/QK/71135X/201107/37878198.html
    GONG L X. 2014. Erosion situation and protection of beach in eastern part of Shandong Peninsula[D]. Qingdao: Ocean university of China: 1-130. (in Chinese with English abstract)
    GUO F, GAO M S, HOU G H, et al, 2016. Geochemical characteristics of sediment in Core 07 since the late Pleistocene in Laizhou Bay[J]. Acta Oceanologica Sinica, 38(3): 145-155. (in Chinese with English abstract) http://www.researchgate.net/publication/311265893_Geochemical_characteristics_of_sediment_in_Core_07_since_the_late_Pleistocene_in_Laizhou_Bay
    GUO R H, HU X M, GARZANTI E et al., 2020. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet[J]. Earth-Science Reviews, 201: 103082. doi: 10.1016/j.earscirev.2020.103082
    HAN Z Z, YI W H, LI M et al., 2013. Analysis for heavy mineral characteristics and material provenance in the sediments of the northern Bohai bay[J]. Periodical of Ocean University of China, 43(4): 73-79. (in Chinese with English abstract) http://d.wanfangdata.com.cn/periodical/qdhydxxb201304011
    HU C H, WANG Y G, ZHANG Y J et al., 2010. Variation tendency of runoff and sediment load in China major rivers and its causes[J]. Advances in Water Science, 21(4): 524-532. (in Chinese with English abstract) http://www.researchgate.net/publication/297938728_Variation_tendency_of_runoff_and_sediment_load_in_China_major_rivers_and_its_causes
    HU G, XU K H, CLIFT P D et al., 2018. Textures, provenances and structures of sediment in the inner shelf south of Shandong Peninsula, western South Yellow Sea[J]. Estuarine, Coastal and Shelf Science, 212: 153-163. doi: 10.1016/j.ecss.2018.07.018
    HU S Y, ZENG Z G, FANG X, et al., 2019. Geochemical study of detrital apatite in sediment from the southern Okinawa trough: new insights into sediment provenance[J]. Minerals, 9(10): 619. doi: 10.3390/min9100619
    HUANG X T, SONG J Z, YUE W, et al., 2020. Detrital Zircon U-Pb Ages in the East China Seas: Implications for Provenance Analysis and Sediment Budgeting[J]. Minerals, 10(5): 398. doi: 10.3390/min10050398
    HUANG X Y, 2019. Analysis of Sedimentary Characteristics in the Guangli River Estuary and the Western Laizhou Bay[D]. Dalian: Liaoning Normal University: 1-72. (in Chinese with English abstract)
    JIN B F, YUE W, WANG K S, 2014. Chemical composition of detrital amphibole in the sediments of the Huanghe River, Liaohe River and Yalu River, and its implication for sediment provenance[J]. Acta Oceanologica Sinica, 36(4): 11-21. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/hyxb201404002
    JOHNSON S P, KIRKLAND C L, EVANS N J et al., 2018. The complexity of sediment recycling as revealed by common Pb isotopes in K-feldspar[J]. Geoscience Frontiers, 9(5): 1515-1527. doi: 10.1016/j.gsf.2018.03.009
    KONG P, JIA J, ZHENG Y, 2014. Time constraints for the Yellow River traversing the Sanmen gorge[J]. Geochemistry, Geophysics, Geosystems, 15(2): 395-407. doi: 10.1002/2013GC004912
    LAN X H, QIN Y C, WANG Z B et al., 2016. Geochemical characteristics of sediments in the eastern Bohai sea since late Pleistocene[J]. Acta Sedimentologica Sinica, 34(5): 892-901. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201605008.htm
    LI G G, HU B Q, LI J et al., 2012b. Geochemistry of major elements in the surface sediments of the offshore area of Shandong peninsula and its geological implications[J]. Marine Geology & Quaternary Geology, 32(3): 45-54.
    LI J, HU B Q, ZHAO J T et al., 2015. Distribution pattern and controlling factors of heavy mineral assemblages in surficial seafloor sediments offshore of the Eastern Shandong Peninsula (Yellow Sea)[J]. Environmental Earth Sciences, 73(8): 4273-4285. doi: 10.1007/s12665-014-3712-9
    LI L, NI J R, CHANG F et al., 2020. Global trends in water and sediment fluxes of the world's large rivers[J]. Science Bulletin, 65(1): 62-69. doi: 10.1016/j.scib.2019.09.012
    LI M Y, 2017. Dating method of detrital zircons and its application in sediment provenance studies[D]. Wuhan: Yangtze University: 1-60.
    LI S Z, ZHAO G C, DAI L M et al., 2012a. Mesozoic basins in Eastern China and their bearing on the deconstruction of the North China Craton[J]. Journal of Asian Earth Sciences, 47: 64-79. doi: 10.1016/j.jseaes.2011.06.008
    LI S Z, SUO Y H, LI X Y et al., 2019. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate[J]. Earth-Science Reviews, 192: 91-137. doi: 10.1016/j.earscirev.2019.03.003
    LIN X, LIU J, WU Z H, et al., 2020a. Detrital zircon U-Pb ages and K-feldspar main and trace elements provenance studying from fluvial to marine sediments in northern China[J]. Acta Geologica Sinica, 94(10): 3024-3035. (in Chinese with English abstract) http://www.researchgate.net/publication/343917750_Detrital_zircon_U-_Pb_ages_and_K-_feldspar_main_and_trace_elements_provenance_studying_from_fluvial_to_marine_sediments_in_northern_China
    LIN X, ZHAO X T, WU Z H, et al., 2020b. Source tracing elements of K-feldspar of main rivers around Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 39(6): 10-18. (in Chinese with English abstract)
    LIU J, SAITO Y, KONG X H et al., 2009. Geochemical characteristics of sediment as indicators of post-glacial environmental changes off the Shandong Peninsula in the Yellow Sea[J]. Continental Shelf Research, 29(7): 846-855. doi: 10.1016/j.csr.2009.01.002
    LIU J, ZHANG J Q, MIAO X D et al., 2019. Mineralogy of the core YRD-1101 of the Yellow River Delta: Implications for sediment origin and environmental evolution during the last ~1.9Myr[J]. Quaternary International, 537: 79-87.
    LIU J Q, ZHANG Y, YIN P, et al., 2016. Distribution and provenance of heavy minerals in surface sediments of the Qingdao offshore area[J]. Marine Geology and Quaternary Geology, 36(1): 69-78. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201601008.htm
    LIU X C, WU Y B, FISHER C M et al., 2017. Tracing crustal evolution by U-Th-Pb, Sm-Nd, and Lu-Hf isotopes in detrital monazite and zircon from modern rivers[J]. Geology, 45(2): 103-106. doi: 10.1130/G38720.1
    LIU X Q, HAN Z Z, AI L N, et al., 2018. Composition of clay minerals and rare geochemical characteristics of BZ01 and B62 core and provenance analysis in the center of Bohai Sea[J]. Periodical of Ocean University of China, 48(1): 106-114. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY2018S1013.htm
    LIU Y S, HU Z C, GAO S et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
    MALUSÀ M G, WANG J G, GARZANTI E et al., 2017. Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology[J]. Lithos, 290-291: 48-59. doi: 10.1016/j.lithos.2017.08.006
    MILLIMAN J D, FARNSWORTH K L, 2013. River discharge to the coastal ocean: aglobal syntnesis[M]. London: Cambridge University Press, 1-393.
    MONNIER L, LACH P, SALVI S et al., 2018. Quartz trace-element composition by LA-ICP-MS as proxy for granite differentiation, hydrothermal episodes, and related mineralization: The Beauvoir Granite (Echassières district), France[J]. Lithos, 320-321: 355-377. doi: 10.1016/j.lithos.2018.09.024
    MORTON A, YAXLEY G, 2007. Detrital Apatite Geochemistry and its Application in Provenance Studies[M]//ARRIBASJ, JOHNSSON M J, CRITELLIS. Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry. Geological Society of America, 420: 319-344.
    NIE J, STEVENTS T, RITTNER M, et al., 2015. Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment[J]. Nature Communications, 6(1): 1-10.
    O'SULLIVAN G, CHEW D, KENNY G et al., 2020. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 201: 103044. doi: 10.1016/j.earscirev.2019.103044
    QI J F, YANG Q, 2010. Cenozoic structural deformation and dynamic processes of the Bohai Bay basin Province, China[J]. Marine and Petroleum Geology, 27(4): 757-771. doi: 10.1016/j.marpetgeo.2009.08.012
    QIAO S Q, SHI X F, WANG G Q et al., 2017. Sediment accumulation and budget in the Bohai sea, Yellow Sea and East China sea[J]. Marine Geology, 390: 270-281. doi: 10.1016/j.margeo.2017.06.004
    QIU Y, WANG L F, HUANG W K., 2016. Meso-Cenozoic sedimentary basins in Chinese waters[M]. Beijing: Geology Press: 1-233. (in Chinese)
    RAO W B, MAO C P, WANG Y G et al., 2015. Geochemical constraints on the provenance of surface sediments of radial sand ridges off the Jiangsu coastal zone, East China[J]. Marine Geology, 359: 35-49. doi: 10.1016/j.margeo.2014.11.007
    SAITO Y, YANG Z S, HORI K, 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene[J]. Geomorphology, 41(2-3): 219-231. doi: 10.1016/S0169-555X(01)00118-0
    TANG J, ZHENG Y F, WU Y B et al., 2008. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China[J]. Precambrian Research, 161(3-4): 389-418. doi: 10.1016/j.precamres.2007.09.008
    VERMEESCH P, RESENTINI A, GARZANTI E, 2016. An R package for statistical provenance analysis[J]. Sedimentary Geology, 336: 14-25. doi: 10.1016/j.sedgeo.2016.01.009
    WANG K S, SHI X F, CAI S W, et al., 2010. Distribution and provenance of the surface sediments of the Yellow River mouth and Laizhou Bay deduced from heavy minerals[J]. Marine Geology and Quaternary Geology, 30(6): 1-8. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201006003.htm
    WANG L B, LI J, ZHAO J T, et al., 2014. Detrtial mineral assemblages and distributions as indicators of provenance and dispersal pattern in surface sediments from Liaodong Bay, Bohai Sea[J]. Acta Oceanologica Sinica, 36(2): 66-74. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC201402007.htm
    WU C. 2008. Landform environment and its formation in North China[M]. Beijing: Science Press: 1-551. (in Chinese with English abstract)
    WU F Y, YANG J H, WILDE S A et al., 2007. Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea[J]. Precambrian Research, 159(3-4): 155-177. doi: 10.1016/j.precamres.2007.06.007
    XIAO G, SUN Y, YANG J, et al., 2020. Early pleistocene integration of the Yellow River Ⅰ: Detrital-zircon evidence from the North China plain[J]. Palaeogeography Palaeoclimatology, Palaeoecology, 546: 109691. doi: 10.1016/j.palaeo.2020.109691
    YANG J, GAO S, CHEN C et al., 2009. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers[J]. Geochimica et Cosmochimica Acta, 73(9): 2660-2673. doi: 10.1016/j.gca.2009.02.007
    YANG Q Y, SANTOSH M, SHEN J F et al., 2014. Juvenile vs. recycled crust in NE China: Zircon U-Pb geochronology, Hf isotope and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula[J]. Gondwana Research, 25(4): 1445-1468. doi: 10.1016/j.gr.2013.06.003
    YANG S Y, LI C X, LEE C B et al., 2003. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators[J]. Chinese Science Bulletin, 48(11): 1135-1139. doi: 10.1007/BF03185768
    YI L, DENG C L, TIAN L Z et al., 2016. Plio-Pleistocene evolution of Bohai Basin (East Asia): demise of Bohai Paleolake and transition to marine environment[J]. Scientific Reports, 6(1): 29403. doi: 10.1038/srep29403
    ZENG L S, CHEN J, GAO L E, et al., 2012. The geochemical nature of apatites in high Sr/Y two-mica granites from the North Himalayan Gneiss Domes, southern Tibet[J]. Acta Petrologica Sinica, 28(9): 2981-2993. (in Chinese with English abstract)
    ZHANG H F, GAO S. 2016. Geochemistry[M]. Beijing: Geology Press: 1-410. (in Chinese)
    ZHANG J, ZHAO Z F, ZHENG Y F et al., 2010. Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China[J]. Lithos, 119(3-4): 512-536. doi: 10.1016/j.lithos.2010.08.005
    ZHANG L J, HU R J, ZHU L H, et al., 2019. Characteristics of detrital minerals in Bohai Bay and their implications for provenance and sedimentary dynamical environment[J]. Periodical of Ocean University of China, 49(5): 60-70. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY201905008.htm
    ZHAO R, WANG Q F, DENG J et al., 2018. Late Mesozoic magmatism and sedimentation in the Jiaodong Peninsula: New constraints on lithospheric thinning of the North China Craton[J]. Lithos, 322: 312-324. doi: 10.1016/j.lithos.2018.10.020
    ZHAO X T, GENG X S, ZHANG J W. 1979. Sea level changes of the eastern China during the past 20000 years[J]. Acta Oeanologia Sinica, 1 (2): 269-281. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC197902007.htm
    ZHAO X T, HU D G, WU Zh H, et al., 2017. Reviews on the research of late Cenozoic geology and environment of the Yangtze River delta area[J]. Journal of Geomechanics, 23 (1): 1-64. (in Chinese with English abstract)
    ZHENG S W, FAN D J, LIU M, et al., 2017. Rare earth element evidence for the modern Yellow River origin sediments in the middle Bohai Sea[J]. Periodical of Ocean University of China, 47(6): 95-103. (in Chinese with English abstract) http://www.researchgate.net/publication/327050001_Rare_earth_element_evidence_for_the_modern_Yellow_River_origin_sediments_in_the_middle_Bohai_Sea
    ZHONG W, ZHU L H, DONG P et al., 2020. Mechanisms of sediment trapping in coastal embayments off the Shandong Peninsula in summer: A case study in Weihai Bay[J]. Estuarine, Coastal and Shelf Science, 236: 106623. doi: 10.1016/j.ecss.2020.106623
    ZHU X F, SHEN C B, ZHOU R J et al., 2020. Paleogene sediment provenance and paleogeographic reconstruction of the South Yellow Sea Basin, East China: Constraints from detrital zircon U-Pb geochronology and heavy mineral assemblages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 553: 109776. doi: 10.1016/j.palaeo.2020.109776
    ZHU X, XU W. 1990. China Meso-Cenozoic sedimentary basins[M]. Beijing: Petroleum Industry Press: 1-319. (in Chinese)
    陈丽蓉. 2008. 中国海沉积矿物学[M]. 北京: 海洋出版社: 40-57.
    程瑜, 李向前, 赵增玉, 等, 2018. 长江三角洲地区TZK3孔碎屑锆石U-Pb年龄及其物源意义[J]. 地质力学学报, 24(5): 635-644. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180506&journal_id=dzlxxb
    丁波, 刘红旭, 李平, 等, 2019. 伊犁盆地南缘构造活动及对砂岩型铀矿的制约: 来自磷灰石裂变径与U-Pb定年的证据[J]. 地质力学学报, 25(S1): 84-89. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2019S115&journal_id=dzlxxb
    耿显雷, 高山, 陈晨, 2011. 华北克拉通东部及苏鲁造山带的地壳生长: 来自现代河流碎屑锆石的U-Pb定年和Hf同位素证据[J]. 地球科学——中国地质大学学报, 36(3): 483-499. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201103006.htm
    宫立新. 2014. 山东半岛东部海滩侵蚀现状与保护研究[D]. 青岛: 中国海洋大学, 1-130.
    郭飞, 高茂生, 侯国华, 等, 2016. 莱州湾07钻孔沉积物晚更新世以来的元素地球化学特征[J]. 海洋学报, 38(3): 145-155. doi: 10.3969/j.issn.0253-4193.2016.03.014
    韩宗珠, 衣伟虹, 李敏, 等, 2013. 渤海湾北部沉积物重矿物特征及物源分析[J]. 中国海洋大学学报, 43(4): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201304012.htm
    胡春宏, 王延贵, 张燕菁, 等, 2010. 中国江河水沙变化趋势与主要影响因素[J]. 水科学进展, 21(4): 524-532. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201004014.htm
    黄学勇. 2019. 广利河口及莱州湾西部沉积特征分析[D]. 大连: 辽宁师范大学, 1-72.
    金秉福, 岳伟, 王昆山. 2014. 黄河、辽河和鸭绿江沉积角闪石矿物化学特征对比及物源识别[J]. 海洋学报, 36(4): 11-21. doi: 10.3969/j.issn.0253-4193.2014.04.001
    蓝先洪, 秦亚超, 王中波, 等, 2016. 渤海东部晚更新世以来的沉积物地球化学特征[J]. 沉积学报, 34(5): 892-901. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201605008.htm
    李孟芸. 2018. 锆石测年方法及其在沉积物源研究中的应用[D]. 武汉: 长江大学, 1-60.
    林旭, 刘静, 吴中海, 等, 2020a. 中国北部陆架海碎屑锆石U-Pb年龄和钾长石主微量元素物源示踪研究[J]. 地质学报, 94(10): 3024-3035. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202010016.htm
    林旭, 赵希涛, 吴中海, 等, 2020b. 渤海湾周缘主要河流钾长石物源示踪指标研究[J]. 地质科技通报, 39(6): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006002.htm
    刘金庆, 张勇, 印萍, 等. 2016. 青岛近岸海域表层沉积物重矿物分布及物源[J]. 海洋地质与第四纪地质, 36(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201601008.htm
    刘希青, 韩宗珠, 艾丽娜, 等. 2018. 渤海中部BZ01与B62孔岩芯粘土矿物组成和稀土元素地球化学特征对物源的指示意义[J]. 中国海洋大学学报, 48(S1): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY2018S1013.htm
    邱燕, 王立飞, 黄文凯. 2016. 中国海域中新生代沉积盆地[M]. 北京: 地质出版社, 1-233.
    吴忱. 2008. 华北地貌环境及其形成演化[M]. 北京: 科学出版社, 1-551.
    王昆山, 石学法, 蔡善武, 等. 2010. 黄河口及莱州湾表层沉积物中重矿物分布与来源[J]. 海洋地质与第四纪地质, 30(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201006003.htm
    王利波, 李军, 赵京涛, 等, 2014. 辽东湾表层沉积物碎屑矿物组合分布及其对物源和沉积物扩散的指示意义[J]. 海洋学报, 36(2): 66-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201402007.htm
    叶亚康. 2019. 川西松林口岩体锆石U-Pb定年及其地球化学特征. 地质力学学报, 25(S1): 53-59. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2019S110&journal_id=dzlxxb
    曾令森, 陈晶, 高利娥, 等, 2012. 藏南北喜马拉雅穹窿高Sr/Y二云母花岗岩中磷灰石地球化学特征及其岩石学意义[J]. 岩石学报, 28(9): 2981-2993. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201209025.htm
    张宏飞, 高山, 2016. 地球化学[M]. 北京: 地质出版社, 1-410.
    张连杰, 胡日军, 朱龙海, 等, 2019. 渤海湾碎屑矿物特征及其物源和沉积动力环境指示意义[J]. 中国海洋大学学报, 49(5): 60-70. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201905008.htm
    赵希涛, 耿秀山, 张景文, 1979. 中国东部20000年来的海平面变化[J]. 海洋学报: 中文版, 1(2): 269-281. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC197902007.htm
    赵希涛, 胡道功, 吴中海, 等, 2017. 长江三角洲地区晚新生代地质与环境研究进展述评[J]. 地质力学学报, 23(1): 1-64. doi: 10.3969/j.issn.1006-6616.2017.01.001
    郑世雯, 范德江, 刘明, 等, 2017. 渤海中部现代黄河沉积物影响范围的稀土元素证据[J]. 中国海洋大学学报: 自然科学版, 47(6): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201706012.htm
    中国地质调查局. 2004. 中华人民共和国地质图 1: 250万说明书[M]. 北京: 中国地图出版社, 1.
    朱夏, 徐旺. 1990. 中国中新生代沉积盆地[M]. 北京: 石油工业出版社, 1-319.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  409
  • HTML全文浏览量:  82
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-09
  • 修回日期:  2020-09-15
  • 刊出日期:  2021-04-28

目录

    /

    返回文章
    返回