留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海原-六盘山断裂带现今地震危险性的数值模拟分析

蒋锋云 季灵运 赵强

蒋锋云, 季灵运, 赵强, 2021. 海原-六盘山断裂带现今地震危险性的数值模拟分析. 地质力学学报, 27 (2): 230-240. DOI: 10.12090/j.issn.1006-6616.2021.27.02.022
引用本文: 蒋锋云, 季灵运, 赵强, 2021. 海原-六盘山断裂带现今地震危险性的数值模拟分析. 地质力学学报, 27 (2): 230-240. DOI: 10.12090/j.issn.1006-6616.2021.27.02.022
JIANG Fengyun, JI Lingyun, ZHAO Qiang, 2021. Numerical simulation of the present seismic risk of the HaiyuanLiupanshan fault zone. Journal of Geomechanics, 27 (2): 230-240. DOI: 10.12090/j.issn.1006-6616.2021.27.02.022
Citation: JIANG Fengyun, JI Lingyun, ZHAO Qiang, 2021. Numerical simulation of the present seismic risk of the HaiyuanLiupanshan fault zone. Journal of Geomechanics, 27 (2): 230-240. DOI: 10.12090/j.issn.1006-6616.2021.27.02.022

海原-六盘山断裂带现今地震危险性的数值模拟分析

doi: 10.12090/j.issn.1006-6616.2021.27.02.022
基金项目: 

中国地震局地震星火计划攻关项目 XH20083

中国地震局震情跟踪面上项目 2020020203

详细信息
    作者简介:

    蒋锋云(1978-), 男, 高级工程师, 固体地球物理专业。E-mail: jfy080628@163.com

    通讯作者:

    季灵运(1982-), 男, 研究员, 大地测量专业。E-mail: dinsar010@163.com

  • 中图分类号: P315

Numerical simulation of the present seismic risk of the HaiyuanLiupanshan fault zone

Funds: 

the Spark Programs of China Earthquake Administration XH20083

Seismic Tracking General Program of China Earthquake Administration 2020020203

  • 摘要: 基于正交各向异性理论表征断层的变形行为,将平行断层面的剪切模量和周围介质剪切模量的比值作为反演参数,以海原-六盘山断裂附近现今GPS观测地壳水平运动速度场作为约束,通过构建三维有限元模型,采用遗传算法,反演了海原-六盘山断裂平行断层面的剪切模量分布。结果显示:六盘山断裂中南段平行断层面剪切模量与周围介质接近,且沿断层面地震动活动较为稀疏,反映六盘山断裂两侧近场差异变形较小,和汶川地震前龙门山断裂的情况类似,可能断裂带处于强闭锁状态。整个狭义的海原断裂带平行断层面剪切模量比周围介质要小的多,在0.4以下,且0~5 km要比深部大,可能反映了1920年海原8.5级地震之后,该断裂仍然处于震后调整状态。西段金强河断裂、毛毛山断裂、老虎山断裂浅部0~5 km剪切模量较小,而在5~20 km剪切模量相对较高,结合沿断层面地震活动分布特征,认为金强河、毛毛山断裂浅部可能存在蠕滑,而深部5~20 km存在应变能积累特征,具有强震发生的背景,而老虎山断裂由地表至深部地震活动较为密集,可能存在贯通性蠕滑,强震发生的可能性较小。

     

  • 图  1  研究区构造特征及历史强震

    Figure  1.  Tectonic characteristics and historical strong earthquakes in the study area

    图  2  有限元模型及网格划分

    Figure  2.  Finite element model and meshing

    图  3  研究区GPS观测速度场(1999—2016年)

    Figure  3.  GPS velocity field (1999-2016) in the study area

    图  4  目标函数收敛过程

    Figure  4.  Convergence of the objective function

    图  5  模拟速度场和GPS观测结果的对比

    Figure  5.  Comparison of the simulated velocity field and the GPS observation results

    图  6  残差及其统计分析

    图中柱状灰度深浅代表文中公式(4)中δi的大小

    Figure  6.  Residual and statistical analysis. The gray shade of the column represents the magnitude of δi in Equation (4)

    图  7  模拟结果和观测结果分别计算的应变率场

    图中色卡对应颜色表示最大剪应变率大小,十字叉表示主压、主张应变率大小和方向
    a—观测结果计算的主应变率和最大剪应变率场;b—模拟结果计算的主应变率和最大剪应变率

    Figure  7.  Strain rate fields calculated using simulated and observed results respectively. The colors indicate the value of the maximum shear strain rate, and the crosses indicate the size and direction of the principal compressive and tensile strain rate. (a) Principal strain rate and maximum shear strain rate field calculated from the observation results. (b) Principal strain rate and maximum shear strain rate calculated from the simulation results

    图  8  反演得到的断层剪切模量与周围介质剪切模量的比值(0~1之间)

    Figure  8.  Ratio of the shear modulus of the fault obtained by inversion to the shear modulus of the surrounding media (between 0 and 1). The color blocks represent the ratio of the shear modulus of the parallel fault plane of each block to the shear modulus of the surrounding medium. The white circles represent the projection on the fault plane of the precise positioning results of small earthquakes (magnitude 3.0 or above) within 10 km from each side of the fault

  • CHEN J H, LIU Q Y, LI S C, et al., 2005. Crust and upper mantle S-wave velocity structure across Northeastern Tibetan Plateau and Ordos block[J]. Chinese Journal of Geophysics, 48(2): 333-342. (in Chinese with English abstract) http://www.oalib.com/paper/1567657
    DUAN X B, 1997. Geographical distribution of earthquake focal depth in China[J]. Acta Seismologica Sinica, 19(6): 590-599. (in Chinese)
    FIALKO Y, SANDWELL D, AGNEW D, et al., 2002. Deformation on nearby faults induced by the 1999 hector mine earthquake[J]. Science, 297(5588): 1858-1862. doi: 10.1126/science.1074671
    GAUDEMER Y, TAPPONNIER P, MEYER P, et al., 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan Fault, Gansu (China)[J]. Geophysical Journal International, 120(3): 599-645. doi: 10.1111/j.1365-246X.1995.tb01842.x
    HAO M, LI Y H, QING S L, 2017. Spatial and temporal distribution of slip rate deficit across Haiyuan-Liupan Shan Fault zone constrained by GPS data[J]. Seismology and Geology, 39(3): 471-484. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ201703003.htm
    HE J K, LU S J, WANG W M, 2013. Three-dimensional mechanical modeling of the GPS velocity field around the northeastern Tibetan plateau and surrounding regions[J]. Tectonophysics, 584: 257-266. doi: 10.1016/j.tecto.2012.03.025
    HERGERT T, HEIDBACH O, 2010. Slip-rate variability and distributed deformation in the Marmara Sea fault system[J]. Nature Geoscience, 3(2): 132-135. doi: 10.1038/ngeo739
    JIA S X, ZHANG X K, 2008. Study on the crust phases of deep seismicsounding experiments and fine crust structures in the northeast margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 51(5): 1431-1443. (in Chinese with English abstract) http://www.oalib.com/paper/1568190
    JOLIVET R, LASSERRE C, DOIN M P, et al., 2012. Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry[J]. Journal of Geophysical Research: Solid Earth, 117(B6): B06401. http://smartsearch.nstl.gov.cn/paper_detail.html?id=8389751782cfcae3829cbf7335ce8dd1
    LASKE G, MASTERS G, MA Z T, et al., 2013. Update on CRUST1.0-A 1-degree Global Model of Earth's Crust[Z]//EGU General Assembly 2013. Vienna, Austria.
    LI J Y, ZHANG J, LIU J F, et al., 2019. Crustal tectonic framework of china and its formation processes: constraints from stuctural deformation[J]. Journal of Geomechanics, 25(5): 678-698. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905006.htm
    LI Q, JIANG Z S, WU Y Q, et al., 2014. Inversion of locking and distribution of slip deficit in Haiyuan-Liupan fault zone using GPS data[J]. Geomatics and information Science of Wuhan University, 39(5): 575-580. (in Chinese with English abstract) http://www.researchgate.net/publication/286990679_Inversion_of_locking_and_distribution_of_slip_deficit_in_Haiyuan-Liupan_fault_zone_using_GPS_data
    LI Y C, SHAN X J, QU C Y, et al., 2016. Fault locking and slip rate deficit of the Haiyuan-Liupanshan fault zone in the northeastern margin of the Tibetan Plateau[J]. Journal of Geodynamics, 102: 47-57. doi: 10.1016/j.jog.2016.07.005
    LI Y J, CHEN L W, YE J Y, 2009. Application and development of numerical simulation in stress field evolvement and seismology[J]. Progress in Geophysics, 24(2): 418-431. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200902009.htm
    M7 Special Working Group, 2012. Study on the mid-to long-term potential of large earthquakes on the Chinese continent[M]. Beijing: Seismological Press. (in Chinese)
    MILDON Z K, ROBERTS G P, WALKER J P F, et al., 2019. Coulomb pre-stress and fault bends are ignored yet vital factors for earthquake triggering and hazard[J]. Nature Communications, 10: 2744. doi: 10.1038/s41467-019-10520-6
    Quark Studio, 2002. Finite element analysis basics ANSYS and MATLAB[M]. Beijing: Tsinghua University Press. (in Chinese)
    REINOZA C, JOUANNE F, AUDEMARD F A, et al., 2015. Geodetic exploration of strain along the El Pilar Fault in northeastern Venezuela[J]. Journal of Geophysical Research: Solid Earth, 120(3): 1993-2013. doi: 10.1002/2014JB011483
    SCHOLZ C H, 1990. The mechanics of earthquakes and faulting[M]. New York: Cambridge University Press.
    SCHOLZ C H, 1998. Earthquakes and friction laws[J]. Nature, 391(6662): 37-42. doi: 10.1038/34097
    SHEN Z K, WANG M, ZENG Y H, et al., 2015. Optimal interpolation of spatially discretized geodetic data[J]. Bulletin of the Seismological Society of America, 105(4): 2117-2127. doi: 10.1785/0120140247
    SHI F Q, SHAO Z G, ZHAN W, et al., 2018a. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 61(9): 3651-3663. (in Chinese with English abstract) http://www.researchgate.net/publication/329981106_Numerical_modeling_of_the_shear_modulus_and_stress_state_of_active_faults_in_the_northeastern_margin_of_the_Tibetan_plateau
    SHI F Q, ZHU L, LI Y J, et al., 2018b. Characterization of fault deformation behavior based on orthotropic theory[J]. Journal of Seismological Research, 41(1): 64-72. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201801008.htm
    WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental china derived from gps and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. doi: 10.1029/2019JB018774
    WANG S D, SHI Y Q, REN F W, 2018. Analysis and textual research of the seismogenic structure of the Qin-Long earthquake in 600 A. D[J]. Journal of Geomechanics, 24(2): 157-168. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201802062.htm
    XU X W, WU X Y, YU G H, et al., 2017. Seismo-Geological Signatures for Identifying M ≥ 7. 0 earthquake Risk areas and their premilimary application in mainland China[J]. Seismology and Geology, 39(2): 219-275. (in Chinese with English abstract)
    ZHANG G M, WANG S Y, LI L, et al., 2002. Focal depth research of earthquakes in Mainland China: implication for tectonics[J]. Chinese Science Bulletin, 47(12): 969-974. (in Chinese with English abstract) doi: 10.1007/BF02907562
    ZHANG H S, GAO R, TIAN X B, et al., 2015. Crustal S wave velocity beneath the northeastern Tibetan plateau inferred from teleseismic P wave receiver functions[J]. Chinese Journal of Geophysics, 58(11): 3982-3992. (in Chinese with English abstract) http://www.researchgate.net/publication/286875857_Crustal_Swave_velocity_beneath_the_northeastern_Tibetan_plateau_inferred_from_teleseismic_Pwave_receiver_functions
    ZHANG P Z, DENG Q D, ZHANG G M, et al., 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D: Earth Sciences, 46(2): 13-24. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020414997685.html
    ZHANG P Z, DENG Q D, ZHANG Z Q, et al., 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica (Terrae), 43(10): 1607-1620. (in Chinese with English abstract) doi: 10.1360/zd-2013-43-10-1607
    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905007.htm
    陈九辉, 刘启元, 李顺成等, 2005. 青藏高原东北缘-鄂尔多斯地块地壳上地幔S波速度结构. 地球物理学报, 48(2): 333-342. doi: 10.3321/j.issn:0001-5733.2005.02.015
    段星北, 1997. 中国地震震源深度的地理分布[J]. 地震学报, 19(6): 590-599. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB706.004.htm
    郝明, 李煜航, 秦姗兰, 2017. 基于GPS数据的海原-六盘山断裂带滑动速率亏损时空分布[J]. 地震地质, 39(3): 471-484. doi: 10.3969/j.issn.0253-4967.2017.03.003
    嘉世旭, 张先康, 2008. 青藏高原东北缘深地震测深震相研究与地壳细结构[J]. 地球物理学报, 51(5): 1431-1443. doi: 10.3321/j.issn:0001-5733.2008.05.016
    夸克工作室, 2002. 有限元分析基础篇ANSYS与Matlab[M]. 北京: 清华大学出版社.
    李锦轶, 张进, 刘建峰, 等, 2019. 中国地壳结构构造与形成过程: 来自构造变形的约束[J]. 地质力学学报, 25(5): 678-698. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190505&journal_id=dzlxxb
    李强, 江在森, 武艳强, 等, 2014. 利用GPS资料反演海原-六盘山断裂带闭锁程度与滑动亏损分布[J]. 武汉大学学报·信息科学版, 39(5): 575-580. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201405014.htm
    李玉江, 陈连旺, 叶际阳, 2009. 数值模拟方法在应力场演化及地震科学中的研究进展[J]. 地球物理学进展, 24(2): 418-431. doi: 10.3969/j.issn.1004-2903.2009.02.007
    M7专项工作组, 2012. 中国大陆大地震中长期危险性研究[M]. 北京: 地震出版社.
    石富强, 邵志刚, 占伟, 等, 2018a. 青藏高原东北缘活动断裂剪切模量及应力状态数值模拟[J]. 地球物理学报, 61(9): 3651-3663. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809014.htm
    石富强, 朱琳, 李玉江, 等, 2018b. 基于正交各向异性理论表征断层的变形行为[J]. 地震研究, 41(1): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201801008.htm
    王师迪, 师亚芹, 任凤文, 2018. 公元600年秦陇地震发震构造分析及考证研究[J]. 地质力学学报, 24(2): 157-168. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180202&journal_id=dzlxxb
    徐锡伟, 吴熙彦, 于贵华, 等, 2017. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质, 39(2): 219-275. doi: 10.3969/j.issn.0253-4967.2017.02.001
    张国民, 汪素云, 李丽, 等, 2002. 中国大陆地震震源深度及其构造含义[J]. 科学通报, 47(9): 663-668. doi: 10.3321/j.issn:0023-074X.2002.09.004
    张洪双, 高锐, 田小波, 等, 2015. 青藏高原东北缘地壳S波速度结构及其动力学含义: 远震接收函数提供的证据[J]. 地球物理学报, 58(11): 3982-3992. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511009.htm
    张培震, 邓起东, 张国民, 等, 2003. 中国大陆的强震活动与活动地块[J]. 中国科学: 地球科学, 33(S1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm
    张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310005.htm
    郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190506&journal_id=dzlxxb
  • 加载中
图(8)
计量
  • 文章访问数:  1288
  • HTML全文浏览量:  594
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-02-02

目录

    /

    返回文章
    返回