留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分裂节点法的地震同震和震后形变数值模拟及其在汶川大地震中的应用

孙云强 罗纲 黄禄渊

孙云强, 罗纲, 黄禄渊, 2021. 基于分裂节点法的地震同震和震后形变数值模拟及其在汶川大地震中的应用. 地质力学学报, 27 (2): 241-253. DOI: 10.12090/j.issn.1006-6616.2021.27.02.023
引用本文: 孙云强, 罗纲, 黄禄渊, 2021. 基于分裂节点法的地震同震和震后形变数值模拟及其在汶川大地震中的应用. 地质力学学报, 27 (2): 241-253. DOI: 10.12090/j.issn.1006-6616.2021.27.02.023
SUN Yunqiang, LUO Gang, HUANG Luyuan, 2021. Numerical simulation of coseismic and postseismic deformation through a node-splitting algorithm: A case study of the Wenchuan earthquake. Journal of Geomechanics, 27 (2): 241-253. DOI: 10.12090/j.issn.1006-6616.2021.27.02.023
Citation: SUN Yunqiang, LUO Gang, HUANG Luyuan, 2021. Numerical simulation of coseismic and postseismic deformation through a node-splitting algorithm: A case study of the Wenchuan earthquake. Journal of Geomechanics, 27 (2): 241-253. DOI: 10.12090/j.issn.1006-6616.2021.27.02.023

基于分裂节点法的地震同震和震后形变数值模拟及其在汶川大地震中的应用

doi: 10.12090/j.issn.1006-6616.2021.27.02.023
基金项目: 

国家自然科学基金 41974107

国家自然科学基金 41590865

国家自然科学基金 U1839207

中国地震科学实验场专项 2019CSES0112

福建农林大学青年教师科研基金 71201800208

详细信息
    作者简介:

    孙云强(1991-), 男, 博士, 副教授, 主要从事地球动力学数值模拟研究。E-mail: yunqiang_sun@163.com

    通讯作者:

    罗纲(1977-), 男, 博士, 教授, 主要从事地球动力学数值模拟研究。E-mail: gangluo66@gmail.com

  • 中图分类号: P315.5

Numerical simulation of coseismic and postseismic deformation through a node-splitting algorithm: A case study of the Wenchuan earthquake

Funds: 

the National Natural Science Foundation of China 41974107

the National Natural Science Foundation of China 41590865

the National Natural Science Foundation of China U1839207

China Earthquake Science Experiment Project 2019CSES0112

Research Found for Young Teachers of Fujian Agriculture and Forestry University 71201800208

  • 摘要: 大地震导致的同震及震后效应,对于分析不同地震之间的相互影响及区域地震危险性等有着重要的作用。文中开发了模拟地震同震及震后效应的三维黏弹性有限元程序,通过计算走滑断层震例(概念性模型)引起的同震及震后效应,并与解析/半解析解进行对比,验证了程序的可靠性。同时基于概念性模型,分析了不同介质参数对同震及震后的地表变形的影响。研究表明,地球介质的横向不均匀性对地震同震位移有显著的影响,而中下地壳上地幔的黏度对震后效应起着主要控制作用。最后将该程序应用于青藏高原东缘,计算分析了2008年MW7.9汶川大地震导致的同震及震后库仑应力变化对2013年MW6.6芦山地震及2017年MW6.5九寨沟地震的影响。结果显示,汶川地震导致的库仑应力变化在芦山地震震源附近(0.013 MPa)及九寨沟地震震源附近(0.009 MPa)都为正值,说明汶川地震可能使得两次地震提前发生。

     

  • 图  1  分裂节点法的一维有限元示意图

    箭头表示地震断层错动方向;U2a=-ΔU1b,表示地震断层的同震位移;数字表示单元节点号

    Figure  1.  1-Dimensional finite element model with the node-splitting algorithm

    The arrows show the direction of the fault slip. ΔU2a=-ΔU1b represents coseismic slip. The numbers represent the nodes

    图  2  走滑断层的有限元模型

    白色箭头表示模型的断层为右旋走滑;AA′为剖面位置

    Figure  2.  Conceptual finite element model with single strike-slip fault

    The white arrows indicate a right-lateral strike-slip fault. AA′ is the profile location in Fig. 4.

    图  3  走滑断层的地表同震位移分布图

    图中白色线段表示断层位置;UxUyUz分别表示x方向、y方向和z方向的同震位移分布
    a—x方向同震位移分布图;b—y方向同震位移分布图;c—z方向同震位移分布图

    Figure  3.  Surface coseismic slip distribution of the strike-slip fault. (a) Coseismic slip along the x-direction. (b) Coseismic slip along the y-direction. (c) Coseismic slip along the z-direction

    The white line shows the location of fault in the model. Ux, Uy, and Uz represent the coseismic slip along the x-direction, y-direction, and z-direction, respectively.

    图  4  地震同震及震后在剖面AA′上沿着断层走向(y方向)的位移分布图(剖面AA′的位置见图 2)

    a—地震同震位移分布(实线表示有限元模型的结果,虚线为Okada模型计算得到的结果);b—不同算例的地震同震位移;c—震后200年剖面同震位移变化图;d—同震和震后200年的位移总变化量

    Figure  4.  Coseismic and postseismic along-strike slip on the profile AA′. The location of the profile AA′ in the model is shown in Fig. 2

    (a) Coseismic slip. The solid lines show the results of the finite element model. The dashed lines show the calculation results using the Okada model. (b) Coseismic slip of difference cases. (c) Postseismic slip after 200 years. (d) Total slip (Coseismic and postseismic slip after 200 years) on the profile AA′.

    图  5  青藏高原东缘构造背景

    (震源机制解数据来自于GCMT;https://www.globalcmt.org/)

    Figure  5.  Tectonic background of the eastern margin of the Tibetan Plateau.

    (Focal mechanism solutions from GCMT; https://www.globalcmt.org/)

    图  6  青藏高原东缘的三维有限元模型及汶川地震同震破裂模型

    a—青藏高原东缘的三维有限元模型;b—汶川地震同震破裂模型

    Figure  6.  Three-dimensional finite element model of the eastern margin of the Tibetan Plateau (a) and coseismic rupture model of the Wenchuan earthquake (b).

    图  7  汶川地震发生后芦山地震震源附近及九寨沟地震震源附近应力随时间的变化

    a—汶川地震发生后芦山地震震源附近的应力随时间的变化;(应力投影方向为芦山地震震源机制,走向212°、倾角42°、滑动角100°);b—汶川地震发生后芦山地震震源附近及九寨沟地震震源附近的应力随时间的变化(应力投影方向为九寨沟地震震源机制,走向150°、倾角78°、滑动角-13°)

    Figure  7.  Stress evolution near the hypocenter of the Lushan earthquake and that of the Jiuzhangou earthquake after the Wenchuan earthquake.

    (a) Stress evolution near the hypocenter of the Lushan earthquake after the Wenchuan earthquake. The stress is projected to the plane determined by the focal mechanism of the Lushan earthquake (strike: 212°, dip: 42°, rake: 100°). (b) Stress evolution near the hypocenter of the Jiuzhaigou earthquake after the Wenchuan earthquake. The stress is projected to the plane determined by the focal mechanism of the Jiuzhaigou earthquake (strike: 150°, dip: 78°, rake: -13°).

    表  1  单断层有限元模型的部分材料参数

    Table  1.   Material parameters of the finite element model with single fault

    杨氏模量/Pa 黏度/(Pa·s)
    断层左侧上地壳 断层右侧上地壳 中下地壳上地幔
    算例1 8.75×1010 8.75×1010 1×1020
    算例2 1.75×1011 8.75×1010 1×1020
    算例3 4.375×1010 8.75×1010 1×1020
    算例4 8.75×1010 8.75×1010 1×1018
    算例5 8.75×1010 8.75×1010 1×1019
    算例6 8.75×1010 8.75×1010 1×1021
    下载: 导出CSV

    表  2  青藏高原东缘有限元模型的参数设置

    Table  2.   Material parameters set for the finite element model of the eastern margin of the Tibetan Plateau

    华南块体 其他块体
    深度/km E/Pa υ η/(Pa·s) 深度/km E/Pa υ η/(Pa·s)
    上地壳 0~20 8.5×1010 0.25 - 0~20 8.1×1010 0.25 -
    中地壳 20~30 1.2×1011 0.26 1×1022 20~35 1.1×1011 0.25 1×1019
    下地壳 30~40 1.5×1011 0.25 1×1022 35~50 1.5×1011 0.25 1×1019
    上地幔 40~100 1.6×1011 0.28 1×1022 50~100 1.5×1011 0.30 1×1020
    其他块体包括青藏高原东北缘、川滇块体和巴颜喀拉块体;上地壳的平均密度设置为2800 kg/m3,中下地壳上地幔的平均密度设置为3200 kg/m3
    下载: 导出CSV
  • CHEN Y T, LIN B H, WANG X H, et al., 1979. A dislocation model of the Tangshan earthquake of 1976 from the inversion of geodetic data[J]. Acta Geophysica Sinica, 22(3): 201-217. (in Chinese with English abstract) http://www.researchgate.net/publication/279586256_A_dislocation_model_of_the_Tangshan_earthquake_of_1976_from_the_inversion_of_geodetic_data
    CHEN Y T. 2009. Earthquake prediction: Retrospect and prospect. Science China Series D: Earth Sciences, 39(12): 1633-1658. (in Chinese with English abstract)
    DENG Q D, ZHANG P Z, RAN Y K, et al., 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers, 10(S1): 66-73. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY2003S1011.htm
    DONG P Y, LIU C, SHI Y L, 2019. Relationship between the 2008 MS8.0 Wenchuan earthquake and the 2017 MS7.0 Jiuzhaigou earthquake[J]. Journal of Geodesy and Geodynamics, 39(8): 777-782. (in Chinese with English abstract)
    FREED A M, LIN J, 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer[J]. Nature, 411(6834): 180-183. doi: 10.1038/35075548
    FREED A M, 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer[J]. Annual Review of Earth and Planetary Sciences, 33: 335-367. doi: 10.1146/annurev.earth.33.092203.122505
    HARRIS R A, SIMPSON R W, 1998. Suppression of large earthquakes by stress shadows: A comparison of Coulomb and rate-and-state failure[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 24439-24451. doi: 10.1029/98JB00793
    HU C B, CAI Y E, 2016. A possible mechanism of Omori-Utsu's law through an example of the great Tangshan earthquake[J]. Acta Seismologica Sinica, 38(4): 580-589. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201604005.htm
    HU Y, WANG K L, HE J, et al., 2004. Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake[J]. Journal of Geophysical Research: Solid Earth, 109(B12): B12403. doi: 10.1029/2004JB003163
    HUANG L Y, WANG C H, YANG S X, 2018. Numerical modeling of earthquake dislocation using MSC. Marc[J]. North China Earthquake Sciences, 36(1): 1-9. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDKD201801001.htm
    HUANG L Y, CHENG H H, ZHANG H, et al., 2019. Coseismic and postseismic stress evolution caused by the 2008 Wenchuan earthquake and its effects on the 2017 MS7.0 Jiuzhaigou earthquake[J]. Chinese Journal of Geophysics, 62(4): 1268-1281. (in Chinese with English abstract)
    JI C, HAYES G. 2008. Preliminary result of the May 12, 2008 MW7.9 Eastern Sichuan, China earthquake[J/OL]. http://ji.faculty.geol.ucsb.edu/big_earthquakes/2008/05/12/Shichuan.html.
    JIA K, ZHOU S Y, 2018. Triggering relationship in strong earthquake sequence around the Bayan Har block and its tectonic significance based on Coulomb stress changes and seismicity[J]. Acta Seismologica Sinica, 40(3): 291-303. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201803005.htm
    KING G C P, STEIN R S, LIN J, 1994. Static Stress Changes and the Triggering of Earthquakes[J]. Bulletin of the Seismological Society of America, 84(3): 935-953. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/3/935
    LI Y J, CHEN L W, YE J Y, 2009. Application and development of numerical simulation in stress field evolvement and seismology[J]. Progress in Geophysics, 24(2): 418-431. (in Chinese with English abstract)
    LI Y J, CHEN L W, LU Y Z, et al., 2013. Numerical simulation on influences of Wenchuan earthquake on the stability of faults in the neighborhood[J]. Earth Science-Journal of China University of Geosciences, 38(2): 398-410. (in Chinese with English abstract) doi: 10.3799/dqkx.2013.039
    LUO G, LIU M, 2010. Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake[J]. Tectonophysics, 491(1-4): 127-140. doi: 10.1016/j.tecto.2009.12.019
    LUO G, LIU M, 2018. Stressing rates and seismicity on the major faults in eastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 123(12): 10968-10986. doi: 10.1029/2018JB015532
    MANSINHA L, SMYLIE D E, 1971. The displacement fields of inclined faults[J]. Bulletin of the Seismological Society of America, 61(5): 1433-1440. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=61/5/1433
    MARUYAMA T, 1964. Statical elastic dislocations in an infinite and semi-infinite medium[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 42(2): 289-368. http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/12278/1/ji0443004.pdf
    MELOSH H J, RAEFSKY A. 1981. A simple and efficient method for introducing faults into finite element computation[J]. Bulletin of the Seismological Society of America, 71(5): 1391-1400. http://www.researchgate.net/publication/279500133_A_simple_and_efficient_method_for_introducing_faults_into_finite_element_computation
    OKADA Y, 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(4): 1135-1154.
    OKADA Y, 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 82(2): 1018-1040. http://ci.nii.ac.jp/naid/10010574975
    PARSONS T, JI C, KIRBY E, 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin[J]. Nature, 454(7203): 509-510. doi: 10.1038/nature07177
    POLLITZ F F, 1992. Postseismic relaxation theory on the spherical earth[J]. Bulletin of the Seismological Society of America, 82(1): 422-453. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=82/1/422
    REID H F, 1910. The Mechanics of the Earthquake. Vol. 2 of the California Earthquake of April 18, 1906[R]. Report of the State Earthquake Investigation Commission. Washington D C: Carnegie Institution of Washington, 2.
    ROYDEN L, 1996. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust[J]. Journal of Geophysical Research: Solid Earth, 101(B8): 17679-17705. doi: 10.1029/96JB00951
    SABADINI R, VERMEERSEN L L A, 1997. Influence of lithospheric and mantle stratification on global post-seismic deformation[J]. Geophysical Research Letters, 24(16): 2075-2078. doi: 10.1029/97GL01979
    SHAN B, XIONG X, ZHENG Y, et al., 2009. Stress changes on major faults caused by MW7.9 Wenchuan earthquake, May 12, 2008[J]. Science in China Series D: Earth Sciences, 52(5): 593-601. doi: 10.1007/s11430-009-0060-9
    ZHENG Y, LIU C L, et al., 2017. Coseismic Coulomb failure stress changes caused by the 2017 M7.0 Jiuzhaigou earthquake, and its relationship with the 2008 Wenchuan earthquake[J]. Science China Earth Sciences, 60(12): 2181-2189. doi: 10.1007/s11430-017-9125-2
    SHAO Z G, FU R S, XUE T X, et al., 2008. The numerical simulation and discussion on mechanism of postseismic deformation after Kunlun MS8. 1 earthquake[J]. Chinese Journal of Geophysics, 51(3): 805-816. (in Chinese with English abstract) http://www.oalib.com/paper/1569015
    SHAO Z G, WANG R J, WU Y Q, et al., 2011. Rapid afterslip and short-term viscoelastic relaxation following the 2008 MW7.9 Wenchuan earthquake[J]. Earthquake Science, 24(2): 163-175. doi: 10.1007/s11589-010-0781-z
    SHI Y L, CAO J L, 2008. Effective viscosity of China continental lithosphere[J]. Earth Science Frontiers, 15(3): 82-95. (in Chinese with English abstract) doi: 10.1016/S1872-5791(08)60064-0
    STEIN R S, BARKA A A, DIETERICH J H, 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering[J]. Geophysical Journal International, 128(3): 594-604. doi: 10.1111/j.1365-246X.1997.tb05321.x
    STEKETEE J A, 1958. On volterra's dislocations in a semi-infinite elastic medium[J]. Canadian Journal of Physics, 36(2): 192-205. doi: 10.1139/p58-024
    SUN W K, 1992. Potential and gravity changes caused by dislocations in spherically symmetric earth models[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 67(2): 89-238. (in Japanesewith English abstract). http://ci.nii.ac.jp/naid/110000275101
    TODA S J, LIN J, MEGHRAOUI M, et al., 2008. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems[J]. Geophysical Research Letters, 35(17): L17305. doi: 10.1029/2008GL034903
    WAN Y G, SHEN Z K, ZENG Y H, et al., 2007. Evolution of cumulative Coulomb failure stress in northeastern Qinghai-Xizang (Tibetan) Plateau and its effect on large earthquake occurrence[J]. Acta Seismologica Sinica, 29(2): 115-129. (in Chinese with English abstract) doi: 10.1007/s11589-007-0117-9
    WANG C Y, LOU H, LV Z Y, et al., 2008. S-wave crustal and upper mantle's velocity structure in the eastern Tibetan Plateau-Deep environment of lower crustal flow[J]. Science in China Series D: Earth Sciences, 51(2): 263-274. doi: 10.1007/s11430-008-0008-5
    WANG J J, XU C J, 2017. Coseismic Coulomb stress changes associated with the 2017 MW6.5 Jiuzhaigou earthquake (China) and its impacts on surrounding major faults[J]. Chinese Journal of Geophysics, 60(11): 4398-4420. (in Chinese with English abstract)
    WANG K L, HE J H, DRAGERT H, et al., 2001. Three-dimensional viscoelastic interseismic deformation model for the Cascadia subduction zone[J]. Earth, Planets and Space, 53(4): 295-306. doi: 10.1186/BF03352386
    WANG Q, QIAO X J, LAN Q G, et al., 2011. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan[J]. Nature Geoscience, 4(9): 634-640. doi: 10.1038/ngeo1210
    WANG Q X, JIANG Z S, WU Y Q, et al., 2015. A review on comparison and progress in applications of earthquake dislocation theories based on different models[J]. Acta Seismologica Sinica, 37(4): 690-704. (in Chinese with English abstract) http://www.researchgate.net/publication/282757981_A_review_on_comparison_and_progress_in_applications_of_earthquake_dislocation_theories_based_on_different_models
    WANG R J, MARTÍN F L, ROTH F. 2003. Computation of deformation induced by earthquakes in a multi-layered elastic crust-FORTRAN programs EDGRN/EDCMP[J]. Computers & Geosciences, 29(2): 195-207. doi: 10.1016/S0098-3004(02)00111-5
    WANG W M, ZHAO L F, LI J, et al., 2008. Rupture process of the MS 8.0 Wenchuan earthquake of Sichuan, China[J]. Chinese Journal of Geophysics, 51(5): 1403-1410. (in Chinese with English abstract) http://www.oalib.com/paper/1569206
    WU J P, MING Y H, WANG C Y, 2006. Regional waveform inversion for crustal and upper mantle velocity structure below CHuandian region[J]. Chinese Journal of Geophysics, 49(5): 1369-1376. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DQWX200605015.htm
    XIE Z D, ZHU Y Q, LEI X L, et al., 2010. Pattern of stress change and its effect on seismicity rate caused by MS8.0 Wenchuan earthquake[J]. Science China Earth Sciences, 53(9): 1260-1270. doi: 10.1007/s11430-010-4025-9
    XU D Y, XIAO J, HE J K, et al., 2020. Strong earthquake clustering around the eastern Tibetan Plateau after the 2008 MW7.9 Wenchuan earthquake[J]. Science China Earth Sciences, 63(7): 999-1012. doi: 10.1007/s11430-019-9581-x
    XU H, SUN Y J, WU Z H, 2018. The effect of lithospheric structure on the seismic deformation-taking the 1976 Tangshan earthquake and 2001 Kunlunshan earthquake as an example[J]. Chinese Journal of Geophysics, 61(8): 3170-3184. (in Chinese with English abstract) http://www.researchgate.net/publication/329221517_The_effect_of_lithospheric_structure_on_the_seismic_deformation-taking_the_1976_Tangshan_earthquake_and_2001_Kunlunshan_earthquake_as_an_example
    XU X W, ZHANG P Z, WEN X Z, et al., 2005. Features of active tectonics and recurrence behaviors of strong earthquakes in the western Sichuan Province and its adjacent regions[J]. Seismology and Geology, 27(3): 446-461. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200503009.htm
    ZHANG B, ZHANG H, SHI Y L, 2015. Equivalent-bodyforce approach on modeling elastic dislocation problem using finite element method[J]. Chinese Journal of Geophysics, 58(5): 1666-1674. (in Chinese with English abstract) http://adsabs.harvard.edu/abs/2015AGUFMEP53A0959Z
    ZHANG C J, CAO J L, SHI Y L, 2008. Studying the viscosity of lower crust of Qinghai-Tibet Plateau according to post-seismic deformation[J]. Science in China Series D: Earth Sciences, 52(3): 411-429.
    ZHANG P Z, DENG Q D, ZHANG G M, et al., 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D: Earth Sciences, 46(2): 13-24. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020414997685.html
    ZHANG P Z, XU X W, WEN X Z, et al., 2008. Slip rates and recurrence intervals of the Longmen shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China[J]. Chinese Journal of Geophysics, 51(4): 1066-1073. (in Chinese with English abstract) http://www.oalib.com/paper/1569058
    ZHAO G M, WU Z H, LIU J, 2020. The types, characteristics and mechanism of seismic migration[J]. Journal of Geomechanics, 26(1): 13-32. (in Chinese with English abstract)
    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2020. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905007.htm
    ZHU J S, 2008. The Wenchuan earthquake occurrence background in deep structure and dynamics of lithosphere[J]. Journal of Chengdu University of Technology (Science and Technology Edition), 35(4): 348-356. (in Chinese with English abstract) http://www.researchgate.net/publication/283136865_The_Wenchuan_earthquake_occurrence_background_in_deep_structure_and_dynamics_of_lithosphere
    ZHU S B, ZHANG P Z, 2013. FEM simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan Earthquake[J]. Tectonophysics, 584: 64-80. doi: 10.1016/j.tecto.2012.06.024
    ZHU X J, HE J K, 2019. Coulomb stress change on the Xiaojiang and the Red River faults, southeastern Tibetan Plateau, from the 1970 Tonghai MS7.7 earthquake[J]. Journal of Geodesy and Geodynamics, 39(12): 1223-1227. (in Chinese with English abstract) http://www.researchgate.net/publication/341176469_Coulomb_Stress_Change_on_the_Xiaojiang_and_the_Red_River_Faults_Southeastern_Tibetan_Plateau_from_the_1970_Tonghai_MS77_Earthquake
    陈运泰, 林邦慧, 王新华, 等, 1979. 用大地测量资料反演的1976年唐山地震的位错模式[J]. 地球物理学报, 22(3): 201-217. doi: 10.3321/j.issn:0001-5733.1979.03.001
    陈运泰, 2009. 地震预测: 回顾与展望[J]. 中国科学D辑: 地球科学, 39(12): 1633-1658. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200912001.htm
    邓起东, 张培震, 冉勇康, 等, 2003. 中国活动构造与地震活动[J]. 地学前缘, 10(S1): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1011.htm
    董培育, 柳畅, 石耀霖, 2019. 2008年汶川MS8.0地震与2017年九寨沟MS7.0地震成因关系探讨[J]. 大地测量与地球动力学, 39(8): 777-782.
    胡才博, 蔡永恩, 2016. 大森-宇津定律的一种可能机制: 以唐山大地震为例[J]. 地震学报, 38(4): 580-589. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201604005.htm
    黄禄渊, 王成虎, 杨树新, 2018. 地震位错模拟在有限元软件MSC. Marc中的实现[J]. 华北地震科学, 36(1): 1-9. doi: 10.3969/j.issn.1003-1375.2018.01.001
    黄禄渊, 程惠红, 张怀, 等, 2019. 2008年汶川地震同震-震后应力演化及其对2017年九寨沟MS7.0地震的影响[J]. 地球物理学报, 62(4): 1268-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201904008.htm
    贾科, 周仕勇, 2018. 基于库仑应力改变和地震活动性研究巴颜喀拉块体周缘强震序列的触发关系及其构造意义[J]. 地震学报, 40(3): 291-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201803005.htm
    李玉江, 陈连旺, 叶际阳, 2009. 数值模拟方法在应力场演化及地震科学中的研究进展[J]. 地球物理学进展, 24(2): 418-431. doi: 10.3969/j.issn.1004-2903.2009.02.007
    李玉江, 陈连旺, 陆远忠, 等, 2013. 汶川地震的发生对周围断层稳定性影响的数值模拟[J]. 地球科学-中国地质大学学报, 38(2): 398-410. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201302023.htm
    单斌, 熊熊, 郑勇, 等, 2009. 2008年5月12日MW7.9汶川地震导致的周边断层应力变化[J]. 中国科学D辑: 地球科学, 39(5): 537-545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200905001.htm
    单斌, 郑勇, 刘成利, 等, 2017. 2017年M7.0级九寨沟地震同震库仑应力变化及其与2008年汶川地震的关系[J]. 中国科学: 地球科学, 47(11): 1329-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201711005.htm
    邵志刚, 傅容珊, 薛霆虓, 等, 2008. 昆仑山MS8.1级地震震后变形场数值模拟与成因机理探讨[J]. 地球物理学报, 51(3): 805-816. doi: 10.3321/j.issn:0001-5733.2008.03.021
    石耀霖, 曹建玲, 2008. 中国大陆岩石圈等效粘滞系数的计算和讨论[J]. 地学前缘, 15(3): 82-95. doi: 10.3321/j.issn:1005-2321.2008.03.006
    万永革, 沈正康, 曾跃华, 等, 2007. 青藏高原东北部的库仑应力积累演化对大地震发生的影响[J]. 地震学报, 29(2): 115-129. doi: 10.3321/j.issn:0253-3782.2007.02.001
    王椿镛, 楼海, 吕智勇, 等, 2008. 青藏高原东部地壳上地幔S波速度结构: 下地壳流的深部环境[J]. 中国科学D辑: 地球科学, 38(1): 22-32. doi: 10.3321/j.issn:1006-9267.2008.01.003
    汪建军, 许才军, 2017. 2017年MW6.5九寨沟地震激发的同震库仑应力变化及其对周边断层的影响[J]. 地球物理学报, 60(11): 4398-4420. doi: 10.6038/cjg20171127
    王启欣, 江在森, 武艳强, 等, 2015. 不同模型下地震位错理论的对比及其应用进展综述[J]. 地震学报, 37(4): 690-704. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201504014.htm
    王卫民, 赵连锋, 李娟, 等, 2008. 四川汶川8.0级地震震源过程[J]. 地球物理学报, 51(5): 1403-1410. doi: 10.3321/j.issn:0001-5733.2008.05.013
    吴建平, 明跃红, 王椿镛, 2006. 川滇地区速度结构的区域地震波形反演研究[J]. 地球物理学报, 49(5): 1369-1376. doi: 10.3321/j.issn:0001-5733.2006.05.016
    解朝娣, 朱元清, LEI X L, 等, 2010. MS8.0汶川地震产生的应力变化空间分布及其对地震活动性的影响[J]. 中国科学: 地球科学, 40(6): 688-698. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201006002.htm
    徐锡伟, 张培震, 闻学泽, 等, 2005. 川西及其邻近地区活动构造基本特征与强震复发模型[J]. 地震地质, 27(3): 446-461. doi: 10.3969/j.issn.0253-4967.2005.03.010
    徐昊, 孙玉军, 吴中海, 2018. 岩石圈结构对大地震震后形变的影响: 以1976年唐山大地震和2001年昆仑山大地震为例[J]. 地球物理学报, 61(8): 3170-3184. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201808007.htm
    张贝, 张怀, 石耀霖, 2015. 有限元模拟弹性位错的等效体力方法[J]. 地球物理学报, 58(5): 1666-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505018.htm
    张培震, 邓启东, 张国民, 等, 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm
    张培震, 徐锡伟, 闻学泽, 等, 2008. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J]. 地球物理学报, 51(4): 1066-1073. doi: 10.3321/j.issn:0001-5733.2008.04.015
    张晁军, 曹建玲, 石耀霖, 2008. 从震后形变探讨青藏高原下地壳黏滞系数[J]. 中国科学D辑: 地球科学, 38(10): 1250-1257. doi: 10.3321/j.issn:1006-9267.2008.10.008
    赵根模, 吴中海, 刘杰, 2020. 地震迁移的类型、特征及机制讨论[J]. 地质力学学报, 26(1): 13-32. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200102&journal_id=dzlxxb
    郑文俊, 张培震, 袁道阳, 等, 2020. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190506&journal_id=dzlxxb
    朱介寿, 2008. 汶川地震的岩石圈深部结构与动力学背景[J]. 成都理工大学学报(自然科学版), 35(4): 348-356. doi: 10.3969/j.issn.1671-9727.2008.04.002
    朱晓杰, 何建坤, 2019. 1970年通海MS 7.7地震后青藏高原东南部小江断裂带和红河断裂带的库仑应力变化研究[J]. 大地测量与地球动力学, 39(12): 1223-1227. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201912002.htm
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  103
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-02-08
  • 刊出日期:  2021-04-28

目录

    /

    返回文章
    返回