留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海相页岩缝网可压性靶窗空间分布预测——以川南长宁区块为例

沈骋 赵金洲 谢军 范宇 宋毅

沈骋, 赵金洲, 谢军, 等, 2020. 海相页岩缝网可压性靶窗空间分布预测——以川南长宁区块为例. 地质力学学报, 26 (6): 881-891. DOI: 10.12090/j.issn.1006-6616.2020.26.06.069
引用本文: 沈骋, 赵金洲, 谢军, 等, 2020. 海相页岩缝网可压性靶窗空间分布预测——以川南长宁区块为例. 地质力学学报, 26 (6): 881-891. DOI: 10.12090/j.issn.1006-6616.2020.26.06.069
SHEN Cheng, ZHAO Jinzhou, XIE Jun, et al., 2020. Target window spatial distribution prediction based on network fracability: A case study of shale gas reservoirs in the Changning Block, southern Sichuan Basin. Journal of Geomechanics, 26 (6): 881-891. DOI: 10.12090/j.issn.1006-6616.2020.26.06.069
Citation: SHEN Cheng, ZHAO Jinzhou, XIE Jun, et al., 2020. Target window spatial distribution prediction based on network fracability: A case study of shale gas reservoirs in the Changning Block, southern Sichuan Basin. Journal of Geomechanics, 26 (6): 881-891. DOI: 10.12090/j.issn.1006-6616.2020.26.06.069

海相页岩缝网可压性靶窗空间分布预测——以川南长宁区块为例

doi: 10.12090/j.issn.1006-6616.2020.26.06.069
基金项目: 

国家科技重大专项 2016ZX05062

国家自然科学基金项目 51490653

详细信息
    作者简介:

    沈骋(1990-), 工程师, 博士, 主要从事碳酸盐岩与页岩气储层沉积和储层增产改造研究。E-mail:shenc_victor@163.com

  • 中图分类号: TE37

Target window spatial distribution prediction based on network fracability: A case study of shale gas reservoirs in the Changning Block, southern Sichuan Basin

  • 摘要: 靶窗的确定对海相页岩气储层增产改造具有重要意义。以川南长宁地区龙马溪组海相页岩气储层为研究对象,开展氩离子抛光扫描电镜、巴西圆盘实验和压裂施工统计,分析矿物颗粒粒径和断裂韧性、地应力对裂缝在水力压裂时能否快速穿透、稳定扩展、充分转向等方面的影响。针对现有方法未充分考虑储层压裂品质的情况,简化计算流程,分别采用声波、密度、伽马和矿物含量等建立脆延性指标,采用优化后的应力与应力差耦合模型建立应力差异指标,形成基于储层缝网可压性理论、根据测井解释曲线形态判别的靶窗预测方法。研究结果表明,脆延性指标和应力差异指标曲线呈现叠合度较高的Ⅰ类双"波谷"的层位最有利于开发,其次为Ⅱ类连续交错叠置的层位,最后为Ⅲ类不连续交错的层位。对长宁地区评价井、建产井的验证与实践表明,靶窗对应的指标多呈现双"波谷"形态,但靶窗对应的层位具有差异,区内自西向东靶窗呈现1小层—2小层—1小层的演化趋势。实现不同井区差异化靶窗的高钻遇率对单井获得较大储层改造规模、较高的测试产量和稳定的累计产量具有重要的控制作用。

     

  • 图  1  长宁区块位置及各小层厚度与0~8 m靶窗位置关系图

    a—长宁区块工区位置;b—长宁区块评价井分布;c—评价井各小层厚度与靶窗关系

    Figure  1.  Location and relationship between thickness of each layer and target window of 0~8 m in the Changning Block

    图  2  大粒径、小粒径页岩平直、沿晶、穿晶断裂时压裂液流动微观路径示意和实际预测

    a—示意图;b—实际预测图

    Figure  2.  Fluid sketch (left) and presupposed (right) path in straight, inter or trans-granular fracture with different particle size

    图  3  硅质含量大于60%、小于60%的样品石英颗粒粒径分布占比图

    a—含量大于60%;b—含量小于60%

    Figure  3.  Quartz grain micro-size distribution with the higher (>60%) and lower (< 60%) silicon contents

    图  4  长宁地区单井最小水平主应力与单井平均停泵压力、施工压力关系

    Figure  4.  Relationship among minimum principal stress and shut-in pressure, operation pressure of single well in Changning

    图  5  根据测井解释曲线形态判别靶窗图版

    Figure  5.  Targetwindow chart by identifying the logging interpretation curves

    图  6  长宁区块缝网可压性靶窗空间分布预测

    Figure  6.  Predicted spatial distribution of network-fracturing target window in the Changning Block

    图  7  A、B、C区典型建产井组微地震监测事件点与层位关系

    a—A7平台井微地震监测结果;b—B3平台井微地震监测结果;c—C1平台井微地震监测结果

    Figure  7.  Relationship between micro-seismic events and layers of group wells in the blocks A, B and C

    图  8  B1-1井缝网可压性靶窗评价与产气贡献率对比

    Figure  8.  Comparison of network-fracturing target window and gas contribution rate in the Well B1-1

    图  9  A区、B区单井90天累产与小层钻遇率关系

    a—A区各单井1小层钻遇与90天累计产量关系;b—B区2小层钻遇率与90天累计产量关系

    Figure  9.  Relationship between cumulative productivity of single well in 90 days and drilled rate in the blocks A and B

    表  1  长宁区块典型井主力产气层各小层地质参数

    Table  1.   Geological parameters in each layer of a typical well in the Changning Block

    小层 岩性 平均埋深/
    m
    厚度/
    m
    硅质/
    %
    碳酸盐/
    %
    黏土/
    %
    孔隙度/
    %
    TOC/
    %
    含气量/
    (m3/t)
    N201 龙一14 灰黑色粉砂质页岩 2499.9 9.4 49.0 2.0 44.5 7.44 2.52 6.66
    龙一13 灰黑色灰质页岩 2508.4 7.5 42.5 11.3 41.6 8.82 4.14 7.83
    龙一12 黑色炭质灰质页岩 2516.0 7.7 54.6 18.1 24.2 6.51 3.38 7.21
    龙一11 黑色灰质炭质页岩 2520.7 1.7 46.4 17.0 31.8 8.56 5.61 9.62
    五峰组 黑色钙质页岩 2523.8 4.5 31.5 28.5 35.2 7.67 3.55 7.63
    下载: 导出CSV

    表  2  页岩Ⅰ型断裂实测与预测结果对比(裂缝与载荷加载方向为0°)

    Table  2.   Practical and calculated results of Ⅰ-type fracture toughness of shale (The angle between the fracture and the loading direction is 0°)

    编号 直径D/
    cm
    厚度h/
    cm
    裂缝半长a/
    cm
    载荷P/
    kN
    实测断裂韧性/
    MPa·m0.5
    纵波时差DTC/
    (μs/m)
    密度ρ/
    (g/cm3)
    伽马GR
    API
    预测断裂韧性/
    MPa·m0.5
    K1-1 5.28 2.2 0.8 9.876 0.858 89.6 2.57 67.3 0.893
    K1-2 5.16 1.98 0.8 8.66 0.855 70.4 2.49 58.3 0.836
    K1-4 5.52 2.12 0.8 10.354 0.893 79.7 2.64 75.6 0.914
    K1-6 5.24 2.42 0.8 10.458 0.832 72 2.51 67.5 0.825
    K1-8 5.36 2.24 0.8 11.544 0.97 91.2 2.61 125.9 0.935
    K1-9 4.92 2.16 0.8 9.66 0.917 79.4 2.53 99 0.891
    K1-11 5.18 2.22 0.8 9.322 0.818 63.3 2.47 62.4 0.844
    K1-13 5.64 2.1 0.8 10.236 0.872 75.5 2.52 70 0.861
    下载: 导出CSV

    表  3  页岩Ⅱ型断裂实测与预测结果对比(裂缝与载荷加载方向为30°)

    Table  3.   Practical and calculated results of Ⅱ-type fracture toughness of shale (The angle between the fracture and the loading direction is 30°)

    编号 直径D/
    cm
    厚度h/
    cm
    裂缝半长a/
    cm
    载荷P/
    kN
    实测断裂韧性/
    MPa·m0.5
    纵波时差DTC/
    (μs/m)
    密度ρ/
    (g/cm3)
    伽马GR/
    API
    预测断裂韧性/
    MPa·m0.5
    K2-2 5.31 1.95 0.8 5.98 1.407 78.6 2.61 116.5 1.502
    K2-6 5.07 2.45 0.8 6.788 1.337 78.9 2.52 118.8 1.235
    K2-7 5.67 2.38 0.8 7.584 1.362 65.9 2.56 86.5 1.312
    K2-8 5.42 2.29 0.8 6.325 1.24 53.9 2.58 113.5 1.115
    K2-9 5.45 2.58 0.8 8.214 1.42 63.8 2.63 101.7 1.377
    K2-12 5.02 1.88 0.8 5.557 1.442 61.3 2.68 63.5 1.395
    K2-13 5.16 1.78 0.8 4.892 1.301 58.5 2.65 61.5 1.326
    K2-14 5.43 2.05 0.8 6.633 1.449 64.9 2.69 78.6 1.528
    下载: 导出CSV

    表  4  长宁区块部分井不同类型靶窗钻遇情况与产量的关系

    Table  4.   Relationship between the drilling-encounter rate of different target windows and productivity in the Changning Block

    井号 水平
    段长/
    m
    距底部8 m靶窗 缝网可压性靶窗 测试产量/
    (×104 m3/d)
    钻遇率/
    %
    钻遇
    长度/m
    钻遇率/
    %
    钻遇
    长度/m
    A13-5 1500 93.5 1403 78.7 1181 43.3
    A20-4 1400 100 1400 83.3 1166 40.5
    A26-3 1500 95.3 1430 83.3 1250 40.1
    B2-1 1447 96.6 1398 94.6 1369 62.02
    B3-3 1461 99.9 1460 95.5 1395 41.25
    B14-1 1483 100 1483 94.6 1403 41.63
    B14-2 1496 100 1496 97 1451 41.21
    B14-3 1496 98.3 1471 96.3 1441 40.8
    B14-4 1496 100 1496 96.9 1450 40.3
    B14-5 1479 100 1479 96.2 1423 40
    B29-3 1310 99.4 1302 55.4 726 8.98
    B29-9 1700 92.1 1566 26.5 451 3.9
    B22-11 1105 99.8 1103 55.2 610 8.51
    B1-7 1500 96 1440 69.9 1049 18.54
    B1-12 1300 95.5 1242 52.6 684 13.39
    A25-6 1440 99.3 1430 63.8 919 17.97
    下载: 导出CSV
  • CHEN J G, DENG J G, YUAN J L, et al., 2015. Determination of fracture toughness of modes Ⅰ and Ⅱ of shale formation[J]. Chinese Journal of Rock Mechanics and Engineering, 34(6):1101-1105. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201506003.htm
    CHEN S, ZHAO W Z, OUYANG Y L, et al., 2017. Comprehensive prediction of shale gas sweet spots based on geophysical properties:A case study of the Lower Silurian Longmaxi Fm in Changning block, Sichuan Basin[J]. Natural Gas Industry, 37(5):20-30. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201705005.htm
    GASSMANN F, 1961. Uber die Elastizitat poroser Medien[J]. Veirteljahrsschrift der Naturforschenden Gesellschaft in Zzirich, 96:1-23. http://ci.nii.ac.jp/naid/10007502222
    GRIFFITH A A, 1921. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 221(582-593):163-198. http://adsabs.harvard.edu/abs/1921rspta.221..163g
    GUO J C, YIN J, ZHAO Z H, 2014. Feasibility of formation of complex fractures under cracks interference in shale reservoir fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 33(8):1589-1596. (in Chinese with English abstract) http://www.researchgate.net/publication/287767575_Feasibility_of_formation_of_complex_fractures_under_cracks_interference_in_shale_reservoir_fracturing
    JI G F, LI K D, ZHANG G S, et al., 2019. Fractal calculation method of mode Ⅰ fracture toughness of shale rock and its application[J]. Rock and Soil Mechanics, 40(5):1925-1931. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201905035.htm
    LI S C, LI K D, et al., 2020. A method for evaluating shale fracability based on shear slip fractures under plane strain and intergranular fracture[J]. Journal of Chongqing University (Natural Science Edition), 43(4):25-32. (in Chinese with English abstract)
    JIA C Y, JIA A L, HE D B, et al., 2017. Key factors influencing shale gas horizontal well production[J]. Natural Gas Industry, 37(4):80-88. (in Chinese with English abstract) http://www.researchgate.net/publication/316942437_Key_factors_influencing_shale_gas_horizontal_well_production
    JIN Y, CHEN M, ZHANG X D, 2001. Determination of fracture toughness for deep well rock with geophysical logging data[J]. Chinese Journal of Rock Mechanics and Engineering, 20(4):454-556. (in Chinese with English abstract) http://www.oalib.com/paper/1483321
    LI S J, JIN Z J, YUAN Y S, et al., 2016. Triaxial stress experiment of mudstone under simulated geological conditions and its petroleum significance[J]. Oil & Gas Geology, 37(4):598-605. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_oil-gas-geology_thesis/0201218328373.html
    LI S J, ZHOU Y, SUN D S, 2013. Rock mechanic experiment study of evaluation on cap rock effectiveness[J]. Petroleum Geology & Experiment, 35(5):574-578, 586. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201305020.htm
    LIU H M, ZHENG J K, ZHAO W S, et al., 2019. A new method for evaluating brittleness index of deep tight sandstone reservoir[J]. Journal of Geomechanics, 25(4):492-500. (in Chinese with English abstract)
    LIU W P, ZHANG C L, GAO G D, et al., 2017. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 38(2):175-184. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201702005.htm
    LIU Z S, SUN Z D, 2015. New brittleness indexes and their application in shale/clay gas reservoir prediction[J]. Petroleum Exploration and Development, 42(1):117-124. (in Chinese with English abstract) http://www.sciencedirect.com/science/article/pii/s1876380415600167
    A, ABDULRAHEEM A, ABOUELRESH M I, et al., 2019. Lithofacies controls on mechanical properties and brittleness in Qusaiba Shale, Rub' Al-Khali Basin, Saudi Arabia[C]//International petroleum technology conference. Beijing, China: International Petroleum Technology Conference, doi: 10.2523/IPTC-19084-MS.
    NIU L, ZHU R K, WANG L S, et al., 2015. Characteristics and evaluation of the Meso-Neoproterozoic shale gas reservoir in the northern North China[J]. Acta Petrolei Sinica, 36(6):664-672, 698. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201506003.htm
    REN H L, LIU C L, LIU W P, et al., 2020. Stress field simulation and fracture development prediction of the Wufeng Formation-Longmaxi Formation in the Fushun-Yongchuan Block, Sichuan Basin[J]. Journal of Geomechanics, 26(1):74-83.
    REN L, LIN R, ZHAO J Z, et al., 2018. A stimulated reservoir volume (SRV) evaluation model and its application to shale gas well productivity enhancement[J]. Natural Gas Industry, 38(8):47-56. (in Chinese with English abstract)
    RICKMAN R, MULLEN M J, PETRE J E, et al., 2008. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[C]//SPE annual technical conference and exhibition. Denver, Colorado, USA: Society of Petroleum Engineers, doi: 10.2118/115258-MS.
    SAHU A, DAS M K, 2019. Petrophysical evaluation of organic richness and brittleness of shale for unconventional hydrocarbon prospecting: A case study on Vadaparru shale, Krishna Godavari Basin, India[C]//SPE middle east oil and gas show and conference. Manama, Bahrain: Society of Petroleum Engineers, doi: 10.2118/194976-MS.
    SHEN C, XIE J, ZHAO J Z, et al., 2020. Evolution difference of fracability of marine shale gas reservoir in Luzhou and West Chongqing block, Sichuan Basin[J]. Journal of China University of Mining & Technology, 49(4):742-754. (in Chinese with English abstract)
    VAFAIE A, KIVI I R, 2020. An investigation on the effect of thermal maturity and rock composition on the mechanical behavior of carbonaceous shale formations[J]. Marine and Petroleum Geology, 116:104315. doi: 10.1016/j.marpetgeo.2020.104315
    WANG S F, ZOU C N, DONG D Z, et al., 2014. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(3):476-486. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ201403010.htm
    WANG Y F, ZHAI G Y, WANG J Z, et al., 2017. Factors influencing gas production effectiveness of Longmaxi Formation shale in Sichuan Basin and adjacent areas[J]. Journal of Geomechanics, 23(4):540-547. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201704052.htm
    WU H Z, XIONG L, GE Z W, et al., 2019. Fine characterization and target window optimization of high-quality shale gas reservoirs in the Weiyuan area, Sichuan Basin[J]. Natural Gas Industry, 39(3):11-20. (in Chinese with English abstract) http://www.sciencedirect.com/science/article/pii/S2352854019300907
    XIE H P, GAO F, ZHOU H W, et al., 2003. Fractal fracture and fragmentation in rocks[J]. Journal of Disaster Prevention and Mitigation Engineering, 23(4):1-9. (in Chinese with English abstract) http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Journal%20of%20Seismology&atitle=Fractal%20Fracture%20and%20Fragmentation%20in%20Rocks
    XIE J, ZHAO S X, SHI X W, et al., 2017. Main geological factors controlling high production of horizontal shale gas wells in the Sichuan Basin[J]. Natural Gas Industry, 37(7):1-12. (in Chinese with English abstract) http://www.researchgate.net/publication/319662959_Main_geological_factors_controlling_high_production_of_horizontal_shale_gas_wells_in_the_Sichuan_Basin
    XIU N L, YAN Y Z, DOU J J, et al., 2016. Fracture monitoring by surface tiltmeter in horizontal-well A pad in Changning, Sichuan[J]. Petroleum Geology and Engineering, 30(5):124-126, 129. (in Chinese with English abstract)
    ZHOU J, ZHANG B P, LI K Z, et al., 2015. Fracture monitoring technology based on surface tiltmeter in "Well Factory" fracturing[J]. Petroleum Drilling Techniques, 43(3):71-75. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/syztjs201503014
    YE G Q, CAO H, GAO Q, et al., 2019. Numerical simulation study on the influence of particle proportion on rock mechanics characteristics[J]. Journal of Geomechanics, 25(6):1129-1137. (in Chinese with English abstract)
    YI J Z, BAO H Y, ZHENG A W, et al., 2019. Main factors controlling marine shale gas enrichment and high-yield wells in South China:A case study of the Fuling shale gas field[J]. Marine and Petroleum Geology, 103:114-125. doi: 10.1016/j.marpetgeo.2019.01.024
    YU G, AGUILER R, 2012. 3D analytical modeling of hydraulic fracturing stimulated reservoir volume[C]//SPE Latin America and Caribbean petroleum engineering conference. Mexico City, Mexico: Society of Petroleum Engineers.
    YUAN Y S, LIU J X, ZHOU Y, 2018. Brittle-ductile transition zone of shale and its implications in shale gas exploration[J]. Oil & Gas Geology, 39(5):899-906. (in Chinese with English abstract) http://www.researchgate.net/publication/330103745_Brittle-ductile_transition_zone_of_shale_and_its_implications_in_shale_gas_exploration
    ZENG Z P, LIU Z, MA J, et al., 2019. A new method for fracrability evaluation in deep and tight sandstone reservoir[J]. Journal of Geomechanics, 25(2):223-232. (in Chinese with English abstract)
    ZHANG C C, WANG Y M, DONG D Z, et al., 2016. Evaluation of the Wufeng-Longmaxi shale brittleness and prediction of "sweet spot layers" in the Sichuan Basin[J]. Natural Gas Industry, 36(9):51-60. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-TRQG201609009.htm
    ZHANG G Z, CHEN J J, CHEN H Z, et al., 2015. Prediction for in-situ formation stress of shale based on rock physics equivalent model[J]. Chinese Journal of Geophysics, 58(6):2112-2122. (in Chinese with English abstract)
    ZHANG Y, YUAN X F, YAN T, et al., 2013. Influence of hydraulic fracture fractal propagation on fracturing result[J]. Petroleum Drilling Techniques, 41(4):101-104. (in Chinese with English abstract)
    ZHAO J Z, REN L, HU Y Q, 2013. Controlling factors of hydraulic fractures extending into network in shale formations[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 35(1):1-9. (in Chinese with English abstract)
    ZHAO J Z, XU W J, LI Y M, et al., 2015. A new method for fracability evaluation of shale-gas reservoirs[J]. Natural Gas Geoscience, 26(6):1165-1172.
    ZHAO J Z, REN L, SHEN C, et al., 2018. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 38(3):1-14. (in Chinese with English abstract)
    ZHAO S X, YANG Y M, ZHANG J, et al., 2016. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 27(3):470-487. (in Chinese with English abstract)
    ZHONG G H, CHEN L Q, LIAO M J, et al., 2020. A comprehensive logging evaluation method of shale gas reservoir quality[J]. Natural Gas Industry, 40(2):54-60. (in Chinese with English abstract)
    陈建国, 邓金根, 袁俊亮, 等, 2015.页岩储层Ⅰ型和Ⅱ型断裂韧性评价方法研究[J].岩石力学与工程学报, 34(6):1101-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506003.htm
    陈胜, 赵文智, 欧阳永林, 等, 2017.利用地球物理综合预测方法识别页岩气储层甜点:以四川盆地长宁区块下志留统龙马溪组为例[J].天然气工业, 37(5):20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201705005.htm
    郭建春, 尹建, 赵志红, 2014.裂缝干扰下页岩储层压裂形成复杂裂缝可行性[J].岩石力学与工程学报, 33(8):1589-1596. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408009.htm
    纪国法, 李奎东, 张公社, 等, 2019.页岩Ⅰ型断裂韧性的分形计算方法与应用[J].岩土力学, 40(5):1925-1931. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905035.htm
    纪国法, 李思辰, 李奎东, 等, 2020.基于平面应变和沿晶断裂条件下剪切滑移作用的页岩可压性评价方法[J].重庆大学学报, 43(4):25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202004003.htm
    贾成业, 贾爱林, 何东博, 等, 2017.页岩气水平井产量影响因素分析[J].天然气工业, 37(4):80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704014.htm
    金衍, 陈勉, 张旭东, 2001.利用测井资料预测深部地层岩石断裂韧性[J].岩石力学与工程学报, 20(4):454-556. doi: 10.3321/j.issn:1000-6915.2001.04.007
    李双建, 周雁, 孙东胜, 2013.评价盖层有效性的岩石力学实验研究[J].石油实验地质, 35(5):574-578, 586. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201305020.htm
    李双建, 金之钧, 袁玉松, 等, 2016.模拟地层条件下泥岩三轴应力实验及其油气意义[J].石油与天然气地质, 37(4):598-605. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201604020.htm
    刘惠民, 郑金凯, 赵文山, 等, 2019.深层致密砂岩储层脆性指数评价新方法[J].地质力学学报, 25(4):492-500. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190406&journal_id=dzlxxb
    刘文平, 张成林, 高贵冬, 等, 2017.四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J].石油学报, 38(2):175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702005.htm
    刘致水, 孙赞东, 2015.新型脆性因子及其在泥页岩储集层预测中的应用[J].石油勘探与开发, 42(1):117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501017.htm
    牛露, 朱如凯, 王莉森, 等, 2015.华北地区北部中-上元古界泥页岩储层特征及页岩气资源潜力[J].石油学报, 36(6):664-672, 698. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201506003.htm
    任浩林, 刘成林, 刘文平, 等, 2020.四川盆地富顺-永川地区五峰组-龙马溪组应力场模拟及裂缝发育区预测[J].地质力学学报, 26(1):74-83. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200108&journal_id=dzlxxb
    任岚, 林然, 赵金洲, 等, 2018.页岩气水平井增产改造体积评价模型及其应用[J].天然气工业, 38(8):47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201808011.htm
    沈骋, 谢军, 赵金洲, 等, 2020.泸州-渝西区块海相页岩可压性演化差异[J].中国矿业大学学报, 49(4):742-754. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202004012.htm
    王淑芳, 邹才能, 董大忠, 等, 2014.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J].北京大学学报(自然科学版), 50(3):476-486. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201403010.htm
    王玉芳, 翟刚毅, 王劲铸, 等, 2017.四川盆地及周缘龙马溪组页岩产气效果影响因素[J].地质力学学报, 23(4):540-547. doi: 10.3969/j.issn.1006-6616.2017.04.005
    武恒志, 熊亮, 葛忠伟, 等, 2019.四川盆地威远地区页岩气优质储层精细刻画与靶窗优选[J].天然气工业, 39(3):11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201903003.htm
    谢和平, 高峰, 周宏伟, 等, 2003.岩石断裂和破碎的分形研究[J].防灾减灾工程学报, 23(4):1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200304000.htm
    谢军, 赵圣贤, 石学文, 等, 2017.四川盆地页岩气水平井高产的地质主控因素[J].天然气工业, 37(7):1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201707004.htm
    周健, 张保平, 李克智, 等. 2015基于地面测斜仪的"井工厂"压裂裂缝监测技术[J].石油钻探技术, 43(3):71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201503015.htm
    叶功勤, 曹函, 高强, 等, 2019.颗粒配比对岩石力学特征影响的数值模拟研究[J].地质力学学报, 25(6):1129-1137. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190614&journal_id=dzlxxb
    袁玉松, 刘俊新, 周雁, 2018.泥页岩脆:延转化带及其在页岩气勘探中的意义[J].石油与天然气地质, 39(5):899-906. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805006.htm
    曾治平, 刘震, 马骥, 等, 2019.深层致密砂岩储层可压裂性评价新方法[J].地质力学学报, 25(2):223-232. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190208&journal_id=dzlxxb
    张晨晨, 王玉满, 董大忠, 等, 2016.四川盆地五峰组-龙马溪组页岩脆性评价与"甜点层"预测[J].天然气工业, 36(9):51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201609009.htm
    张广智, 陈娇娇, 陈怀震, 等, 2015.基于页岩岩石物理等效模型的地应力预测方法研究[J].地球物理学报, 58(6):2112-2122. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201506025.htm
    张杨, 袁学芳, 闫铁, 等, 2013.水力裂缝分形扩展对压裂效果的影响[J].石油钻探技术, 41(4):101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201304024.htm
    赵金洲, 任岚, 胡永全, 2013.页岩储层压裂缝成网延伸的受控因素分析[J].西南石油大学学报(自然科学版), 35(1):1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201301000.htm
    赵金洲, 许文俊, 李勇明, 等, 2015.页岩气储层可压性评价新方法[J].天然气地球科学, 26(6):1165-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201506021.htm
    赵金洲, 任岚, 沈骋, 等, 2018.页岩气储层缝网压裂理论与技术研究新进展[J].天然气工业, 38(3):1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803001.htm
    赵圣贤, 杨跃明, 张鉴, 等, 2016.四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J].天然气地球科学, 27(3):470-487. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603011.htm
    钟光海, 陈丽清, 廖茂杰, 等, 2020.页岩气储层品质测井综合评价[J].天然气工业, 40(2):54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202002008.htm
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  570
  • HTML全文浏览量:  249
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-25
  • 修回日期:  2020-10-28
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回