Research on the micro-scale method for testing the mechanical anisotropy of shale
-
摘要: 页岩力学各向异性特征是地应力、井壁稳定、水力裂缝扩展相关研究的重要基础参数。针对页岩力学各向异性宏观测试中存在样品制取困难、制样成功率低的特点,采用来源丰富的钻井岩屑或破碎岩块,通过研究纳米压痕实验原理、实验方法和数据解释方法,采用连续刚度测试方法对平行层理和垂直层理的页岩试样进行纳米压痕测试;基于硬度的分类准则将纳米压痕数据分为三类主要矿物基质进行合理解释,采用接触刚度法计算硬度、杨氏模量,采用能量法计算断裂韧性,得出了页岩粘土基质的杨氏模量、硬度和断裂韧性。测试结果表明这种基于硬度的分类准则处理纳米压痕数据是方便合理的。页岩粘土基质力学特性在纳米尺度上具有各向异性,纳米尺度力学参数与层理方向相关。页岩不同力学参数的各向异性表现不同,杨氏模量各向异性较弱,断裂韧性各向异性较强。平行层理方向断裂韧性为垂直层理方向断裂韧性的80%。Abstract: The mechanical anisotropy of shale is an important basic parameter for the study of in-situ stress, sidewall stability and hydraulic fracture propagation. In view of the limitations and low success rate for sample preparation in macro-scale tests, we chose clastic rocks and fragmentized blocks which were easily found as the subjects for micro-scale tests, and used continuous stiffness measurements to carry out the nano-indentation tests on the shale samples with horizontal bedding and vertical bedding. The test data were analyzed on three main mineral matrices which were identified by the classification rule of hardness. And the hardness and young's modulus of the shale clay matrix were calculated by contact stiffness measurements and the fracture toughness by energy method. The test results proved the reasonability and convenience of the classification rule of hardness in processing nano-indentation data. Shale clay matrix is anisotropic at the nano-scale while the mechanical parameters at the nano-scale are related to the bedding direction. The anisotropy of each mechanical parameter varies in intensity. The anisotropy of young's modulus is weak, while that of fracture toughness is strong. The fracture toughness with horizontal bedding is 80% of that with vertical bedding.
-
Key words:
- shale /
- mechanical properties /
- anisotropy /
- nano-indentation /
- hardness /
- young's modulus /
- fracture toughness
-
表 1 元素含量
Table 1. Element contents
原子 原子含量/% O1s 62.2 Si2p 16.1 C1s 9.2 Al2p 6.6 K2p 2.2 Na1s 2.1 Ca2p 0.8 Fe2p 0.5 N1s 0.2 表 2 页岩试样粘土基质力学参数汇总表
Table 2. Mechanical parameters for clay matrix in the samples
编号 分组 样品编号 粘土基质 硬度H/GPa 杨氏模量E/GPa 断裂韧性Kc/MPa·m1/2 标准差 1 1 2-V1 1.60 49.24 1.06 0.12 2 2-V1 1.71 47.22 1.68 0.56 3 2 3-H1 1.19 35.36 1.93 0.25 4 3-H1 1.26 41.83 2.66 0.21 5 3-H2 1.28 34.82 1.68 0.13 6 3-H2 1.49 41.45 1.99 0.21 7 3 4-H1 1.53 57.59 2.02 0.15 8 4-H1 1.55 56.76 2.69 0.35 9 4-H2 1.18 49.40 1.91 0.77 10 4-H2 2.06 61.80 2.54 0.48 11 4-V1 1.38 32.83 1.38 0.43 12 4-V1 1.08 39.92 1.41 0.44 13 4 5-H1 - - - - 14 5-H1 1.12 30.94 1.80 0.51 15 5-H2 2.68 69.86 2.92 - 16 5-H2 1.12 48.67 1.89 - 17 5-V1 2.44 62.19 2.86 0.35 18 5-V1 1.99 45.07 2.05 - 19 5 6-H1 2.46 63.44 3.32 1.22 20 6-H1 1.68 56.24 1.42 0.45 21 6-H2 2.03 56.10 1.86 0.63 22 6-H2 2.61 59.47 2.63 0.55 23 6-V1 3.05 53.16 3.29 0.42 24 6-V1 3.57 67.41 3.25 0.93 25 6 7-H1 1.61 40.42 1.66 0.54 26 7-H1 0.88 23.95 1.36 0.15 27 7-H2 1.71 55.09 1.70 0.08 28 7-H2 2.06 59.54 2.29 0.52 29 7-V1 1.85 53.86 3.19 0.48 30 7-V1 1.91 45.19 2.12 0.11 31 7 8-H1 1.78 57.06 2.55 0.61 32 8-H1 2.26 70.99 2.85 0.21 33 8-H2 1.98 71.24 2.43 0.26 34 8-H2 2.15 68.81 2.99 0.17 35 8-V1 2.26 74.96 2.69 0.31 36 8-V1 2.46 75.02 2.99 0.18 37 8 9-H1 2.27 70.78 2.25 0.20 38 9-H1 2.26 75.23 2.33 0.48 39 9-H2 2.16 70.40 2.14 0.23 40 9-H2 1.64 18.98 1.36 0.18 41 9-V1 2.27 71.83 2.61 0.34 42 9-V1 2.28 73.85 2.59 0.28 表 3 页岩试样三轴力学参数汇总表
Table 3. Triaxial mechanical parameters of the shale samples
编号 分组 样品编号 围压/MPa 宏观杨氏模量/GPa 泊松比 微观杨氏模量/GPa 偏差 1 1 4-H1 20 55.61 0.29 57.18 2.8% 2 4-H2 30 58.68 0.30 55.60 5.2% 3 2 5-H1 20 46.80 0.23 30.94 33.9% 4 5-H2 30 57.63 0.30 59.27 2.8% 5 3 6-H1 20 58.42 0.29 59.84 2.4% 6 6-H2 30 62.30 0.27 57.79 7.2% -
AI C, QIU D Z, ZHANG J, et al., 2017. Measurements of mechanical parameters and brittleness anisotropy of shale[J]. Fault-Block Oil and Gas Field, 24(5): 647-651. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_fault-block-oil-gas-field_thesis/0201217511418.html BORNERT M, VALÈS F, GHARBI H, et al., 2010. Multiscale full-field strain measurements for micromechanical investigations of the hydromechanical behaviour of clayey rocks[J]. Strain, 46(1): 33-46. doi: 10.1111/j.1475-1305.2008.00590.x CHEN P, HAN Q, MA T S, et al., 2015. Study of mechanical properties of shale based on micro-indentation test[J]. Petroleum Exploration and Development, 42(5): 662-670. (in Chinese with English abstract) http://www.sciencedirect.com/science/article/pii/S1876380415300690 CHO J W, KIM H, JEON S, et al., 2012. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 50: 158-169. doi: 10.1016/j.ijrmms.2011.12.004 GAO C Y, XU J, LI Z H, et al., 2011. Experimental study of anisotropically mechanical characteristics of sandy slate in Xuefeng mountain tunnel[J]. Rock and Soil Mechanics, 32(5): 1360-1364. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/ytlx201105013 GUO L, JIANG Z X, GUO F, 2015. Mineral components of shales from Longmaxi Formation in southeastern Chongqing and their implications for shale gas[J]. Journal of Central South University (Science and Technology), 46(11): 4146-4154. (in Chinese with English abstract) http://www.cqvip.com/QK/90745B/201511/668275515.html GUO T K, ZHANG S C, GE H K, 2013. A new method for evaluating ability of forming fracture network in shale reservoir[J]. Rock and Soil Mechanics, 34(4): 947-953. (in Chinese with English abstract) http://www.cqvip.com/QK/94551X/201304/45289347.html HAN Q, CHEN P, MA T S, 2015. Influencing factor analysis of shale micro-indentation measurement[J]. Journal of Natural Gas Science and Engineering, 27: 641-650. doi: 10.1016/j.jngse.2015.09.010 HE Y D, REN L, ZHAO J Z, et al., 2017. Finite element numerical simulation of shale gas production of hydraulically fractured horizontal well with stimulated reservoir volume[J]. Fault-Block Oil and Gas Field, 24(4): 550-556. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DKYT201704025.htm HENG S, YANG C H, GUO Y T, et al., 2015a. Influence of bedding planes on hydraulic fracture propagation in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 34(2): 228-237. (in Chinese with English abstract) http://www.researchgate.net/publication/282381420_Influence_of_bedding_planes_on_hydraulic_fracture_propagation_in_shale_formations HENG S, YANG C H, ZHANG B P, et al., 2015b. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 36(3): 609-616. (in Chinese with English abstract) http://www.researchgate.net/publication/282267446_Experimental_research_on_anisotropic_properties_of_shale JIA L C, SUN B F, LIAN T W, 2017. Experimental study on anisotropic mechanical properties of organic-rich shale[J]. Drilling & Production Technology, 40(2): 20-23. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZCGY201702007.htm KUILA U, DEWHURST D N, SIGGINS A F, et al., 2011. Stress anisotropy and velocity anisotropy in low porosity shale[J]. Tectonophysics, 503(1-3): 34-44. http://www.sciencedirect.com/science/article/pii/S0040195110003847 LI Z, JIA C G, YANG C H, et al., 2015. Propagation of hydraulic fissures and bedding planes in hydraulic fracturing of shale[J]. Chinese Journal of Rock Mechanics and Engineering, 34(1): 12-20. (in Chinese with English abstract) http://dl.acm.org/citation.cfm?id=2663360&picked=prox&preflayout=tabs LU B P, BAO H Z, 2005. Advances in calculation methods for rock mechanics parameters[J]. Petroleum Drilling Techniques, 33(5): 44-47. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZT200505011.htm NASSERI M H B, RAO K S, RAMAMURTHY T, 2003. Anisotropic strength and deformational behavior of Himalayan schists[J]. International Journal of Rock Mechanics and Mining Sciences, 40(1): 3-23. doi: 10.1016/S1365-1609(02)00103-X NIANDOU H, SHAO J F, HENRY J P, et al., 1997. Laboratory investigation of the mechanical behaviour of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 34(1): 3-16. doi: 10.1016/S1365-1609(97)80029-9 SCOTT T E JR, ABOUSLEIMAN Y, 2005. Acoustic measurements of the anisotropy of dynamic elastic and poromechanics moduli under three stress/strain pathways[J]. Journal of Engineering Mechanics, 131(9): 937-946. doi: 10.1061/(ASCE)0733-9399(2005)131:9(937) SIERRA R, TRAN M H, ABOUSLEIMAN Y N, et al., 2010. Woodford shale mechanical properties and the impacts of lithofacies[C]//The 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium. Salt Lake City, UT: ARMA, 27-30. SONG L T, LIU Z H, LI C L, et al., 2015. Geostress logging evaluation method of tight sandstone based on transversely isotropic model[J]. Acta Petrolei Sinica, 36(6): 707-714. (in Chinese with English abstract) http://www.researchgate.net/publication/281807014_Geostress_logging_evaluation_method_of_tight_sandstone_based_on_transversely_isotropic_model TIAN H, ZENG L B, SHU Z G, et al., 2019. Method for determining elastic parameters for the prediction model of shale transversely isotropic geostress[J]. Journal of Geomechanics, 25(2): 166-176. (in Chinese with English abstract) TIEN Y M, KUO M C, 2001. A failure criterion for transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 38(3): 399-412. doi: 10.1016/S1365-1609(01)00007-7 ULM F J, DELAFARGUE A, CONSTANTINIDES G, 2005. Experimental microporomechanics[M]//DORMIEUX L, ULM F J. Applied Micromechanics of Porous Materials. Vienna: Springer, 207-288. ULM F J, VANDAMME M, BOBKO C, et al., 2007. Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale[J]. Journal of the American Ceramic Society, 90(9): 2677-2692. doi: 10.1111/j.1551-2916.2007.02012.x WANG H, WANG B, JING A Y, et al., 2007. An algorithm for extracting shear-wave anisotropy parameter γ from stoneley-wave inversion and its case study[J]. Well Logging Technology, 31(3): 241-244. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJJS200703012.htm WANG H, GUO Y T, WANG L, et al., 2017. An experimental study on mechanical anisotropy of shale reservoirs at different depths[J]. Rock and Soil Mechanics, 38(9): 2496-2506. http://www.researchgate.net/publication/321979951_An_experimental_study_on_mechanical_anisotropy_of_shale_reservoirs_at_different_depths WANG Q, WANG P, XIANG D G, et al., 2012. Anistropic property of mechanical parameters of shales[J]. Natural Gas Industry, 32(12): 62-65. (in Chinese) http://www.researchgate.net/publication/292092833_Anisotropic_property_of_mechanical_parameters_of_shales WANG Y P, LIU X J, LIANG L X, 2018. The effect of hydration on mechanical characteristics in carbonaceous[C]//The ISRM International Symposium-10th Asian Rock Mechanics Symposium, Singapore: ISRM International Symposium. WENG J Q, ZENG L B, LYU W Y, et al., 2020. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 26(1): 39-47. (in Chinese with English abstract) YUAN J L, DENG J G, ZHANG D Y, et al., 2013. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 34(3): 523-527. (in Chinese with English abstract) http://www.researchgate.net/publication/303072036_Fracability_evaluation_of_shale-gas_reservoirs ZHANG J C, JIN Z J, YUAN M S, 2004. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 24(7): 15-18. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200407004.htm ZOU X J, Chen Y L, 2018. Geostress logging evaluation method of Longmaxi Formation shale in Fuling area based on transversely isotropic model, Sichuan Basin[J]. Natural Gas Geoscience, 28(12): 1775-1780. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-TDKX201812009.htm 艾池, 仇德智, 张军, 等, 2017. 页岩力学参数测试及脆性各向异性研究[J]. 断块油气田, 24(5): 647-651. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201705013.htm 陈平, 韩强, 马天寿, 等, 2015. 基于微米压痕实验研究页岩力学特性[J]. 石油勘探与开发, 42(5): 662-670. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505016.htm 高春玉, 徐进, 李忠洪, 等, 2011. 雪峰山隧道砂板岩各向异性力学特性的试验研究[J]. 岩土力学, 32(5): 1360-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201105013.htm 郭岭, 姜在兴, 郭峰, 2015. 渝东南龙马溪组黑色页岩矿物组成及其页岩气意义[J]. 中南大学学报(自然科学版), 46(11): 4146-4154. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201511024.htm 郭天魁, 张士诚, 葛洪魁, 2013. 评价页岩压裂形成缝网能力的新方法[J]. 岩土力学, 34(4): 947-953. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304007.htm 何易东, 任岚, 赵金洲, 等, 2017. 页岩气藏体积压裂水平井产能有限元数值模拟[J]. 断块油气田, 24(4): 550-556. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201704025.htm 衡帅, 杨春和, 郭印同, 等, 2015a. 层理对页岩水力裂缝扩展的影响研究[J]. 岩石力学与工程学报, 34(2): 228-237. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502003.htm 衡帅, 杨春和, 张保平, 等, 2015b. 页岩各向异性特征的试验研究[J]. 岩土力学, 36(3): 609-616. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503001.htm 贾利春, 孙本法, 连太炜, 2017. 富有机质页岩各向异性力学特性试验研究[J]. 钻采工艺, 40(2): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY201702007.htm 李芷, 贾长贵, 杨春和, 等, 2015. 页岩水力压裂水力裂缝与层理面扩展规律研究[J]. 岩石力学与工程学报, 34(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501002.htm 路保平, 鲍洪志, 2005. 岩石力学参数求取方法进展[J]. 石油钻探技术, 33(5): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT200505011.htm 宋连腾, 刘忠华, 李潮流, 等, 2015. 基于横向各向同性模型的致密砂岩地应力测井评价方法[J]. 石油学报, 36(6): 707-714. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201506007.htm 田鹤, 曾联波, 舒志国, 等, 2019. 页岩横向各向同性地应力预测模型中弹性参数的确定方法[J]. 地质力学学报, 25(2): 166-176. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190202&journal_id=dzlxxb 汪虎, 郭印同, 王磊, 等, 2017. 不同深度页岩储层力学各向异性的试验研究[J]. 岩土力学, 38(9): 2496-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709006.htm 王华, 王兵, 景安语, 等, 2007. 斯通利波反演求取横波各向异性参数的方法及实例[J]. 测井技术, 2007, 31(3): 241-244. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200703012.htm 王倩, 王鹏, 项德贵, 等, 2012. 页岩力学参数各向异性研究[J]. 天然气工业, 32(12): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201212017.htm 翁剑桥, 曾联波, 吕文雅, 等, 2020. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报, 26(1): 39-47. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200104&journal_id=dzlxxb 袁俊亮, 邓金根, 张定宇, 等, 2013. 页岩气储层可压裂性评价技术[J]. 石油学报, 34(3): 523-527. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303017.htm 张金川, 金之钧, 袁明生, 2004. 页岩气成藏机理及分布[J]. 天然气工业, 24(7): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm 邹贤军, 陈亚琳, 2018. 四川盆地涪陵地区龙马溪组页岩横向各向同性地应力测井评价方法[J]. 天然气地球科学, 28(12): 1775-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201812009.htm