ARROWSMITH J R, ZIELKE O, 2009. Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: an example from the Cholame segment[J]. Geomorphology, 113(1-2): 70-81. doi: 10.1016/j.geomorph.2009.01.002
|
BAI Y J, NI H Y, GE H, 2019. Advances in research on the geohazard effect of active faults on the southeastern margin of the Tibetan Plateau[J]. Journal of Geomechanics, 25(6): 1116-1128. (in Chinese with English abstract) http://www.researchgate.net/publication/316645347_Research_on_the_geohazard_effect_of_active_fault_on_the_eastern_margin_of_the_Tibetan_Plateau
|
CANDELA T, RENARD F, 2012. Segment linkage process at the origin of slip surface roughness: Evidence from the Dixie Valley fault[J]. Journal of Structural Geology, 45: 87-100. doi: 10.1016/j.jsg.2012.06.003
|
CHEVALIER M L, LELOUP P H, REPLUMAZ A, et al., 2016. Tectonic-geomorphology of the Litang fault system, SE Tibetan Plateau, and implication for regional seismic hazard[J]. Tectonophysics, 682: 278-292. doi: 10.1016/j.tecto.2016.05.039
|
FU B H, YOSHIKI N, DONG Y F, et al., 2008. Generation of 3-Dimensional perspective satellite imagery and its application on Quaternary geomorphological analysis[J]. Quaternary Sciences, 28(2): 189-196. (in Chinese with English abstract) http://www.oalib.com/paper/1571240
|
GOLD P O, COWGILL E S, KREYLOS O, et al., 2012. A terrestrial lidar-based workflow for determining three-dimensional slip vectors and associated uncertainties[J]. Geosphere, 8(2): 431-442. doi: 10.1130/GES00714.1
|
GOLD P O, OSKIN M E, ELLIOTT A J, et al., 2013. Coseismic slip variation assessed from terrestrial lidar scans of the El Mayor-Cucapah surface rupture[J]. Earth & Planetary Science Letters, 366: 151-162. http://www.sciencedirect.com/science/article/pii/S0012821X13000642
|
HE H L, WEI Z Y, DENSMORE A, 2016. Quantitative morphology of bedrock fault surfaces and identification of paleo-earthquakes[J]. Tectonophysics, 693: 22-31. doi: 10.1016/j.tecto.2016.09.032
|
KANG S, ZHANG J F, CUI X F, et al., 2017. Offset landform caused by active fault based on high precision terrestrial LiDAR data: a case study of the Lenglongling active fault zone[J]. Earthquake, 37(3): 61-71. (in Chinese with English abstract) http://adsabs.harvard.edu/abs/2016AGUFM.T23B2927J
|
KAYEN R, PACK R T, BAY J, et al., 2006. Terrestrial-LIDAR visualization of surface and structural deformations of the 2004 Niigata Ken Chuetsu, Japan, earthquake[J]. Earthquake Spectra, 22: 147-162. doi: 10.1193/1.2173020
|
LI Z F, LIU J, SHAO Y X, et al., 2016. Tecto-geomorphic analysis and selection of trench sites along Haiyuan fault in Songshan site based on high-resolution airborne LiDAR data[J]. Geological Bulletin of China, (1): 104-116. (in Chinese with English abstract) http://www.researchgate.net/publication/301555431_Tecto-geomorphic_analysis_and_selection_of_trench_sites_along_Haiyuan_fault_in_Songshan_site_based_on_high-resolution_airbone_LiDAR_data
|
LIU J, CHEN T, ZHANG P Z, et al., 2013. Illuminating the active Haiyuan Fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1): 41-45. (in Chinese with English abstract) doi: 10.1360/972012-1526
|
LIU Y P, LIANG H, CHEN F F, 2016. Application of high resolution airborne LiDAR in Xiaojiang active tectonics and geological disaster study[J]. Journal of Geomechanics, 22(3): 747-759. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201603028.htm
|
MA D, WU Z H, LI J C, et al., 2014. Geometric distribution and the Quaternary activity of Litang active fault zone based on remote sensing[J]. Acta Geologica Sinica, 88(8): 1417-1435. (in Chinese with English abstract) http://javascript:void(0)
|
MA H C, 2011. Review on applications of LiDAR mapping technology to geosciences[J]. Earth Science: Journal of China University of Geosciences, 36(2): 347-354. (in Chinese with English abstract) http://www.researchgate.net/publication/288134417_Review_on_applications_of_LiDAR_mapping_technology_to_geosciences
|
MA H C, YAO C J, ZHANG S D, 2008. Some technical issues of airborne LIDAR system applied to Wenchuan Earthquake relief works[J]. Journal of Remote Sensing, 12(6): 925-932. (in Chinese with English abstract) http://www.oalib.com/paper/1470202
|
MA X X, WU Z H, LI J C, 2016. LiDAR technology and its application and prospect in geological environment[J]. Journal of Geomechanics, 22(1): 93-103. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201601010.htm
|
OSKIN M E, ARROWWSMITH J R, CORONA A H, et al., 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LiDAR[J]. Science, 335(6069): 702-705. doi: 10.1126/science.1213778
|
REN Z K, CHEN T, ZHANG H P, et al., 2014. LiDAR survey in active tectonics studies: an introduction and overview[J]. Acta Geologica Sinica, 88(6): 1196-1207. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201406019.htm
|
REN Z K, ZIELKE O, YU J X, 2018. Active tectonics in 4D high-resolution[J]. Journal of Structural Geology, 117: 264-271. doi: 10.1016/j.jsg.2018.09.015
|
RENARD F, VOISIN C, MARSAN D, et al., 2006. High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales[J]. Geophysical Research Letters, 33(4): L04305. doi: 10.1029/2005GL025038/full
|
SHE J X, CHENG D X, LIU F, et al., 2018. Application of airborne LiDAR technology in geological disaster investigation: Taking the Jiuzhaigou MS7.0 earthquake in Sichuan province as an example[J]. Earthquake Research in China, 34(3): 435-444. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZGZD201803005.htm
|
TAN X B, XU X W, YU G H, et al., 2015. The application of 3D laser scanning technology in surface rupture survey of the normal fault: an example of the 2008 Ms7.3 Yutian earthquake[J]. Technology for Earthquake Disaster Prevention, 10(3): 491-500. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZZFY201503003.htm
|
TANG Y, 2019. Measurement of the spatial scale of fracture dislocation through high-resolution remote sensing images[J]. China Earthquake Engineering Journal, 41(5): 1274-1279, 1373. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZBDZ201905023.htm
|
WEI Z Y, HE H L, SU P, et al., 2019. Investigating paleoseismicity using fault scarp morphology of the Dushanzi Reverse Fault in the northern Tian Shan, China[J]. Geomorphology, 327: 542-553. doi: 10.1016/j.geomorph.2018.11.025
|
WEI Z Y, HE H L, GAO W, et al., 2014. Experimental study on geologic mapping of active tectonics based on LiDAR data: A case of Dushanzi anticline-reverse fault zone in Xinjiang[J]. Seismology and Geology, 36(3): 794-813. (in Chinese with English abstract) http://www.researchgate.net/publication/281925237_Experimental_study_on_geologic_mapping_of_active_tectonics_based_on_LiDAR_data_-_A_case_of_Dushanzi_anticline-reverse_fault_zone_in_Xinjiang
|
WEI Z Y, SHI F, GAO X, et al., 2010. Topographic characteristics of rupture surface associated with Wenchuan earthquake[J]. Earth Science Frontiers, 17(5): 53-66. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dxqy201005005
|
WILKINSON M, ROBERTS G P, MCCAFFREY K, et al., 2015. Slip distributions on active normal faults measured from LiDAR and field mapping of geomorphic offsets: an example from L'Aquila, Italy, and implications for modelling seismic moment release[J]. Geomorphology, 237: 130-141. doi: 10.1016/j.geomorph.2014.04.026
|
WILKINSON M W, MCCAFFREY K J W, ROBERTS G P, et al., 2012. Distribution and magnitude of post-seismic deformation of the 2009 L'Aquila earthquake (M6.3) surface rupture measured using repeat terrestrial laser scanning[J]. Geophysical Journal International, 189(2): 911-922. doi: 10.1111/j.1365-246X.2012.05418.x
|
WU Z H, LONG C X, FAN T Y, et al., 2015. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 34(1): 1-31. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201501002.htm
|
XIAO K Z, TONG H M, 2020. Progress on strike-slip fault research and its significance[J]. Journal of Geomechanics, 26(2): 151-166. (in Chinese with English abstract)
|
XU X W, WEN X Z, YU G H, et al., 2015. Average slip rate, earthquake rupturing segmentation and recurrence behavior on the Litang fault zone, western Sichuan province[J]. Science in China Series D: Earth Sciences, 48(8): 1183-1196.
|
YUAN X X, WANG X Q, DOU A X, et al., 2012. Terrestrial LiDAR-based 3D modeling analysis of surface rupture caused by Yushu earthquake[J]. Seismology and Geology, 34(1): 39-46. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ201201007.htm
|
ZHAGN J F, JIANG W L, TIAN T, et al., 2016. High resolution remote sensing application research in active fault surveying[J]. Acta Seismologica Sinica, 38(3): 386-398. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201603006.htm
|
ZHENG W J, LEI Q Y, DU P, et al., 2015. 3-D laser scanner (LiDAR): A new technology for acquiring high precision palaeoearthquake trench information[J]. Seismology and Geology, 37(1): 232-241. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201501018.htm
|
ZHOU C J, WU Z H, ZHANG K Q, et al., 2015. New chronological constraint on the co-seismic surface rupture segments associated with the Litang Fault[J]. Seismology and Geology, 37(2): 455-467. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ201502009.htm
|
ZHOU R J, CHEN G X, LI Y, et al., 2015. Research on active faults in Litang-Batang region, western Sichuan province, and the seismogenic structures of the 1989 Batang M6.7 earthquake swarm[J]. Seismology and Geology, 27(1): 31-43. (in Chinese with English abstract)
|
白永健, 倪化勇, 葛华, 2019. 青藏高原东南缘活动断裂地质灾害效应研究现状[J]. 地质力学学报, 25(6): 1116-1128. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190613&journal_id=dzlxxb
|
付碧宏, 二宫芳树, 董彦芳, 等, 2008. 三维卫星遥感图像生成技术及其在第四纪构造地貌研究中的应用[J]. 第四纪研究, 28(2): 189-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200802002.htm
|
康帅, 张景发, 崔效峰, 等, 2017. 基于高精度地基LiDAR技术的活动断层错断地貌研究: 以冷龙岭活动断裂带为例[J]. 地震, 37(3): 61-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201703007.htm
|
李占飞, 刘静, 邵延秀, 等, 2016. 基于LiDAR的海原断裂松山段断错地貌分析与古地震探槽选址实例[J]. 地质通报, (1): 104-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201601009.htm
|
刘静, 陈涛, 张培震, 等, 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报, 58(1): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201301003.htm
|
刘宇平, 梁虹, 陈菲菲, 2016. 高精度机载LiDAR在小江活动构造和地质灾害研究中的应用[J]. 地质力学学报, 22(3): 747-759. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160328&journal_id=dzlxxb
|
马丹, 吴中海, 李家存, 等, 2014. 川西理塘断裂带的空间展布与第四纪左旋走滑活动的遥感影像标志[J]. 地质学报, 88(8): 1417-1435. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408005.htm
|
马洪超, 2011. 激光雷达测量技术在地学中的若干应用[J]. 地球科学: 中国地质大学学报, 36(2): 347-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201102022.htm
|
马洪超, 姚春静, 张生德, 2008. 机载激光雷达在汶川地震应急响应中的若干关键问题探讨[J]. 遥感学报, 12(6): 925-932. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200806014.htm
|
马晓雪, 吴中海, 李家存, 2016. LiDAR技术在地质环境中的主要应用与展望[J]. 地质力学学报, 22(1): 93-103. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160110&journal_id=dzlxxb
|
任治坤, 陈涛, 张会平, 等, 2014. LiDAR技术在活动构造研究中的应用[J]. 地质学报, 88(6): 1196-1207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406019.htm
|
佘金星, 程多祥, 刘飞, 等, 2018. 机载激光雷达技术在地质灾害调查中的应用: 以四川九寨沟7.0级地震为例[J]. 中国地震, 34(3): 435-444. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD201803005.htm
|
谭锡斌, 徐锡伟, 于贵华, 等, 2015. 三维激光扫描技术在正断层型地表破裂调查中的应用: 以2008Ms7.3于田地震为例[J]. 震灾防御技术, 10(3): 491-500. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201503003.htm
|
唐毅, 2019. 改进高分辨率遥感影像测量断裂错动空间尺度的探讨研究[J]. 地震工程学报, 41(5): 1274-1279, 1373. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201905023.htm
|
魏占玉, 何宏林, 高伟, 等, 2014. 基于LiDAR数据开展活动断层填图的实验研究: 以新疆独山子背斜-逆冲断裂带为例[J]. 地震地质, 36(3): 794-813. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201403020.htm
|
魏占玉, 石峰, 高翔, 等, 2010. 汶川地震地表破裂面形貌特征[J]. 地学前缘, 17(5): 53-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201005005.htm
|
吴中海, 龙长兴, 范桃园, 等, 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报, 34(1): 1-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201501002.htm
|
肖坤泽, 童亨茂, 2020. 走滑断层研究进展及启示[J]. 地质力学学报, 26(2): 151-166. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200201&journal_id=dzlxxb
|
徐锡伟, 闻学泽, 于贵华, 等, 2015. 川西理塘断裂带平均滑动速率、地震破裂分段与复发特征[J]. 中国科学D辑: 地球科学, 35(6): 540-551. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200506006.htm
|
袁小祥, 王晓青, 窦爱霞, 等, 2012. 基于地面LIDAR玉树地震地表破裂的三维建模分析[J]. 地震地质, 34(1): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201201007.htm
|
张景发, 姜文亮, 田甜, 等, 2016. 活动断裂调查中的高分辨率遥感技术应用方法研究[J]. 地震学报, 38(3): 386-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201603006.htm
|
郑文俊, 雷启云, 杜鹏, 等, 2015. 激光雷达(LiDAR): 获取高精度古地震探槽信息的一种新技术[J]. 地震地质, 37(1): 232-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201501018.htm
|
周春景, 吴中海, 张克旗, 等, 2015. 川西理塘活动断裂最新同震地表破裂形成时代与震级的重新厘定[J]. 地震地质, 37(2): 455-467. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201502009.htm
|
周荣军, 陈国星, 李勇, 等, 2015. 四川西部理塘-巴塘地区的活动断裂与1989年巴塘6.7级震群发震构造研究[J]. 地震地质, 27(1): 31-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200501003.htm
|