留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯西北缘桌子山地区河流袭夺和分水岭迁移研究

林玲玲 李雪梅 张会平 马字发

林玲玲, 李雪梅, 张会平, 等, 2021. 鄂尔多斯西北缘桌子山地区河流袭夺和分水岭迁移研究. 地质力学学报, 27 (2): 294-303. DOI: 10.12090/j.issn.1006-6616.2021.27.02.027
引用本文: 林玲玲, 李雪梅, 张会平, 等, 2021. 鄂尔多斯西北缘桌子山地区河流袭夺和分水岭迁移研究. 地质力学学报, 27 (2): 294-303. DOI: 10.12090/j.issn.1006-6616.2021.27.02.027
LIN Lingling, LI Xuemei, ZHANG Huiping, et al., 2021. River capture and divide migration of the Zhuozishan area in the northwestern margin of the Ordos Block. Journal of Geomechanics, 27 (2): 294-303. DOI: 10.12090/j.issn.1006-6616.2021.27.02.027
Citation: LIN Lingling, LI Xuemei, ZHANG Huiping, et al., 2021. River capture and divide migration of the Zhuozishan area in the northwestern margin of the Ordos Block. Journal of Geomechanics, 27 (2): 294-303. DOI: 10.12090/j.issn.1006-6616.2021.27.02.027

鄂尔多斯西北缘桌子山地区河流袭夺和分水岭迁移研究

doi: 10.12090/j.issn.1006-6616.2021.27.02.027
基金项目: 

国家自然科学基金项目 41761144071

科技部第二次青藏高原综合科学考察研究项目 2019QZKK0704

廊坊市科技局科学研究与发展计划自筹经费项目 2019013086

详细信息
    作者简介:

    林玲玲(1982-), 女, 在读博士, 讲师, 构造地貌研究方向。E-mail: linlignlingbj@qq.com

    通讯作者:

    李雪梅(1988-), 女, 博士, 构造地貌研究方向。E-mail: lixuemeibj@126.com

  • 中图分类号: P931.2

River capture and divide migration of the Zhuozishan area in the northwestern margin of the Ordos Block

Funds: 

the National Science Foundation of China 41761144071

the Second Tibetan Plateau Scientific Expedition and Research(STEP) 2019QZKK0704

the Langfang Science and Technology Support Plan Project 2019013086

  • 摘要: 分水岭是水系演化中的动态因素,通过连续或不连续的水系袭夺而发生迁移,从而导致水系重组。传统的对水系演化的研究主要集中单个河流袭夺事件,而新提出的利用分水岭两侧chi(χ)值差异来描述分水岭的动态迁移过程,能够解释大尺度的河流袭夺事件,描述水系的整体演化过程。文章基于12.5 m DEM数据提取了鄂尔多斯西北缘桌子山地区的chi(χ)值揭示其空间分布具有东高西低的特点,反映桌子山的分水岭处于向东迁移过程。综合分析进一步揭示,在桌子山东西两侧的构造升降和降水条件都无明显差异的条件下,岩性抗侵蚀能力差异是控制桌子山分水岭向东迁移的主要因素,当抗侵蚀能力更强的寒武系、奥陶系灰岩位于背斜西翼,而中元古宙长城系(Pt)沉积碎屑岩位于其下部时,背斜西翼的河流具有更强的侵蚀能力,西翼河流可能会穿过背斜核部,从而侧向袭夺东侧的河流。

     

  • 图  1  研究区构造位置图

    a—研究区位置图,位于鄂尔多斯块体的西北部;b—研究区与青藏高原块体的位置

    Figure  1.  Tectonic position of the study area

    (a) Location of the study area, which is in the northwestern margin of the Ordos Block. (b) Micro map showing the position of the study area and the Tibet Plateau Block

    图  2  桌子山地质图与岩石的抗侵蚀强度分布图

    a—桌子山地质图(据新召幅1∶20万区域地质图,1981修改);b—岩石的抗侵蚀强度分布图(LE为岩性的抗侵蚀指数)

    Figure  2.  Maps showing the geology and intensity of erosion resistance in the Zhuozishan area

    (a) Geological map of the Zhuozishan area(Distribution of lithology and faults were modified from the 1∶200, 000 geological map of Xinzhao, 1981). (b) Intensity of erosion resistance in the Zhuozishan area(LE is the lithological erosion resistance index)

    图  3  河道高程和chi(χ)值的线性关系(据Whipple et al., 2017修改)

    Figure  3.  Linear relationship between the channel height and chi(χ) value (modified after Whipple et al., 2017)

    图  4  均衡和非均衡状态的流域盆地及河道chi(χ)值剖面(据Willett et al., 2014修改)

    Figure  4.  Drainage basins and river profiles in equilibrium and disequilibrium. The parameterχ provides a prediction of the steady-state elevation for a given point on a channel. The basin on the right (aggressor) has lower steady-state elevation at channel heads and therefore drives the drainage divide toward the basin on the left (victim). (modified after Willett et al., 2014)

    图  5  桌子山chi(χ)值分布与分水岭迁移方向

    a—桌子山chi(χ)值空间分布;b—W04与E01河流袭夺的肘状拐弯和两条河流的纵剖面;c—北段南北向分水岭向东迁移的立体图(底图为Google Earth影像图)

    Figure  5.  Maps showing the distribution feature of the chi(χ) value and divide migration in the Zhuozishan area

    (a) Chi(χ) value in the Zhuozishan area. (b) River captures evidenced by the elbows of capture and the river profile of W04, E01 in the Zhuozishan area. (c) Stereo map of the eastward migration of the main divide in the north of the Zhuozishan area (The basemap is a Google Earth image)

    图  6  桌子山地区域河道陡峭指数分布图

    a—桌子山河道陡峭指数分布图;b—河道陡峭指数归一后插值图

    Figure  6.  Diagrams showing the distribution of channel steepness index in the Zhuozishan area

    (a) Distribution of the channel steepness index in the Zhuozishan area. (b) Interpolation map of the channel steepness index after normalization

    表  1  岩石抗侵蚀强度分类表

    Table  1.   Classification of the erosion resistance values of different rocks based on the lithological strength

    地层符号 岩性 岩性强度分类 地层时代 是否火成岩 LA LL LE
    Q4 冲积、湖积、风积砂土、粘土、砂砾 松散沉积物 第四系全新统 6.0 12 1.71
    Q3 湖积洪积砂砾层 松散沉积物 第四系上更新统 6.0 11 1.62
    Q2 冲洪积半固结砂层、砂土层 半固结沉积物 第四系下更新统 6.0 11 1.62
    N 桔黄色泥质砂砾岩、细砂岩 弱的沉积岩 新近系 5.8 10 1.50
    E 砖红色泥岩、细砂岩、砂质泥岩 弱的沉积岩 古近系 5.2 10 1.45
    K 杂色砂岩、砂砾岩 弱的沉积岩 白垩系 4.2 10 1.35
    J 黄绿色砂岩与泥岩互层,黑色页岩与钙质砂岩互层 弱的沉积岩 侏罗系 3.3 10 1.27
    T 灰紫色砂岩与紫色泥岩互层、细粒长石石英砂岩 弱的沉积岩 三叠系 2.7 10 1.21
    P 紫红色细粒砂岩、灰白色砂岩 强的沉积岩 二叠系 2.5 4 0.62
    C 灰黑—黑色页岩、灰黑色粉砂质页岩 弱的沉积岩 石炭系 1.8 10 1.12
    O 青灰色厚层灰岩、灰色白云质灰岩 强的沉积岩 奥陶系 1.2 4 0.50
    灰岩、鲕状灰岩、竹叶状灰岩 强的沉积岩 寒武系 1.0 4 0.48
    Pt 中粒石英砂岩、紫红色页岩、白云质灰岩夹石英砂岩 强的沉积岩 长城系 1.0 6 0.67
    Ar 黑云母斜长片麻岩 变质岩 前长城系 0.0 2 0.29
    γ2 元古代花岗岩 花岗岩 元古代 0.0 2 0.29
    下载: 导出CSV
  • AALTO R, DUNNE T, GUYOT J L, 2006. Geomorphic controls on Andean denudation rates[J]. The Journal of Geology, 114(1): 85-99. doi: 10.1086/498101
    AGLIARDI F, CROSTA G B, FRATTINI P, et al., 2013. Giant non-catastrophic landslides and the long-term exhumation of the European Alps[J]. Earth and Planetary Science Letters, 365: 263-274. doi: 10.1016/j.epsl.2013.01.030
    BISHOP P, 1995. Drainage rearrangement by river capture, beheading and diversion[J]. Progress in Physical Geography: Earth and Environment, 19(4): 449-473. doi: 10.1177/030913339501900402
    BONNET S, 2009. Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide[J]. Nature Geoscience, 2(11): 766-771. doi: 10.1038/ngeo666
    CAMPFORTS B, VANACKER V, HERMAN F, et al., 2020. Parameterization of river incision models requires accounting for environmental heterogeneity: insights from the tropical Andes[J]. Earth Surface Dynamics, 8(2): 447-470. doi: 10.5194/esurf-8-447-2020
    CLARK M K, SCHOENBOHM L M, ROYDEN L H, et al., 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 23(1): TC1006. http://ci.nii.ac.jp/naid/10016888636
    COLLIGNON M, YAMATO P, CASTELLTORT S, et al., 2016. Modeling of wind gap formation and development of sedimentary basins during fold growth: application to the Zagros Fold Belt, Iran[J]. Earth Surface Processes and Landforms, 41(11): 1521-1535. doi: 10.1002/esp.3921
    DAVIS W M, 1899. The geographical cycle[J]. The Geographical Journal, 14(5): 481-504. doi: 10.2307/1774538
    FORTE A M, WHIPPLE K X, 2018. Criteria and tools for determining drainage divide stability[J]. Earth and Planetary Science Letters, 493: 102-117. doi: 10.1016/j.epsl.2018.04.026
    FORTE A M, WHIPPLE K X, COWGILL E, 2015. Drainage network reveals patterns and history of active deformation in the eastern Greater Caucasus[J]. Geosphere, 11(5): 1343-1364. doi: 10.1130/GES01121.1
    GOREN L, WILLETT S D, HERMAN F, et al., 2014. Coupled numerical-analytical approach to landscape evolution modeling[J]. Earth Surface Processes and Landforms, 39(4): 522-545. doi: 10.1002/esp.3514
    HANCOCK G S, ANDERSON R S, 2002. Numerical modeling of fluvial strath-terrace formation in response to oscillating climate[J]. GSA Bulletin, 114(9): 1131-1142. doi: 10.1130/0016-7606(2002)114<1131:NMOFST>2.0.CO;2
    HOWARD A D, 1965. Geomorphological systems; equilibrium and dynamics[J]. American Journal of Science, 263(4): 302-312. doi: 10.2475/ajs.263.4.302
    KANG Y Z, XING S W, LI H J, et al., 2019. Features of structural systems in northern China and its control on basin and hydrocarbon distribution[J]. Journal of Geomechanics, 25(6): 1013-1024. (in Chinese with English abstract)
    KIRBY E, WHIPPLE K X, 2012. Expression of active tectonics in erosional landscapes[J]. Journal of Structural Geology, 44: 54-75. doi: 10.1016/j.jsg.2012.07.009
    KORUP O, CLAGUE J J, HERMANNS R L, et al., 2007. Giant landslides, topography, and erosion[J]. Earth and Planetary Science Letters, 261(3-4): 578-589. doi: 10.1016/j.epsl.2007.07.025
    LIANG K, 2019. Late quaternary tectonic activity characteristics of the northwestern margin of the ordos block[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
    LIU R, MA B Q, 2014. Preliminary study on the western margin fault of Zhuozi Mountain[J]. Bulletin of the Institute of Crustal Dynamics(26): 68-82. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SEIS201400006.htm
    LIU X D, SUN H, MIAO Y F, et al., 2015. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment[J]. Quaternary Science Reviews, 116: 1-14. doi: 10.1016/j.quascirev.2015.03.010
    MAHER E, HARVEY A M, FRANCE D, 2007. The impact of a major Quaternary river capture on the alluvial sediments of a beheaded river system, the Rio Alias SE Spain[J]. Geomorphology, 84(3-4): 344-356. doi: 10.1016/j.geomorph.2005.07.034
    MATHER A E, 2000. Impact of headwater river capture on alluvial system development: an example from the Plio-Pleistocene of the Sorbas Basin, SE Spain[J]. Journal of the Geological Society, 157(5): 957-966. doi: 10.1144/jgs.157.5.957
    PERRON J T, ROYDEN L, 2013. An integral approach to bedrock river profile analysis[J]. Earth Surface Processes and Landforms, 38(6): 570-576. doi: 10.1002/esp.3302
    PRINCE P S, SPOTILA J A, HENIKA W S, 2010. New physical evidence of the role of stream capture in active retreat of the Blue Ridge escarpment, southern Appalachians[J]. Geomorphology, 123(3-4): 305-319. doi: 10.1016/j.geomorph.2010.07.023
    PRINCE P S, SPOTILA J A, HENIKA W S, 2011. Stream capture as driver of transient landscape evolution in a tectonically quiescent setting[J]. Geology, 39(9): 823-826. doi: 10.1130/G32008.1
    PRITCHARD D, ROBERTS G G, WHITE N J, et al., 2009. Uplift histories from river profiles[J]. Geophysical Research Letters, 36(24): L24301. doi: 10.1029/2009GL040928
    STOKES M, MATHER A E, HARVEY A M, 2002. Quantification of river-capture-induced base-level changes and landscape development, Sorbas Basin, SE Spain[J]. Geological Society, London, Special Publications, 191(1): 23-35. doi: 10.1144/GSL.SP.2002.191.01.03
    TUCKER G E, SLINGERLAND R, 1997. Drainage basin responses to climate change[J]. Water Resources Research, 33(8): 2031-2047. doi: 10.1029/97WR00409
    VACHERAT A, BONNET S, MOUTHEREAU F, 2017. Drainage reorganization and divide migration induced by the excavation of the Ebro basin (NE Spain)[J]. Earth Surface Dynamics Discussions, doi: 10.5194/esurf-2017-53.
    WHIPPLE K X, 2001. Fluvial landscape response time: how plausible is steady-state denudation?[J]. American Journal of Science, 301(4-5): 313-325. doi: 10.2475/ajs.301.4-5.313
    WHIPPLE K X, FORTE A M, DIBIASE R A, et al., 2017. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution[J]. Journal of Geophysical Research: Earth Surface, 122(1): 248-273. doi: 10.1002/2016JF003973
    WHIPPLE K X, TUCKER G E, 1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. doi: 10.1029/1999JB900120
    WILLETT S D, 1999. Orogeny and orography: the effects of erosion on the structure of mountain belts[J]. Journal of Geophysical Research: Solid Earth, 104(B12): 28957-28981. doi: 10.1029/1999JB900248
    WILLETT S D, MCCOY S W, PERRON J T, et al., 2014. Dynamic reorganization of river basins[J]. Science, 343(6175): 1248765. doi: 10.1126/science.1248765
    XU D Z, LI S H, YIN H Q, et al., 2018. Late quaternary activity characteristics of western piedmont fault of Gangdeershan in the Wuhai fault depression, Inner Mongolia[J]. China Earthquake Engineering Journal, 40(1): 92-100. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ201801015.htm
    YANG R, WILLETT S D, GOREN L, 2015. In situ low-relief landscape formation as a result of river network disruption[J]. Nature, 520(7548): 526-529. doi: 10.1038/nature14354
    ZHAO H G, LIU C Y, WANG F, et al., 2006. Structural division and characteristics in western edge of Ordos basin[J]. Oil & Gas Geology, 2006, 27(2): 173-179. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200602006.htm
    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905007.htm
    ZHUO Y Z, 2015. The mesozoic and cenozoic uplift events and tectonic significance of Zhuozishan area in the northwest margin of Odros basin[D]. Xi'an: Northwest University. (in Chinese with English abstract)
    康玉柱, 邢树文, 李会军, 等, 2019. 中国北方地区构造体系控盆作用与控油分布规律[J]. 地质力学学报, 25(6): 1013-1024. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190602&journal_id=dzlxxb
    梁宽, 2019. 鄂尔多斯块体西北缘晚第四纪构造活动特征研究[D]. 北京: 中国地震局地质研究所.
    刘睿, 马保起, 2014. 桌子山西缘断裂的初步研究[J]. 地壳构造与地壳应力文集, (26): 68-82.
    徐东卓, 李胜虎, 尹海权, 等, 2018. 内蒙古乌海断陷岗德尔山西麓断裂晚第四纪特征分析[J]. 地震工程学报, 40(1): 92-100. doi: 10.3969/j.issn.1000-0844.2018.01.092
    赵红格, 刘池洋, 王峰, 等, 2006. 鄂尔多斯盆地西缘构造分区及其特征[J]. 石油与天然气地质, 27(2): 173-179. doi: 10.3321/j.issn:0253-9985.2006.02.006
    郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190506&journal_id=dzlxxb
    卓鱼周, 2015. 鄂尔多斯盆地西北部桌子山地区中-新生代隆升事件的确定及其构造意义[D]. 西安: 西北大学.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  83
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-01
  • 修回日期:  2021-02-24
  • 刊出日期:  2021-04-28

目录

    /

    返回文章
    返回