Geometrical imagery and kinematic dissipation of the late Cenozoic active faults in the West Qinling Belt: Implications for the growth of the Tibetan Plateau
-
摘要: 西秦岭位于东西向展布的秦岭-大别-苏鲁中央造山带与南北向展布的贺兰山-龙门山-川滇地震带构成的巨型"十字"构造区的交汇点,是中国大陆中部"西秦岭-松潘构造结"的重要组成部分。西秦岭晚新生代的构造变形与青藏高原的侧向扩展过程密切相关。该区构造变形的几何图像、运动特征及其深部动力学机制对于揭示青藏高原东北部的动力过程及强震活动具有重要意义。西秦岭地区主要断裂晚新生代以来的滑动速率及跨断裂GPS应变速率的结果表明,这一时期西秦岭构造带发生了明显的构造活动方式转换,主要的构造变形过程是通过其内部一系列低滑动速率的断裂活动以及断裂之间隆起山脉与盆地的变形,共同承担着自东昆仑断裂向西秦岭断裂之间的转换平衡。在调节这种构造转换过程中,西秦岭地区以"连续变形"为特征,即区域内的应变是以多条相对低滑动速率断裂的弥散变形遍布全区,并且西秦岭及其周缘块体的旋转作用也吸收了部分变形分量。综合已查明的区域构造活动特征、新生代岩浆活动、地球物理资料以及现今地貌特征可知,西秦岭在特提斯构造域的影响下,岩石圈的结构存在明显的流变学分层,一方面,西秦岭的上地壳保留了主造山期的地质构造形态,但中—下地壳的弱化使得莫霍面之上的圈层解耦,深部可流动的岩石圈地幔不但改变了陆内造山带的结构,同时也控制了现今上地壳连续变形的发育;另一方面,西秦岭内部的中强震主要发生在高速(或高阻)与低速(或低阻)的构造边界带附近。这种独特的流变学结构导致西秦岭在青藏高原向北生长和侧向扩展的过程中,不同阶段的构造变形过程是截然不同的。因此,进一步深入研究西秦岭地区的晚新生代构造转换过程及其机制,不仅对于理解青藏高原东北部的动力过程具有重要意义,更有助于深入认识南北地震构造带中段未来的强震危险性。Abstract: The West Qinling Belt (WQB) situated in the central China continent, is an enormous structure on the crustal scale, which is not controlled only by the Tethyan tectonic domain but is more complex, involving additional tectonic domains. The composite WQB as the coordinate system, which underwent five major episodes of accretion and collision between discrete continental blocks, has distinct geological and geophysical structure, geomorphology and environment, characterized by complex structures, complex forming processes and mixed materials. Moderate-strong earthquakes occurred frequently in the WQB in recent years, attesting its tectonic activity. Numerous results from the studies related to active fault geological and geodesic observations gave us new insights into present-day crustal deformation characteristics and its dynamic mechanism and helped us in exploring the control effect of active tectonic system on significant earthquake events in the WQB. Two groups of faults striking in different direction (NWW-trending and NEE-trending) within the WQB have played significant roles in the tectonic deformation and the transference slip along the east end of the east Kunlun fault since the Quaternary. Recent results suggest that the < 2 mm/a slip rate at the tip of the east Kunlun fault is absorbed by low slip rate faults, crustal shortening, basin formation, mountain uplift and block rotation in the WQB. Whereas deformation in the shallow brittle crust does not occur on a major fault, deformation of a continuous medium at depth best describes the present-day tectonics of the WQB. Regionally, mantle magmatism, geophysical and geological data show that the actively deforming WQB crust is dominated by main mountain building contraction shortening strain in the upper crust, decoupled plastic deformation in the lower crust and extrusion of the mantle lithosphere below to the high-strain domains in the crust above, and such a transition zone (high and low velocity/resistivity anomalies) is relatively easy to accumulate stress, leading to occurrence of major earthquake in this area.
-
图 1 青藏高原东北缘及西秦岭主要构造格架与强震活动分布图
HYF—海原断裂;WQLF—西秦岭断裂;EKLF—东昆仑断裂;LTF—临潭-宕昌断裂;GDF—光盖山-迭山断裂;BLJF—白龙江断裂;LLF—礼县-罗家堡断裂;LJF—两当-江洛断裂;CXF—成县断裂;WKLF—文县-康县-略阳断裂;MJF—岷江断裂;HyF—虎牙断裂;QCF—青川断裂;LMSF—龙门山断裂
a—青藏高原东北缘主要断裂分布图;b—西秦岭及其周缘主要构造格架与强震活动特征(据Zheng et al., 2016修改)Figure 1. Distribution of major faults and strong earthquakes in the northeastern margin of the Tibetan Plateau and the West Qinling Belt. (a) Distribution of major faults and strong earthquakes in the northeastern margin of the Tibetan Plateau. (b) Late Quaternary active tectonics and strong earthquakes in the West Qinling Belt. (modified after Zheng et al., 2016)HYF—Haiyuan fault; WQLF—West Qinling fault; EKLF—East Kunlun fault; LTF—Lintan-Tanchang fault; GDF—Guanggaishan-Dieshan fault; BLJF—Bailongjiang fault; LLF—Lixian-luojiapu fault; LJF—Liangdang-Jiangluo fault; CXF—Chengxian fault; WKLF—Wenxian-Kangxian-Lueyang fault; MJF—Minjiang fault, HyF—Huya fault; QCF—Qingchuan fault; LMSF—Longmenshan fault. The fault names in the later drawings are consistent with these in Fig. 1
图 2 西秦岭活动断裂展布图(断裂代号同图 1;滑动速率资料来源于Kirby et al., 2007; Li et al., 2011, 2020; Zheng et al., 2016; Chen and Lin, 2019; Zhang et al., 2021)
Figure 2. Geometry and kinematics of the active faults in the West Qinling Syntaxis. The numbers along the fault show the slip rates based on geological observations. Data from Kirby et al., 2007; Li et al., 2011, 2020; Zheng et al., 2016; Chen and Lin, 2019; Zhang et al., 2021.
图 3 西秦岭及其周缘的GPS速度场(Zheng et al., 2016;断裂代号同图 1;灰色椭圆置信度为95%;GPS数据来源于Gan et al., 2007)
Figure 3. Tectonic setting of the West Qinling on the relief map and GPS velocity field(Zheng et al., 2016). Grey ellipses represent 95% confidence. GPS data is from Gan et al., 2007.
图 4 横跨西秦岭的GPS速率剖面(断裂代号同图 1;剖面位置见图 3,GPS速度向北和向西速度为正)
a,b—剖面A廊带GPS速率剖面;c,d—剖面B廊带GPS速率剖面
Figure 4. GPS velocity profiles across the West Qinling Syntaxis along N52°E and N28°W. Location of each profile is shown in Fig. 3. (a, b) GPS velocity across the profile A. (c, d) GPS velocity across the profile B
图 5 西秦岭地震分布及地壳结构(断裂代号同图 1)
a—1976—2021年西秦岭及邻区地震分布(地震目录来源:https://www.globalcmt.org);b—P波和S波揭示的地壳结构特征(据李敏娟等,2018修改)
Figure 5. Focal mechanism solutions of the West Qinling and its crustal structure. (a) 1976-2021 focal mechanism solutions of the West Qinling and its adjacent areas (https://www.globalcmt.org). (b) Crustal structure characteristics of the West Qinling (modified after Li et al., 2018)
图 6 西秦岭及其周缘晚中生代构造事件及区域变形模式图
a—西秦岭及其周缘晚新生代主要构造事件的年代学数据(青藏高原东缘河流下切事件参考自Tian et al., 2015;Clark et al., 2005。山脉隆升:龙门山参考自Wang et al., 2012a;岷山参考自Tian et al., 2018;米仓山参考自Tian et al., 2012;太白山参考自Liu et al., 2013;六盘山参考自Zheng et al., 2006;积石山和拉脊山参考自Lease et al., 2011。盆地形成及物源变化事件:武山盆地参考自Wang et al., 2012b;临夏盆地参考自Fang et al., 2003。走滑断裂活动事件:海原断裂参考自Wang et al., 2020。岩浆活动:西秦岭参考自Liu et al., 2018。)
b—青藏高原东北缘构造变形模式图(块体旋转参考England and Molnar, 1990;Dupont-Nivet et al., 2004;块体运移方向参考Wang et al., 2016;Zhang et al., 2019)Figure 6. Compilation of faults, basins, mountains, magmatism, exhumation ages in the West Qinling Belt and its schematic model of the NE Tibetan Plateau. (a) Compilation of faults, basins, mountains, magmatism, exhumation ages in the West Qinling Belt (River incision in the eastern Tibetan Plateau: Tian et al., 2015; Clark et al., 2005. Mountain uplifts: Longmenshan: Wang et al., 2012a; Minshan: Tian et al., 2018; Micangshan: Tian et al., 2012; Taibaishan: Liu et al., 2013; Liupanshan: Zheng et al., 2006; Jishishan and Lajishan: Lease et al., 2011. Basin formation and provenance changes: Wushan Basin: Wang et al., 2012b; Linxia Basin: Fang et al., 2003. Fault activation: Haiyuan fault: Wang et al., 2020. Magmatism: West Qinling Belt: Liu et al., 2018). (b) Schematic model of the NE Tibetan Plateau(Block rotation: England and Molnar, 1990; Dupont-Nivet et al., 2004; Block movement: Wang et al., 2016; Zhang et al., 2019)
-
BAO X W, SONG X D, LI J T, 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth and Planetary Science Letters, 417: 132-141. doi: 10.1016/j.epsl.2015.02.024 CHEN P, SHI W, YANG J X, et al., 2016. Late cenozoic tectonic evolution of Tianshui Basin: implications for the northeast growth of Tibetan Plateau[J]. Geotectonica et Metallogenia, 40(2): 308-322. (in Chinese with English abstract) http://www.researchgate.net/publication/304942688_Late_cenozoic_tectonic_evolution_of_Tianshui_basin_implications_for_the_northeast_growth_of_Tibetan_plateau CHEN P, LIN A M, 2019. Tectonic topography and Late Pleistocene activity of the West Qinling Fault, northeastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 176: 68-78. doi: 10.1016/j.jseaes.2019.02.007 CLARK M K, ROYDEN L H, 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2 CLARK M K, HOUSE M A, ROYDEN L H, et al., 2005. Late Cenozoic uplift of southeastern Tibet[J]. Geology, 33(6): 525-528. doi: 10.1130/G21265.1 CLARK M K, FARLEY K A, ZHENG D W, et al., 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 296(1-2): 78-88. doi: 10.1016/j.epsl.2010.04.051 DONG Y P, ZHANG G W, SUN S S, et al., 2019. The "cross-tectonics" in china continent: formation, evolution, and its significance for continental dynamics[J]. Journal of Geomechanics, 25(5): 769-797. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905010.htm DUPONT-NIVET G, HORTON B K, BUTLER R F, et al., 2004. Paleogene clockwise tectonic rotation of the Xining-Lanzhou region, northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 109(B4): B04401. http://www.researchgate.net/publication/46683510_Paleogene_clockwise_tectonic_rotation_of_the_Xining-Lanzhou_region_northeastern_Tibetan_plateau?ev=prf_cit DUVALL A R, CLARK M K, 2010. Dissipation of fast strike-slip faulting within and beyond northeastern Tibet[J]. Geology, 38(3): 223-226. doi: 10.1130/G30711.1 ENGLAND P, MOLNAR P, 1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet[J]. Nature, 344(6262): 140-142. doi: 10.1038/344140a0 ENGLAND P, MOLNAR P, 1997. Active deformation of Asia: from kinematics to dynamics[J]. Science, 278(5338): 647-650. doi: 10.1126/science.278.5338.647 FANG X M, GARZIONE C, VAN DER VOO R, et al., 2003. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J]. Earth and Planetary Science Letters, 210(3-4): 545-560. doi: 10.1016/S0012-821X(03)00142-0 GAN W J, ZHANG P Z, SHEN Z K, et al., 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 112(B8): B08416. http://www.researchgate.net/publication/224962501_Present-day_crustal_motion_within_the_Tibetan_Plateau_inferred_from_GPS_measurements GAO R, WANG H Y, ZENG L S, et al., 2014. The crust structures and the connection of the Songpan block and West Qinlingorogen revealed by the Hezuo-Tangke deep seismic reflection profiling[J]. Tectonophysics, 634: 227-236. doi: 10.1016/j.tecto.2014.08.014 GE W P, MOLNAR P, SHEN Z K, et al., 2015. Present-day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements[J]. Geophysical Research Letters, 42(13): 5227-5235. doi: 10.1002/2015GL064347 GUO J J, HAN W F, ZHAO H T, et al., 2015. Late Cretaceous proto-type basin in the western Qinling: Background of Cenozoic uplifting of Tibet Plateau[J]. Chinese Journal of Geology, 50(2): 364-376. (in Chinese with English abstract) http://www.researchgate.net/publication/282279883_Late_Cretaceous_proto-type_basin_in_the_western_Qinling_Background_of_Cenozoic_uplifting_of_Tibet_Plateau HAN Z J, XIANG H F, RAN Y K, 2001. Activity analysis of Lixian-Luojiapu Fault zone in the East boundary of Tibetan Plateau since the late-Pleistocene[J]. Seismology and Geology, 23(1): 43-48. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ200101005.htm HAO M, WANG Q L, SHEN Z K, et al., 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau[J]. Tectonophysics, 632: 281-292. doi: 10.1016/j.tecto.2014.06.016 HAO M, WANG Q L, ZHANG P Z, et al., 2021. "Frame wobbling" causing crustal deformation around the Ordos block[J]. Geophysical Research Letters, 48(1): e2020GL091008. http://www.researchgate.net/publication/347795830_Frame_wobbling_causing_crustal_deformation_around_the_Ordos_block HORTON B K, DUPONT-NIVET G, ZHOU J, et al., 2004. Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results[J]. Journal of Geophysical Research: Solid Earth, 109(B4): B04402. doi: 10.1029/2003JB002913/full HOU K M, LEI Z S, WAN F L, et al., 2005. Research on the 1879 Southern Wudu M8.0 earthquake and its coseismic ruptures[J]. Earthquake Research in China, 20(3): 295-310. (in Chinese with English abstract) http://www.researchgate.net/publication/284679881_Research_on_the_1879_southern_Wudu_M80_earthquake_and_its_coseismic_ruptures KIRBY E, HARKINS N, WANG E Q, et al., 2007. Slip rate gradients along the eastern Kunlun fault[J]. Tectonics, 26(2): TC2010. http://www.researchgate.net/publication/240491311_Slip_rate_gradients_along_the_eastern_Kunlun_Fault/download LAI S C, QIN J F, KHAN J, 2014. The carbonated source region of Cenozoic mafic and ultra-mafic lavas from western Qinling: Implications for eastern mantle extrusion in the northeastern margin of the Tibetan Plateau[J]. Gondwana Research, 25(4): 1501-1516. doi: 10.1016/j.gr.2013.05.019 LEASE R O, BURBANK D W, CLARK M K, et al., 2011. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J]. Geology, 39(4): 359-362. doi: 10.1130/G31356.1 LI C X, XU X W, WEN X Z, et al., 2011. Rupture segmentation and slip partitioning of the mid-eastern part of the Kunlun Fault, north Tibetan Plateau[J]. Science China Earth Sciences, 54(11): 1730-1745. doi: 10.1007/s11430-011-4239-5 LI C Y, 2005. Quantitative Quantitative studies on major active fault zonesin Northeastern Qinghai-tibet Plateau[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract) LI H L, ZHANG Y Q, DONG S W, et al., 2020. Neotectonics of the Bailongjiang and Hanan faults: New insights into late Cenozoic deformation along the eastern margin of the Tibetan Plateau[J]. GSA Bulletin, 132(9-10): 1845-1862. doi: 10.1130/B35374.1 LI M J, SHEN X Z, ZHANG Y S, et al., 2018. Fine crustal structures of northeast margin of the Tibetan Plateau and structural features of Jiuzhaigou earthquake focal area constrained by the data from a high-density seismic array[J]. Chinese Journal of Geophysics, 61(5): 2075-2087. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201805032.htm LI X N, ZHANG P Z, ZHENG W J, et al., 2018. Kinematics of late quaternary slip along the Qishan-Mazhao fault: implications for tectonic deformation on the southwestern Ordos, China[J]. Tectonics, 37(9): 2983-3000. doi: 10.1029/2018TC005043 LIU C, SUN B, WEI L Y, et al., 2020. Application of the integrated electrical method to exploration in the Zhaishang gold deposit, West Qinling[J]. Geology and Exploration, 56(6): 1226-1237. (in Chinese with English abstract) LIU D, ZHAO Z D, NIU Y L, et al., 2018. Perovskite U-Pb and Sr-Nd isotopic perspectives on melilitite magmatism and outward growth of the Tibetan Plateau[J]. Geology, 46(12): 1027-1030. https://pubs.geoscienceworld.org/gsa/geology/article/46/12/1027/565648/Perovskite-U-Pb-and-Sr-Nd-isotopic-perspectives-on LIU J H, ZHANG P Z, LEASE R O, et al., 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology[J]. Tectonophysics, 584: 281-296. doi: 10.1016/j.tecto.2012.01.025 LIU X W, YUAN D Y, SHAO Y X, et al., 2015. Characteristics of late quaternary tectonic activity in the middle-eastern segment of the Southern Branch of Diebu-bailongjiang Fault, Gansu[J]. Journal of Earth Sciences and Environment, 37(6): 111-119. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201506013.htm MA S X, ZHANG Y Q, LI H L, et al., 2013. The tectonic extrusion of NE Tibet in late Neogene time: Evidence from Anhua-Chengxian Basin in West Qinling[J]. Earth Science Frontiers, 20(4): 58-74. (in Chinese with English abstract) http://www.researchgate.net/publication/281036549_The_tectonic_extrusion_of_NE_Tibet_in_late_Neogene_time_Evidence_from_Anhua-Chengxian_Basin_in_West_Qinling PEI X Z, 2001. Geological evolution and dynamics of the Mianlue-A'nyemaqen tectonic zone, central China[D]. Xi'an: Northwest University. (in Chinese with English abstract) PEI X Z, DING S P, LI Z C, et al., 2007. LA-ICP-MS zircon U-Pb Dating of the gabbro from the Guanzizhen Ophiolite in the northern margin of the western Qinling and its geological significance[J]. Acta Geologica Sinic, 81(11): 1550-1561. (in Chinese with English abstract) http://www.researchgate.net/publication/279691760_LA-ICP-MS_zircon_U-Pb_dating_of_the_gabbro_from_the_Guanzizhen_ophiolite_in_the_northern_margin_of_the_western_Qinling_and_its_geological_significance SHEN X Z, ZHOU Y Z, ZHANG Y S, et al., 2014. Receiver function structures beneath the deep large faults in the northeastern margin of the Tibetan Plateau[J]. Tectonophysics, 610: 63-73. doi: 10.1016/j.tecto.2013.10.011 SHI X H, YANG Z, DONG Y P, et al., 2018. Transient geomorphic characteristics of the upper Jialing River Basin, West Qinling, northeastern Tibetan Plateau[J]. Chinese Journal of Geology, 53(3): 819-834. (in Chinese with English abstract) http://www.researchgate.net/publication/331966788_Transient_geomorphic_characteristics_of_the_upper_Jialing_River_Basin_West_Qinling_northeastern_Tibetan_Plateau LEÓN SOTO G L, SANDVOL E, NI J F, et al., 2012. Significant and vertically coherent seismic anisotropy beneath eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 117(B5): B05308. http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:245126:1/component/escidoc:245125/18589.pdf TIAN Y T, KOHN B P, ZHU C Q, et al., 2012. Post-orogenic evolution of the Mesozoic Micang Shan Foreland Basin system, central China[J]. Basin Research, 24(1): 70-90. doi: 10.1111/j.1365-2117.2011.00516.x TIAN Y T, KOHN B P, HU S B, et al., 2015. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau: Implications for crustal dynamics[J]. Geophysical Research Letters, 42(1): 29-35. doi: 10.1002/2014GL062383 TIAN Y T, LI R, TANG Y, et al., 2018. Thermochronological constraints on the late cenozoicmorphotectonic evolution of the Min Shan, the eastern margin of the Tibetan Plateau[J]. Tectonics, 37(6): 1733-1749. doi: 10.1029/2017TC004868 WANG Q, ZHANG P Z, FREYMUELLER J T, et al., 2001. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 294(5542): 574-577. doi: 10.1126/science.1063647 WANG E, KIRBY E, FURLONG K P, et al., 2012a. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 5(9): 640-645. doi: 10.1038/ngeo1538 WANG W T, KIRBY E, ZHANG P Z, et al., 2013. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension[J]. GSA Bulletin, 125(3-4): 377-400. doi: 10.1130/B30611.1 WANG W T, ZHANG P Z, LIU CC, et al., 2016. Pulsed growth of the West Qinling at ~30? Ma in northeastern Tibet: Evidence from Lanzhou Basin magnetostratigraphy and provenance[J]. Journal of Geophysical Research: Solid Earth, 121(11): 7754-7774. doi: 10.1002/2016JB013279 WANG W T, ZHENG D W, LI C P, et al., 2020. Cenozoic exhumation of the Qilian Shan in the northeastern Tibetan Plateau: Evidence from low-temperature thermochronology[J]. Tectonics, 39(4): e2019TC005705. http://www.researchgate.net/publication/339931908_Cenozoic_Exhumation_of_the_Qilian_Shan_in_the_Northeastern_Tibetan_Plateau_Evidence_From_Low-Temperature_Thermochronology WANG XX, ZATTIN M, LI JJ, et al., 2011. Eocene to Pliocene exhumation history of the Tianshui-Huicheng region determined by Apatite fission track thermochronology: Implications for evolution of the northeastern Tibetan Plateau margin[J]. Journal of Asian Earth Sciences, 42(1-2): 97-110. doi: 10.1016/j.jseaes.2011.04.012 WANG ZC, ZHANG P Z, GARZIONE C N, et al., 2012b. Magnetostratigraphy and depositional history of the Miocene Wushan basin on the NE Tibetan plateau, China: Implications for middle Miocene tectonics of the West Qinling fault zone[J]. Journal of Asian Earth Sciences, 44: 189-202. doi: 10.1016/j.jseaes.2011.06.009 WANG Z G. 1985. The"Long-term activity"of large earthquake areas[J]. ActaSeismologicaSinica, 7(3): 254-266. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB198503001.htm WU Z H, 2019. The definition and classification of active faults: history, current status and progress[J]. Acta Geoscientica Sinica, 40(5): 661-697. https://www.zhangqiaokeyan.com/academic-journal-cn_acta-geoscientica-sinica_thesis/0201273307896.html XU X, GAO R, DONG S W, et al., 2017. Lateral extrusion of the northern Tibetan Plateau interpreted from seismic images, potential field data, and structural analysis of the eastern Kunlun fault[J]. Tectonophysics, 696-697: 88-98. doi: 10.1016/j.tecto.2016.12.025 YAN M D, VANDERVOO R, FANG X M, et al., 2006. Paleomagnetic evidence for a mid-Miocene clockwise rotation of about 25° of the Guide Basin area in NE Tibet[J]. Earth and Planetary Science Letters, 241(1-2): 234-247. doi: 10.1016/j.epsl.2005.10.013 YU J X, ZHENG W J, YUAN D Y, et al., 2012. Late quaternary active characteristics and slip-rate of Pingding-Huama Fault, the eastern segment of Guanggaishan-Dieshan Fault zone (West Qinling Mountain)[J]. Quaternary Sciences, 32(5): 957-967. (in Chinese with English abstract) http://www.researchgate.net/publication/303170927_Late_Quaternary_active_characteristics_and_slip-rate_of_Pingding-Huama_Fault_the_eastern_segment_of_Guanggaishan-Dieshan_Fault_zoneWest_Qinlin_Mountains YU X H, MO X X, FLOWER M, et al., 2001. Cenozoic kamafugite volcanism and tectonic meaning inwest Qinling area, Gansu province[J]. Acta Petrologica Sinica, 17(3): 366-377. (in Chinese with English abstract) http://www.mendeley.com/research/cenozoic-kamafugite-volcanism-tectonic-meaning-west-qinling-area-gansu-province/ YUAN D Y, ZHANG P Z, LIU B C, et al., 2004. Geometrical imagery and tectonic transformation of late quaternary active tectonics in northeastern margin of Qinghai-Xizang plateau[J]. Acta Geologica Sinic, 78(2): 270-278. (in Chinese with English abstract) http://www.researchgate.net/publication/279618593_Geometrical_imagery_and_tectonic_transformation_of_Late_Quaternary_active_tectonics_in_northeastern_margin_of_Qinghai-Xizang_Plateau YUAN D Y, LEI Z S, HE W G, et al., 2007. Textual research of Wudu earthquake in186 B. C. in Gansu province, China and discussion on its causative structure[J]. Acta Seismologica Sinica, 29(6): 654-663. (in Chinese with English abstract) http://www.researchgate.net/publication/225341140_Textual_research_of_Wudu_earthquake_in_186_BC_in_Gansu_Province_China_and_discussion_on_its_causative_structure YUAN D Y, LEI Z S, LIU X W, et al., 2014. Textual research of Luqu earthquake in 842 AD in Gansu Province and analysis of its causative structure[J]. Seismology and Geology, 36(3): 609-624. (in Chinese with English abstract) http://www.researchgate.net/publication/288201865_Textual_research_of_Luqu_earthquake_in_842_AD_in_Gansu_province_and_analysis_of_its_causative_structure ZHAN Y, ZHAO G Z, WANG L F, et al., 2014. Deep electric structure beneath the intersection area of West Qinling Orogenic zone with north-south seismic tectonic zone in China[J]. Chinese Journal of Geophysics, 57(8): 2594-2607. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201408019.htm ZHANG B, WANG A G, YUAN D Y, et al., 2018. Fault geometry defined by multiple remote sensing images interpretation and field verification: a case study from southern Guanggaishan-Dieshan fault, Western Qinling[J]. Seismology and Geology, 40(5): 1018-1039. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201805006.htm ZHANG B, WANG A G, YUAN D Y, et al., 2020. Discovery of new activity of Xiahe fault in Gansu: Discussion on seismogenic structure of the 2019 XiaheMS5.7 earthquake[J]. Acta Seismologica Sinica, 42(5): 629-644. (in Chinese with English abstract) ZHANG B, WANG A G, YUAN D Y, et al., 2021. Slip rates and paleoearthquakes along the east segment of the Guanggaishan-Dieshan fault zone, West Qinling Range, NW China[J]. International Journal of Earth Sciences, 110(1): 213-232. doi: 10.1007/s00531-020-01947-0 ZHANG G W, GUO A L, YAO A P, 2004. Western Qinling-Songpan continental tectonic node in China's continental tectonics[J]. Earth Science Frontiers, 11(3): 23-32. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200403004.htm ZHANG G W, 2015. The Mianlue tectonic zone of the QinlingOrogen and China continental tectonics[M]. Beijing: Science Press. (in Chinese) ZHANG G W, GUO A L, DONG Y P, et al., 2019. Rethinking of the Qinlingorogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905009.htm ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1 ZHANG P Z, LI C Y, MAO F Y. 2008. Strath terrace formation and strike-slip faulting[J]. Seismology and Geology, 30(1): 44-57. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200801004.htm ZHANG P Z, WEN X Z, XU X X, et al., 2009. Tectonic model of the great Wenchuan earthquake of May 12, 2008, Sichuan, China[J]. Chinese Science Bulletin, 54(7): 944-953. (in Chinese) doi: 10.1360/csb2009-54-7-944 ZHANG P Z, DENG Q D, ZHANG Z Q, et al., 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica Terrae, 43(10): 1607-1620. (in Chinese with English abstract) doi: 10.1360/zd-2013-43-10-1607 ZHANG Y P, ZHENG W J, ZHANG D L, et al., 2019. Late Pleistocene left-lateral slip rates of the Gulang Fault and its tectonic implications in eastern Qilian Shan (NE Tibetan Plateau), China[J]. Tectonophysics, 756: 97-111. doi: 10.1016/j.tecto.2019.02.013 ZHANG Y P, 2020. Sedimentation and tectonics of the Late Mesozoic-Cenozoic Basins in the West Qinling Orogenic Belt and implications for intracontinental tectonics[D]. Guangzhou: Sun Yat-Sen University. (in Chinese with English abstract) ZHANG Y P, ZHENG W J, WANG W T, et al., 2020. Rapid eocene exhumation of the west Qinling Belt: implications for the growth of the northeastern Tibetan Plateau[J]. Lithosphere, 2020(1): 8294751. doi: 10.2113/2020/8294751 ZHANG Y Q, MA Y S, YANG N, et al., 2005. Late Cenozoic left-slip faulting process of the east Kunlun-Qinling fault system in west Qinling region and its eastward propagation[J]. Acta Geoscientica Sinica, 26(1): 1-8. (in Chinese with English abstract) http://www.oalib.com/paper/1558067 ZHAO L Q, ZHAN Y, CHEN X B, et al., 2015. Deep electrical structure of the central West Qinling orogenic belt and blocks on its either side[J]. Chinese Journal of Geophysics, 58(7): 2460-2472. (in Chinese with English abstract) https://www.researchgate.net/profile/Feng_Jiang43/publication/282677659_Deep_electrical_structure_of_the_central_West_Qinling_orogenic_belt_and_blocks_on_its_either_side/links/5708f27b08ae2eb9421e282e.pdf ZHENG D W, ZHANG P Z, WAN J L, et al., 2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 248(1-2): 198-208. doi: 10.1016/j.epsl.2006.05.023 ZHENG W J, LIU X W, YU J X, et al., 2016. Geometry and late Pleistocene slip rates of the Liangdang-Jiangluo fault in the western Qinling mountains, NW China[J]. Tectonophysics, 687: 1-13. doi: 10.1016/j.tecto.2016.08.021 ZUZA A V, YIN A, 2016. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet[J]. Tectonophysics, 677-678: 227-240. doi: 10.1016/j.tecto.2016.04.007 ZHENG W J, YUAN D Y, HE W G, et al., 2013. Geometric pattern and active tectonics in Southeastern Gansu province: Discussion on seismogenic mechanism of the Minxian-ZhangxianMS6.6 earthquake on July 22, 2013[J]. Chinese Journal of Geophysics, 56(12): 4058-4071. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201312011.htm ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905007.htm 陈鹏, 施炜, 杨家喜, 等, 2016. 天水盆地晚新生代构造演化: 对青藏高原北东向扩展的指示意义[J]. 大地构造与成矿学, 40(2): 308-322. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201602011.htm 董云鹏, 张国伟, 孙圣思, 等, 2019. 中国大陆"十字构造"形成演化及其大陆动力学意义[J]. 地质力学学报, 25(5): 769-797. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190509&journal_id=dzlxxb 郭进京, 韩文峰, 赵海涛, 等, 2015. 西秦岭晚白垩世原型盆地: 新生代青藏高原隆起的背景[J]. 地质科学, 50(2): 364-376. doi: 10.3969/j.issn.0563-5020.2015.02.002 韩竹军, 向宏发, 冉勇康, 2001. 青藏高原东缘礼县-罗家堡断裂带晚更新世以来的活动性分析[J]. 地震地质, 23(1): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200101005.htm 侯康明, 雷中生, 万夫岭, 等, 2005. 1879年武都南8级大地震及其同震破裂研究[J]. 中国地震, 20(3): 295-310. doi: 10.3969/j.issn.1001-4683.2005.03.001 李传友, 2005. 青藏高原东北部几条主要断裂带的定量研究[D]. 北京: 中国地震局地质研究所. 李敏娟, 沈旭章, 张元生, 等, 2018. 基于密集台阵的青藏高原东北缘地壳精细结构及九寨沟地震震源区结构特征分析[J]. 地球物理学报, 61(5): 2075-2087. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805032.htm 刘诚, 孙彪, 魏立勇, 等, 2020. 综合电法勘探在西秦岭寨上金矿的应用研究[J]. 地质与勘探, 56(6): 1226-1237. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202006011.htm 刘兴旺, 袁道阳, 邵延秀, 等, 2015. 甘肃迭部-白龙江南支断裂中东段晚第四纪构造活动特征[J]. 地球科学与环境学报, 37(6): 111-119. doi: 10.3969/j.issn.1672-6561.2015.06.010 马收先, 张岳桥, 李海龙, 等, 2013. 青藏高原东北缘新近纪晚期构造挤出: 来自西秦岭地区安化-成县盆地的证据[J]. 地学前缘, 20(4): 58-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304008.htm 裴先治, 2001. 勉略-阿尼玛卿构造带的形成演化与动力学特征[D]. 西安: 西北大学. 裴先治, 丁仨平, 李佐臣, 等, 2007. 西秦岭北缘关子镇蛇绿岩的形成时代: 来自辉长岩中LA-ICP-MS锆石U-Pb年龄的证据[J]. 地质学报, 81(11): 1550-1561. doi: 10.3321/j.issn:0001-5717.2007.11.010 史小辉, 杨钊, 董云鹏, 等, 2018. 西秦岭嘉陵江上游瞬时地貌发育特征[J]. 地质科学, 53(3): 819-834. http://d.wanfangdata.com.cn/periodical/dzkx201803003 王泽皋, 1985. 大震区的"长期活动"[J]. 地震学报, 7(3): 254-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198503001.htm 吴中海, 2019. 活断层的定义与分类: 历史、现状和进展[J]. 地球学报, 40(5): 661-697. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201905003.htm 俞晶星, 郑文俊, 袁道阳, 等, 2012. 西秦岭西段光盖山-迭山断裂带坪定-化马断裂的新活动性与滑动速率[J]. 第四纪研究, 32(5): 957-967. doi: 10.3969/j.issn.1001-7410.2012.05.13 喻学惠, 莫宣学, FLOWER M, 等, 2001. 甘肃西秦岭新生代钾霞橄黄长岩火山作用及其构造含义[J]. 岩石学报, 17(3): 366-377. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103003.htm 袁道阳, 张培震, 刘百篪, 等, 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 78(2): 270-278. doi: 10.3321/j.issn:0001-5717.2004.02.017 袁道阳, 雷中生, 何文贵, 等, 2007. 公元前186年甘肃武都地震考证与发震构造探讨[J]. 地震学报, 29(6): 654-663. doi: 10.3321/j.issn:0253-3782.2007.06.010 袁道阳, 雷中生, 刘兴旺, 等, 2014. 公元842年甘肃碌曲地震考证与发震构造分析[J]. 地震地质, 36(3): 609-624. doi: 10.3969/j.issn.0253-4967.2014.03.006 詹艳, 赵国泽, 王立凤, 等, 2014. 西秦岭与南北地震构造带交汇区深部电性结构特征[J]. 地球物理学报, 57(8): 2594-2607. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201408019.htm 张波, 王爱国, 袁道阳, 等, 2018. 基于多源遥感解译和野外验证的断裂几何展布: 以西秦岭光盖山-迭山南麓断裂为例[J]. 地震地质, 40(5): 1018-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201805006.htm 张波, 王爱国, 袁道阳, 等, 2020. 甘肃夏河断裂新活动的发现: 兼论2019年夏河MS5.7地震的发震构造[J]. 地震学报, 42(5): 629-644. http://www.researchgate.net/publication/346750632_gansuxiaheduanliexinhuodongdefaxian-jianlun2019nianxiaheMS57dezhendefazhengouzao 张国伟, 郭安林, 姚安平, 2004. 中国大陆构造中的西秦岭-松潘大陆构造结[J]. 地学前缘, 11(3): 23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004 张国伟, 2015. 秦岭勉略构造带与中国大陆构造[M]. 北京: 科学出版社. 张国伟, 郭安林, 董云鹏, 等, 2019. 关于秦岭造山带[J]. 地质力学学报, 25(5): 746-768. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190508&journal_id=dzlxxb 张培震, 李传友, 毛凤英, 2008. 河流阶地演化与走滑断裂滑动速率[J]. 地震地质, 30(1): 44-57. doi: 10.3969/j.issn.0253-4967.2008.01.004 张培震, 闻学泽, 徐锡伟, 等, 2009. 2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J]. 科学通报, 54(7): 944-953. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200907016.htm 张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310005.htm 张逸鹏, 2020. 西秦岭晚中生代-新生代盆-山时空演化及其大地构造意义[D]. 广州: 中山大学. 张岳桥, 马寅生, 杨农, 等, 2005. 西秦岭地区东昆仑-秦岭断裂系晚新生代左旋走滑历史及其向东扩展[J]. 地球学报, 26(1): 1-8. doi: 10.3321/j.issn:1006-3021.2005.01.001 赵凌强, 詹艳, 陈小斌, 等, 2015. 西秦岭造山带(中段)及其两侧地块深部电性结构特征[J]. 地球物理学报, 58(7): 2460-2472. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201507022.htm 郑文俊, 袁道阳, 何文贵, 等, 2013. 甘肃东南地区构造活动与2013年岷县-漳县MS6.6级地震孕震机制[J]. 地球物理学报, 56(12): 4058-4071. doi: 10.6038/cjg20131211 郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190506&journal_id=dzlxxb