Distribution characteristics of the present-day in-situ stress in the Chang 6 tight sandstone reservoirs of the Yanchang Formation in the Heshui Area, Ordos Basin, China and suggestions for development
-
摘要: 致密油藏物性差,非均质性强,现今地应力分布特征影响着致密油藏钻井施工、井网部署、压裂改造和注水管理等方面。文章根据微地震监测法分析了鄂尔多斯盆地合水地区长6储层单井现今地应力的方向,利用水力压裂资料分析了研究区单井现今地应力大小。在单井现今应力分析的基础上,结合合水地区长6储层构造、沉积、岩相特点建立了三维非均质地质模型,通过室内三轴岩石力学试验与施工数据,得到不同岩相的岩石物理参数,由此建立三维力学模型。利用Ansys进行有限元数值模拟,得到了研究区长6储层三维现今地应力分布模型,模拟结果表明水平最大主应力范围为34~42 MPa;水平最小主应力范围为25~36 MPa;水平差应力范围为3~10 MPa,并将结果与实际测量的井点应力大小进行对比,误差小于10%,模拟结果可信。分析模拟结果可知研究区现今地应力的分布主要受到了岩石物理力学性质差异的影响,而构造格架的影响较小。在结果分析的基础上,建议研究区布井时,不仅考虑地应力的影响,还应将天然裂缝作为影响因素考虑,同时,为尽可能地降低开发成本,在差应力相等的区域,油气工业井一般部署在应力值低的地方。Abstract: Tight reservoirs feature poor physical properties and strong heterogeneity. The distribution of present-day in-situ stress affects tight reservoirs in the drilling operation, well pattern deployment, fracturing transformation and water injection management. The microseismic monitoring method and the hydraulic fracturing data were used respectively to analyze the direction of present in-situ stress of single well in the Chang 6 reservoirs and the magnitude of present-day in-situ stress of single well in the study area. Combining the analysis with the characteristics of structure, sedimentation and lithofacies in the study area, we built a three-dimensional heterogeneous geological model. Based on the triaxial rock mechanics test and operation data, we identified the physical parameters of different facies, and built a three-dimensional mechanical model. Also the Ansys finite element numerical simulation was applied to build a three-dimensional present-day in-situ stress distribution model of the Chang 6 reservoirs. The simulation results showed that the maximum horizontal principal stress ranged from 34 MPa to 42 MPa, the minimum from 25 MPa to 36 MPa, and the horizontal differential stress from 3 MPa to 10 MPa. The simulation results of the wellpoint stress had a less than 10% margin of error compared with the actual measurement, proving the simulation results are reliable. It was inferred from the simulation results that the present-day in-situ stress distribution in the study area was mainly affected by the difference in rock physical and mechanical properties, but less by the tectonic framework. On the basis of the result analysis, it is suggested that natural fracture should also be considered as an influencing factor when wells are deployed in the study area. Meanwhile, in order to reduce development cost as much as possible, industrial wells should be generally deployed in the place with low stress as for the area with equal differential stress.
-
图 1 研究区所处构造位置示意图(据赵向原等,2015修改)
Figure 1. Structural location of the study area (modified after Zhao et al., 2015)
表 1 水力压裂法测得单井应力值
Table 1. Values of the present-day in-situ stress in the single wells measured by the hydrofracturing method
井号 层位 顶界深度/m 最小水平主应力/MPa 最大水平主应力/MPa 水平差应力/MPa N1井 长6 1601.00 28.65 34.81 6.16 N1井 长6 1646.00 28.01 34.77 6.75 N2井 长6 1656.00 27.89 34.86 6.97 N2井 长6 1686.00 28.02 35.02 7.00 Z1井 长6 1649.00 31.85 37.07 5.22 Z1井 长6 1659.40 31.54 35.19 3.65 平均值 29.33 35.29 5.96 表 2 研究区岩石力学参数施加值
Table 2. Assignment of values to rock mechanics parameters in the study area
岩性 泊松比 杨氏模量/GPa 厚层细砂岩 0.28 35.70 中层细砂岩 0.30 32.80 薄层泥质粉砂岩/粉砂质泥岩 0.32 30.00 泥岩 0.35 28.00 表 3 边界条件施加值
Table 3. Assignment of values to boundary conditions
边界 方向 大小 水平最大主应力 NE70° 36 MPa 水平最小主应力 NW20° 28 MPa 垂向应力 铅垂方向 取重力加速度9.8 g/cm3,密度取2.3 g/cm3 表 4 长63-1层单井应力测量值与应力场数值模拟值对比表
Table 4. Comparison of the simulation results and the measured values of the stress field in the Chang 63-1 Formation
井名 最大主应力/MPa 最小主应力/MPa 水平差应力/MPa 测量值 模拟值 绝对误差 相对误差 测量值 模拟值 绝对误差 相对误差 测量值 模拟值 绝对误差 相对误差 N1井 34.70 38.00 3.30 9.50% 28.30 31.00 2.70 9.50% 6.40 7.00 0.60 9.40% N2井 34.90 36.00 1.10 3.10% 27.90 29.20 1.30 4.70% 7.00 6.80 0.10 1.40% Z1井 36.13 39.50 3.37 9.30% 31.70 35.00 3.30 10.40% 4.43 4.50 0.07 1.60% -
BAI R, ZHANG J G, LI W, 2012. Reservoir geological model of lithological reservoir of Chang 63 in Heshui Area, Ordos basin[J]. Journal of Jinlin University (Earth Science Edition), 42(6): 1601-1609. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201206004.htm BELL J S, GOUGH D I, 1979. Northeast-southwest compressive stress in Alberta Evidence from oil wells[J]. Earth and Planetary Science Letters, 45(2): 475-482. doi: 10.1016/0012-821X(79)90146-8 CAO J F, KONG L, WANG X C, 2012. Numerical simulation of hydraulic fracturing technique in Geostress measurement[J]. Chinese Journal of Underground Space and Engineering, 8(1): 148-153. (in Chinese with English abstract) http://search.cnki.net/down/default.aspx?filename=BASE201201024&dbcode=CJFD&year=2012&dflag=pdfdown DAI J S, LIU J T, YANG H M, et al., 2016. Numerical simulation of stress field of Fu-2 member in tongcheng fault zone and development suggestions[J]. Journal of China University of Petroleum (Edition of Natural Science), 40(1): 1-9. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201601001.htm DAI J S, SHANG L, WANG T D, et al., 2014. Numerical simulation of current in-situ stress field of Fengshan formation and distribution prediction of effective fracture in Futai buried hill[J]. Petroleum Geology and Recovery Efficiency, 21(6): 33-36. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-YQCS201406008.htm DENG S H, LU Y Z, LUO Z, et al., 2018. Subdivision and age of the Yanchang Formation and the Middle/Upper Triassic boundary in Ordos Basin, North China[J]. Science China Earth Sciences, 48(10): 1293-1311. (in Chinese with English abstract) doi: 10.1007/s11430-017-9215-3 DU W X, ZHANG H L, LIU G F, et al., 2010. Finite element simulation of the present ground stress field of Chang 82 reservoir in wellblock Zhuang 19 of Heshui area[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 32(5): 210-213, 408-409. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX201005051.htm FAIRHURST C, 1964. Measurement of in situ rock stresses, with particular reference to hydraulic fracturing[J]. Rock Mechanics and Engineering Geology, 2: 129-147. http://www.researchgate.net/publication/236520976_Measurement_of_in-situ_rock_stresses_With_particular_reference_to_hydraulic_fracturing HAST N, 1969. The state of stress in the upper part of the earth's crust[J]. Tectonophysics, 8(3): 169-211. doi: 10.1016/0040-1951(69)90097-3 JIA C Z, ZOU C N, LI J Z, et al., 2012. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 33(3): 343-350. (in Chinese with English abstract) http://www.researchgate.net/publication/283961853_Assessment_criteria_main_types_basic_features_and_resource_prospects_of_the_tight_oil_in_China JING F, SHENG Q, ZHANG Y H, et al., 2008. Statistical analysis of geostress distribution laws for different rocks[J]. Rock and Soil Mechanics, 29(7): 1877-1883. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200807032.htm JU W, HOU G T, FENG S B, et al., 2014. Quantitative prediction of the Yanchang formation Chang 63 reservoir tectonic fracture in the Qingcheng-Heshui area, Ordos basin[J]. Earth Science Frontiers, 21(6): 310-320. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_earth-science-frontiers_thesis/0201253149631.html LI Y J, CHEN L W, YE J Y, 2009. Application and development of numerical simulation in stress field evolvement and seismology[J]. Progress in Geophysics, 24(2): 418-431. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200902009.htm LI Z G, FANG J H, 2018. Analysis of geostress test resultsby hydraulic fracturing method[J]. Sichuan Building Materials, 44(2): 87-88. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SCJZ201802045.htm LIAO X W, LIU Q, LI C, et al., 2015. Distribution of the present stress in low permeability oilfield of Bozhong 25-1 and its effect on development[J]. Journal of Geomechanics, 21(1): 30-37. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201501004.htm LIU G F, LU H J, HE S L, 2009. Application of finite element analysis in reservoir in-situ stress research[J]. Science Technology and Engineering, 9(24): 7430-7435. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KXJS200924033.htm LIU H T, XIE B, YANG X T, et al., 2016. The FEA numerical algorithm for 3D modern crustal stress field[J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 17(4): 71-75. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CGCZ201604019.htm LIU L H, YANG Q, QU J P, 2013. A practical Ansys 3-D numerical simulation method for in-situ stress field[J]. Journal of Geomechanics, 19(2): 133-142. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201302002.htm LÜ W Y, ZENG L B, ZHOU S B, et al., 2020. Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin: Case study of the eighth member of the Yanchang Formation in Honghe Oilfield[J]. Natural Gas Geoscience, 31(1): 37-46. (in Chinese with English abstract) MAO Z, ZENG L B, QIN L B, et al., 2018. Research on ground stress distribution rules of deep tight volcanic rock reservoirs in the huoshiling formation, xujiaweizi fault depression[J]. Journal of Geomechanics, 24(3): 321-331. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201803009.htm NIU L L, FENG C J, ZHANG P, et al., 2018. In situ measurements in the southern margin of the Ordos block[J]. Journal of Geomechanics, 24(1): 25-34. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201801060.htm QUAN K, 2014. Numerical Study on the Tectonic Stress Field of Longmenshan Fault Zone and assessment of the regional crustal stability[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract) SHENG S Z, WAN Y G, HUANG J C, et al., 2015. Present tectonic stress field in the Circum-Ordos region deduced from composite focal mechanism method[J]. Chinese Journal of Geophysics, 58(2): 436-452. (in Chinese with English abstract) http://www.researchgate.net/publication/279292583_Present_tectonic_stress_field_in_the_Circum-Ordos_region_deduced_from_composite_focal_mechanism_method TAN C X, SUN W F, SUN Y, et al., 2006. A consideration on in-situ crustal stress measuring and its underground engineering application[J]. Acta Geologica Sinica, 80(10): 1627-1632. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dizhixb200610018 WAN X L, GAO C N, WANG Y K, et al., 2009. Coupled relationship between created and natural fractures and its implication to development[J]. Journal of Geomechanics, 15(3): 245-252. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DZLX200903004.htm WENG J Q, ZENG L B, LYU W Y, et al, 2020. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 26(1): 39-47. (in Chinese with English abstract) WU L, ZHAO L, WU K, 2009. Study on 3-D geostress measuring with hydraulic fracturing method[J]. Safety and Environmental Engineering, 16(4): 104-107, 110. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTAQ200904028.htm WU S T, ZOU C N, ZHU R K, et al., 2015. Reservoir quality characterization of upper Triassic Chang 7 shale in Ordos basin[J]. Earth Science-Journal of China University of Geoscience, 40(11): 1810-1823. (in Chinese with English abstract) doi: 10.3799/dqkx.2015.162 XIE D L, 2013. Review of in-situ stress measurement methods[J]. Science & Technology Information(6): 150-153. (in Chinese with English abstract) XU K, DAI J S, FENG J W, et al., 2018. Prediction of 3D heterogeneous in-situ stress field of northern area in a Gaoshen, Nanpu sag, Bohai Bay basin, China[J]. Journal of China University of Mining & and Technology, 47(6): 1276-1286. (in Chinese with English abstract) http://www.researchgate.net/publication/330080483_Prediction_of_3D_heterogeneous_in-situ_stress_field_of_northern_area_in_Gaoshen_Nanpu_sag_Bohai_Bay_basin_China XU L, 2016. The logging evaluation of Chang 7 member of Yanchang formation tight oil in Heshui oilfield[D]. Qingdao: China University of Petroleum (Hua Dong). (in Chinese with English abstract) XU Z H, 1990. Current status and prospects of in-situ stress research[J]. Advances in Earth Science(5): 27-34. (in Chinese) YIN X Y, MA N, MA Z Q, et al., 2018. Review of in-situ stress prediction technology[J]. Geophysical Prospecting for Petroleum, 57(4): 488-504. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYWT201804002.htm ZENG L B, 2008. Formation and distribution of fractures in low permeability sandstone reservoirs[M]. Beijing: Science Press. (in Chinese) ZENG L B, TIAN C L, 1998. Tectonic stress field and the development of low permeability oli fields[J]. Petroleum Exploration and Development, 25(3): 91-93. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK803.025.htm ZHAN G H, SHUI G, WU H, et al, 2020. In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4): 583-594. (in Chinese with English abstract) ZHANG B, YANG J L, XIE Q, et al., 2012. Application of ground stress analysis to shale-gas development in western Hubei and eastern Chongqing region[J]. Natural Gas Exploration and Development, 35(3): 33-36. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRKT201203011.htm ZHANG L G, 2016. The effect of stresses and natural fractures in tight-sandstone of hydraulic fracturing[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract) ZHANG S L, 2011. The modeling of the tectonic stress field-theroy, method and related research progress on the finite element method[J]. Process in Geophysics, 26(1): 52-60. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201101007.htm ZHANG Z Q, SHI Y M, BU X Q, et al., 2016. A study of in-situ stress direction change during waterflooding in the low permeability reservoirs[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 52(5): 861-870. (in Chinese with English abstract) http://www.researchgate.net/publication/309581207_A_study_of_in-situ_stress_direction_change_during_waterflooding_in_the_low_permeability_reservoirs ZHAO X Y, ZENG L B, LIU Z Q, et al., 2015. Differences of natural fracture characteristics and their development significance in Chang 6, Chang 7 and Chang 8 reservoir, Ningxian-Heshui area, Ordos Basin[J]. Chinese Journal of Geology, 50(1): 274-285. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX201501018.htm ZHOU X G, ZANG L Y, FAN K, et al., 2009. Measurement of the present earth stress of Ordos Basin and its applications in oil and gas exploitation[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 24(3): 7-12. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_journal-xi-shiyou-university-natural-science-edition_thesis/0201211101844.html ZOU C N, ZHU R K, BAI B, et al., 2015. Significance, geologic Characteristics, resource Potential and future challenges of Tight Oil And Shale Oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(1): 1-17. (in Chinese with English abstract) http://www.researchgate.net/publication/292225028_Significance_geologic_characteristics_resource_potential_and_future_challenges_of_tight_oil_and_shale_oil 白薷, 张金功, 李渭, 2012. 鄂尔多斯盆地合水地区延长组长63岩性油藏储层地质建模[J]. 吉林大学学报(地球科学版), 42(6): 1601-1609. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206004.htm 曹金凤, 孔亮, 王旭春, 2012. 水压致裂法地应力测量的数值模拟[J]. 地下空间与工程学报, 8(1): 148-153. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201201024.htm 曾联波, 2008. 低渗透砂岩储层裂缝的形成与分布[M]. 北京: 科学出版社. 曾联波, 田崇鲁, 1998. 构造应力场与低渗透油田开发[J]. 石油勘探与开发, 25(3): 91-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK803.025.htm 戴俊生, 刘敬寿, 杨海盟, 等, 2016. 铜城断裂带阜二段储层应力场数值模拟及开发建议[J]. 中国石油大学学报(自然科学版), 40(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201601001.htm 戴俊生, 商琳, 王彤达, 等, 2014. 富台潜山凤山组现今地应力场数值模拟及有效裂缝分布预测[J]. 油气地质与采收率, 21(6): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201406008.htm 邓胜徽, 卢远征, 罗忠, 等, 2018. 鄂尔多斯盆地延长组的划分、时代及中-上三叠统界线[J]. 中国科学: 地球科学, 48(10): 1293-1311. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201810003.htm 杜玮暄, 张红玲, 刘广峰, 等, 2010. 合水地区庄19井区长82储层现今地应力场有限元模拟[J]. 石油天然气学报(江汉石油学院学报), 32(5): 210-213, 408-409. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201005051.htm 贾承造, 邹才能, 李建忠, 等, 2012. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 33(3): 343-350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htm 解东亮, 2013. 地应力测量方法综述[J]. 科技资讯(6): 150-153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201306118.htm 景锋, 盛谦, 张勇慧, 等, 2008. 不同地质成因岩石地应力分布规律的统计分析[J]. 岩土力学, 29(7): 1877-1883. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200807032.htm 鞠玮, 侯贵廷, 冯胜斌, 等, 2014. 鄂尔多斯盆地庆城-合水地区延长组长63储层构造裂缝定量预测[J]. 地学前缘, 21(6): 310-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201406036.htm 李玉江, 陈连旺, 叶际阳, 2009. 数值模拟方法在应力场演化及地震科学中的研究进展[J]. 地球物理学进展, 24(2): 418-431. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200902009.htm 李振刚, 方君涵, 2018. 水压致裂法地应力测试结果分析[J]. 四川建材, 44(2): 87-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SCJZ201802045.htm 廖新武, 刘奇, 李超, 等, 2015. 渤中25-1低渗透油田地应力分布特征及对开发的影响[J]. 地质力学学报, 21(1): 30-37. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20150104&journal_id=dzlxxb 刘爱华, 杨清, 吴均平, 2013. ANSYS三维地应力场数值模拟方法应用研究[J]. 地质力学学报, 19(2): 133-142. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20130203&journal_id=dzlxxb 刘广峰, 陆红军, 何顺利, 2009. 有限元法开展油气储层地应力研究综述[J]. 科学技术与工程, 9(24): 7430-7435. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200924033.htm 刘洪涛, 谢兵, 杨向同, 等, 2016. 三维现今地应力场有限元数值计算[J]. 长春工程学院学报(自然科学版), 17(4): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-CGCZ201604019.htm 吕文雅, 曾联波, 周思宾, 等, 2020. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素: 以红河油田长8储层为例[J]. 天然气地球科学, 31(1): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001004.htm 毛哲, 曾联波, 秦龙卜, 等, 2018. 徐家围子断陷深层火石岭组致密火山岩储层地应力分布规律研究[J]. 地质力学学报, 24(3): 321-331. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180304&journal_id=dzlxxb 牛琳琳, 丰成君, 张鹏, 等, 2018. 鄂尔多斯地块南缘地应力测量研究[J]. 地质力学学报, 24(1): 25-34. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180103&journal_id=dzlxxb 权凯, 2014. 龙门山断裂带构造应力场数值模拟及区域地壳稳定性分析[D]. 北京: 中国地质大学(北京). 盛书中, 万永革, 黄骥超, 等, 2015. 应用综合震源机制解法推断鄂尔多斯块体周缘现今地壳应力场的初步结果[J]. 地球物理学报, 58(2): 436-452. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201502008.htm 谭成轩, 孙炜锋, 孙叶, 等, 2006. 地应力测量及其地下工程应用的思考[J]. 地质学报, 80(10): 1627-1632. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200610032.htm 万晓龙, 高春宁, 王永康, 等, 2009. 人工裂缝与天然裂缝耦合关系及其开发意义[J]. 地质力学学报, 15(3): 245-252. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20090305&journal_id=dzlxxb 翁剑桥, 曾联波, 吕文雅, 等, 2020. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报, 26(1): 39-47. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200104&journal_id=dzlxxb 邬立, 赵璐, 邬坤, 2009. 水压致裂法测量三维地应力研究[J]. 安全与环境工程, 16(4): 104-107, 110. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ200904028.htm 吴松涛, 邹才能, 朱如凯, 等, 2015. 鄂尔多斯盆地上三叠统长7段泥页岩储集性能[J]. 地球科学-中国地质大学学报, 40(11): 1810-1823. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511004.htm 徐珂, 戴俊生, 冯建伟, 等, 2018. 南堡凹陷高深北区三维非均质应力场精细预测[J]. 中国矿业大学学报, 47(6): 1276-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201806012.htm 徐磊, 2016. 合水地区延长组长7致密油藏测井评价[D]. 青岛: 中国石油大学(华东). 许忠淮, 1990. 地应力研究现状与展望[J]. 地球科学进展(5): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ199005002.htm 印兴耀, 马妮, 马正乾, 等, 2018. 地应力预测技术的研究现状与进展[J]. 石油物探, 57(4): 488-504. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201804002.htm 张斌, 杨佳玲, 解琪, 等, 2012. 地应力分析在鄂西渝东地区页岩气开发中的应用[J]. 天然气勘探与开发, 35(3): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201203011.htm 张浩, 施刚, 巫虹, 等, 2020. 上海地区浅部地应力测量及其构造地质意义分析[J]. 地质力学学报, 26(4): 583-594. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200413&journal_id=dzlxxb 张来功, 2016. 地应力及天然裂缝对致密砂岩水压致裂的影响研究[D]. 北京: 中国地质大学(北京). 张胜利, 2011. 构造应力场模拟-有限元理论、方法和研究进展[J]. 地球物理学进展, 26(1): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201101007.htm 张志强, 师永民, 卜向前, 等, 2016. 低渗透油藏注水开发中地应力方向变化的研究分析[J]. 北京大学学报(自然科学版), 52(5): 861-870. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201605011.htm 赵向原, 曾联波, 王晓东, 等, 2015. 鄂尔多斯盆地宁县-合水地区长6、长7、长8储层裂缝差异性及开发意义[J]. 地质科学, 50(1): 274-285. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201501018.htm 周新桂, 张林炎, 范昆, 等, 2009. 鄂尔多斯盆地现今地应力测量及其在油气开发中的应用[J]. 西安石油大学学报(自然科学版), 24(3): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200903001.htm 邹才能, 朱如凯, 白斌, 等, 2015. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报, 34(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htm