留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

下扬子页岩气地质调查新进展及突破难点思考

郑红军 周道容 殷启春 熊强青 王中鹏 方朝刚 滕龙 邵威 王元俊

郑红军, 周道容, 殷启春, 等, 2020. 下扬子页岩气地质调查新进展及突破难点思考. 地质力学学报, 26 (6): 852-871. DOI: 10.12090/j.issn.1006-6616.2020.26.06.067
引用本文: 郑红军, 周道容, 殷启春, 等, 2020. 下扬子页岩气地质调查新进展及突破难点思考. 地质力学学报, 26 (6): 852-871. DOI: 10.12090/j.issn.1006-6616.2020.26.06.067
ZHENG Hongjun, ZHOU Daorong, YIN Qichun, et al., 2020. New progress and breakthrough difficulties on shale gas geological survey in the lower Yangtze area. Journal of Geomechanics, 26 (6): 852-871. DOI: 10.12090/j.issn.1006-6616.2020.26.06.067
Citation: ZHENG Hongjun, ZHOU Daorong, YIN Qichun, et al., 2020. New progress and breakthrough difficulties on shale gas geological survey in the lower Yangtze area. Journal of Geomechanics, 26 (6): 852-871. DOI: 10.12090/j.issn.1006-6616.2020.26.06.067

下扬子页岩气地质调查新进展及突破难点思考

doi: 10.12090/j.issn.1006-6616.2020.26.06.067
基金项目: 

中国地质调查局地质调查项目 DD20160180

中国地质调查局地质调查项目 DD20190083

中国地质调查局地质调查项目 DD20190281

详细信息
    作者简介:

    郑红军(1975-), 男, 高级工程师, 从事页岩气地质调查、三维地质建模等研究工作。E-mail:252300878@qq.com

    通讯作者:

    周道容(1983-), 男, 硕士, 助理研究员, 页岩油气地质调查。E-mail:zdr650@163.com

  • 中图分类号: P553

New progress and breakthrough difficulties on shale gas geological survey in the lower Yangtze area

  • 摘要: 围绕长江经济带清洁能源体系建设对页岩气突破的重大需求,在充分整合长江下游地区以往地质和物探资料的基础上,系统开展了1:25万页岩气基础地质调查,在苏皖南沿江坳陷带、江西萍乐-浙江钱塘坳陷带、南华北地区"两带一区"实施了10口页岩气调查井,基本查明了主要工作区古生界二叠系、志留系、奥陶系、寒武系富有机质泥页岩成藏地质条件,有9口井分别在三叠、二叠、志留、寒武系4套层系获得页岩气、致密砂岩气、煤层气、页岩油、裂缝性砂岩油、裂缝性灰岩油"三气三油"的重要新发现,深化了二叠系和志留系成藏地质认识,探索了三叠系、奥陶系和寒武系含油气性,开辟了新区新层系,揭示了下扬子及南华北中—古生界油气页岩气资源勘查潜力。圈定了10个远景区,初步评价了9个远景区主要目标层的远景资源量,解决了资源前景问题;讨论了制约下扬子页岩气调查突破的卡脖子问题,提出了下一步突破的方向。

     

  • 图  1  下扬子“三带”构造区划及研究区“两带一区”、10个远景区、6个有利区分布

    Figure  1.  Distribution of six favorable areas, ten prospecting areas and the "two belts and one zone" in the research area and the structural division of the "three belts" of the lower Yangtze and the southern North China zone

    图  2  下扬子与南华北区构造控盆(坳、凹)、盆地(坳或凹陷)控相、相控成藏的关系图版

    Figure  2.  Relationship of tectonics-controlled basin (depression, sag), basin-controlled(depression or sag)facies and facies-controlled reservoir formation in the lower Y angtze area and the southern North China zone

    图  3  安徽宣城远景区二叠系大隆组底界埋深构造图

    Figure  3.  Structural map of the bottom boundary burial depth of the Permian Dalong group in the Xuancheng prospecting area, Anhui Province

    图  4  皖宣地1井(WXD1)地层与测录井综合柱状图(1:200)

    Figure  4.  Comprehensive histogram of stratigraphic units and logging of the Well WXD1 (1:200)

    图  5  皖江坳陷区下志留统高家边组底界埋深构造图及皖南地1井(WND1)和皖含地1井(WHD1)位置分布

    Figure  5.  Structural map of the bottom boundary burial depth of the Lower Silurian Gaojiabian group in the depression zone along the Yangtze River in Anhui, and positions of the Wells WND1 and WHD1

    图  6  皖南地1井(WND1)地层与测录井综合柱状图(1:200)

    Figure  6.  Comprehensive histogram of stratigraphic units and logging of the Well WND1 (1:200)

    图  7  宿州远景区宿南向斜有利区三维地质模型、皖埇地1井(WYD1)、皖潘地1井(WPD1)录井显示特征

    Figure  7.  3D geological model of the Suzhou prospecting area and the logging characteristics of the Wells WYD1 and WPD1

    图  8  皖潘地1井(WPD1)地层与测录井综合柱状图(1:200)

    Figure  8.  Comprehensive histogram of stratigraphic units and logging of the Well WPD1 (1:200)

    图  9  江西萍乐坳陷丰城—高安远景区二叠系乐平组底界埋深构造图(丰城远景区曲江向斜有利区赣丰地1井GFD1、高安远景区相城向斜有利区赣高地1井GGD1)

    Figure  9.  Structural map of the bottom boundary burial depth of the Permian Leping group in the Fengcheng-Gaoan prospecting area, Jiangxi Province(The Well GFD1 in the syncline-favorable area in Quqiang, Fengcheng prospecting area; The Well GGD1 in the syncline-favorable area in Xiangcheng, Gaoan prospecting area)

    图  10  赣丰地1井(GFD1)地层与测录井综合柱状图(1:200)

    Figure  10.  Comprehensive histogram of stratigraphic units and logging of the Well GFD1 (1:200)

    图  11  下扬子地区上、下古生界地层地温梯度

    Figure  11.  Geothermal gradient of the upper and lower Paleozoic formations in the lower Yangtze area

    图  12  下扬子地区古生界二叠系生烃门限深度和地层温度

    Figure  12.  Temperature and depth of hydrocarbon threshold in the Paleozoic Permian formations in the lower Yangtze area

    图  13  水平应力与地层压力耦合关系

    Figure  13.  Coupling relationship between horizontal stress and formation pressure

    图  14  皖南古生界二叠系、志留系、奥陶系孔隙度分布及其与渗透率的相关关系

    Figure  14.  Relationship between porosity and permeability, and porosity characteristics of the Paleozoic Permian, Silurian and Ordovician in southern Anhui

    图  15  下扬子和南华北区古生界二叠系页岩压力-含气量的关系图版(实验室模拟换算:500~7400 m,30~250 ℃)

    Figure  15.  Relationship chart between formation pressure and gas content in the Paleozoic Permian shales in the lower Yangtze area and the southern Nouth China zone (laboratory simulation conversion: 500~7400 m, 30~250 ℃)

    图  16  皖南沿江坳陷区二叠系大隆组底面现今埋深构造图(三维构造建模结果)

    Figure  16.  Structural map of the present bottom boundary burial depth of the Permian Dalong group in the depression zone along the Yangtze River in southern Anhui (3D Modeling)

    图  17  上下构造层构造变形方式及隔槽式、隔挡式褶皱的转换(据王宗秀等,2019修改)

    Figure  17.  Structural deformation mode of the upper and lower structural layers and the conversion of slot and block fold(modified after Wang et al., 2019)

    图  18  皖南沿江坳陷区“三带”与古生界富有机质泥页岩分布及富烃凹陷分布

    Figure  18.  "Three belts" in the depression zone along the Yangtze River in southern Anhui and the distribution of organic shales in the Paleozoic and hydrocarbon-rich sags

    图  19  皖南沿江坳陷区印支晚期古生界沉积盆地原型

    Figure  19.  Prototype of the Late Indosinian Paleozoic sedimentary basin in the depression zone along the Yangtze River in southern Anhui

    表  1  下扬子及南华北区主要远景区页岩气资源量及资源量丰度

    Table  1.   Resources estimation and resources abundance of shale gas in the main prospecting areas in the lower Yangtze area and the southern Nouth China zone

    按资源量丰度排序 远景区 目的层 面积/
    km2
    预测资源量/
    ×108 m3
    资源量丰度/
    ×108(m3/km2)
    1 江西丰城远景区 P(乐平组、茅口组、小江边组) 2688 21814.74 8.116
    2 安徽宿州远景区 P(上石盒子组、下石盒子组、山西组、太原组) 7598 26930.16 3.544
    3 安徽淮南远景区 P(上石盒子组、下石盒子组、山西组、太原组) 6986 18670.26 2.673
    4 江西高安远景区 P(乐平组、茅口组、小江边组) 5860 10748.73 1.834
    5 安徽宣城远景区 P(大隆组、龙潭组、孤峰组、栖霞组) 3809 4443.23 1.167
    6 安徽巢湖—含山远景区 O3w—S1g(上奥陶统五峰组-下志留统高家边组) 3339 2266.47 0.679
    7 安徽南陵远景区 O3w—S1g(上奥陶统五峰组-下志留统高家边组) 2936 1175.79 0.400
    8 浙江江山远景区 1h(下寒武统荷塘组) 5036 1993.53 0.396
    9 浙江桐庐远景区 O2hn(中奥陶统胡乐组、宁国组) 4538 881.14 0.194
    合计 下扬子中带、南带及南华北淮南、宿州地区 42790 88924.05
    下载: 导出CSV
  • ANDERSON R A, INGRAM D S, ZANIER A M, 1973. Determining fracture pressure gradients from well logs[J]. Journal of Petroleum Technology, 25(11):1259-1268. doi: 10.2118/4135-PA
    BIOT M A, 1941. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 12(2):155-164. doi: 10.1063/1.1712886
    BIOT M A, WILLIS D G, 1957. The elastic coefficients of the theory of consolidation[J]. Journal of Applied Mechanics, 24(3):594-601.
    CHEN X H, 2013. Relations between the match types of source rock-cap rock and reserve abundances for large and medium gasfields in China[J]. Petroleum Geology and Oilfield Development in Daqing, 32(2):10-15. (in Chinese with English abstract)
    DONG D Z, WANG Y M, LI X J, et al., 2016. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 36(1):19-32. (in Chinese with English abstract)
    FAN M, YU L J, XU E S, et al., 2018. Preservation mechanism of fuling shale gas[J]. Petroleum Geology & Experiment, 40(1):126-132. (in Chinese with English abstract)
    FANG C G, TENG L, ZHENG H J, et al., 2018. On sedimentary facies and sequence stratigraphy characteristics of the Upper Maokou Formation "breaking platform" type in the Fengcheng area, Pingle depression[J]. Journal of Yunnan University, 40(5):935-946. (in Chinese with English abstract)
    FANG C G, XU Z Y, TENG L, et al., 2019. Shale gas accumulation in the Upper Permian Leping Formation:A case study of well Ganfengdi-1 in the central Pingle depression, Jiangxi Province[J]. Petroleum Geology & Experiment, 41(1):83-93. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201901012.htm
    FANG Z X, 2019. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Reservoir Evaluation and Development, 9(5):1-13. (in Chinese with English abstract)
    FU G, GENG Q, WANG Y G, et al., 2008. Pressure matching types between caprock and reservoir and relation between them and gas reserves abundance in gas reservoir[J]. Journal of Jilin University (Earth Science Edition), 38(4):587-593. (in Chinese with English abstract)
    GARDNER G H F, GARDNER L W, GREGORY A R, 1974. Formation velocity and density:The diagnostic basics for stratigraphic traps[J]. Geophysics, 39(6):770-780. doi: 10.1190/1.1440465
    GASSMANN F, 1951. Über die Elastizität Poroser Medien(On the elasticity of porous media)[J]. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1-23.
    GUO X S, 2014. Rules of two-factor enrichiment for marine shale gas in southern China:Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 88(7):1209-1218. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252704177.html
    GUO X S, HU D F, WEN Z D, et al., 2014. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery:A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J]. Geology in China, 41(3):893-901. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DIZI201403016.htm
    HAN D H, NUR A, MORGAN D, 1986. Effects of porosity and clay content on wave velocities in sandstones[J]. Geophysics, 51(9):2093-2107. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SEGEAB000005000001000001000001&idtype=cvips&gifs=Yes
    HE W J, YANG H B, FEI L Y, et al., 2018. Comprehensive analysis of tight sandstone gas resource potential in the favorable area of Jiamuhe Formation in Xinguang area, Junggar Basin[J]. Natural Gas Geoscience, 29(3):370-381. (in Chinese with English abstract)
    HE X P, HE G S, GAO Y Q, et al., 2018. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 38(12):1-14. (in Chinese with English abstract)
    HUDSON J A, 1981. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal International, 64(1):133-150. doi: 10.1111/j.1365-246X.1981.tb02662.x
    JIANG S, TANG X L, OSBORNE S, et al., 2017. Enrichment factors and current misunderstanding of shale oil and gas:Case study of shales in U.S., Argentina and China[J]. Earth Science, 42(7):1083-1091. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707004.htm
    JIANG Z X, TANG X L, LI Z, et al., 2016. The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan Basin[J]. Earth Science Frontiers, 23(2):126-134. (in Chinese with English abstract)
    JIANG Z X, SONG Y, TANG X L, et al., 2020. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 47(3):617-628. (in Chinese with English abstract) http://www.researchgate.net/publication/342296679_Controlling_factors_of_marine_shale_gas_differential_enrichment_in_southern_China
    КОВАЛЕВСΚИЙ E B, 2014. Geological modelling on the base of geostatistics[M]. LIU Y R, CAO Z L, ZHENG H J, et al., Trans. Beijing: Geological Publishing House. (in Chinese with English abstract)
    LI C L, KONG X Y, XU X Z, et al., 1999. Double effective stress of porous media[J]. Ziran Zazhi, 21(5):288-292. (in Chinese)
    MA Y S, CAI X Y, ZHAO P R, 2018. China's shale gas exploration and development:Understanding and practice[J]. Petroleum Exploration and Development, 45(4):561-574. (in Chinese with English abstract) http://www.sciencedirect.com/science/article/pii/S187638041830065X
    NEWBERRY B M, NELSON R E, AHMED U, 1957. Prediction of vertical hydraulic fracture migration using compressional and shear wave slowness[C]//SPE/DOE Low Permeability Gas Reservoirs Symposium. Denver, Colorado: SPE: 459-466.
    PAN J P, QIAO D W, LI S Z, et al., 2011. Shale-gas geological conditions and exploration prospect of the Paleozoic marine strata in lower Yangtze area, China[J]. Geological Bulletin of China, 30(2-3):337-343. (in Chinese with English abstract)
    TENG L, FANG C G, ZHENG H J, et al., 2019. The discovery of 'three natural gases' in the Upper Permian Leping Formation in Ganfengdi-1 well of middle Pingle depression[J]. Geology in China, 46(1):203-204. (in Chinese with English abstract)
    TERZAGHI K T, 1925. Principle of soil mechanics[J]. Engineering News Record, 95:832-836.
    THOMSEN L, 2018. On the fluid dependence of seismic anisotropy:Beyond biot-gassmann[J]. Journal of Earth Science, 29(6):1335-1339. doi: 10.1007/s12583-017-0806-9
    WALLS J D, DVORKIN J, 1994. Measured and calculated horizontal stresses in the travis peak formation[J]. SPE Formation Evaluation, 9(4):259-263. doi: 10.2118/21843-PA
    WANG X Q, TENG L, ZHENG H J, et al., 2019. Comprehensive evaluation of shale gas potential of Permian Leping Formation in Fengcheng-Leping area of Lower Yangtze Region[J]. Journal of Jilin University (Earth Science Edition), 49(1):248-260. (in Chinese with English abstract)
    WANG Y M, LI X J, CHEN B, et al., 2018. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development, 45(3):385-395. (in Chinese with English abstract)
    WANG Z X, LI C L, LI H J, et al., 2019. Tectonic architecture and evolution of the eastern Sichuan-Wulingshan Area, South China[J]. Journal of Geomechanics, 25(5):827-839. (in Chinese with English abstract)
    WYLLIE M R J, GREGORY A R, GARDNER L W, 1956. Elastic wave velocities in heterogeneous and porous media[J]. Geophysics, 21(1):41-70. doi: 10.1190/1.1438217
    XIE X N, HAO F, LU Y C, et al., 2017. Differential enrichment mechanism and key technology of shale gas in complex areas of South China[J]. Earth Science, 42(7):1045-1056. (in Chinese with English abstract)
    XU S Y, WHITE R E, 1995. A new velocity model for clay-sand mixtures[J]. Geophysical Prospecting, 43(1):91-118. doi: 10.1111/j.1365-2478.1995.tb00126.xx
    XU S Y, WHITE R E, 1996. A physical model for shear-wave velocity prediction[J]. Geophysical Prospecting, 44(4):687-717. doi: 10.1111/j.1365-2478.1996.tb00170.x
    ZHAI G Y, WANG Y F, BAO S J, et al., 2017. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China[J]. Earth Science, 42(7):1057-1068. (in Chinese with English abstract)
    ZHANG H, SHI G, WU H, et al., 2020. In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4):583-594. (in Chinese with English abstract)
    ZHANG J C, LIN L M, LI Y X, et al., 2012. The method of shale gas assessment:Probability volume method[J]. Earth Science Frontiers, 19(2):184-191. (in Chinese with English abstract)
    ZHANG L Y, SONG L C, LI H J, et al., 2019. The role of geomechanics theory in the exploration of deep oil and gas in China[J]. Journal of Geomechanics, 25(6):1036-1047. (in Chinese with English abstract)
    ZHANG M Q, LU Y C, 2012. Shale features and gas-source condition in the western Lower Yangtze area[J]. China Offshore Oil and Gas, 25(2):9-17. (in Chinese with English abstract)
    ZHAO W Z, WANG Z C, WANG H J, et al., 2008. Principal characteristics and forming conditions for medium-low abundance large scale oil/gas fields in China[J]. Petroleum Exploration and Development, 35(6):641-650. (in Chinese with English abstract) doi: 10.1016/S1876-3804(09)60097-5
    ZHAO W Z, LI J Z, YANG T, et al., 2016. Geological difference and its significance of marine shale gases in south China[J]. Petroleum Exploration and Development, 43(4):499-510. (in Chinese with English abstract)
    ZHENG H J, CAO Z L, YAN C F, et al., 2010. Using seismic rock physics modeling to predict accumulation unit of biogenetic gas in Sanhu area[J]. Lithologic Reservoirs, 22(4):20-24, 42. (in Chinese with English abstract)
    ZHENG H J, ZHENG C L, TIAN L Y, et al., 2011. Using seismic stochastic modelling of petrophysics based on shear-wave model to predict distribution of natural gas reservoir:Taking northern slope in Sanhu region of Qaidam basin as example[J]. Progress in Geophysics, 26(5):1763-1770. (in Chinese with English abstract)
    ZHENG H J, 2018. What is the relationship between shale gas and oil-gas:Also Discussing the investigation direction and exploration ideas of shale gas and oil-gas in complex structural areas[J]. Pictorial Geography, 14:20-21. (in Chinese with English abstract)
    ZHENG H J, ZHOU D R, TENG L, et al., 2020. Shale gas geological survey makes important new discoveries in Lower Yangtze region[J]. News Letters of China Geological Survey, 6(1-2):32-36. (in Chinese with English abstract)
    ZOU C N, DONG D Z, WANG S J, et al., 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 37(6):641-653. (in Chinese with English abstract) doi: 10.1016/S1876-3804(11)60001-3
    ZOU C N, TAO S Z, HOU L H, et al., 2013. Unconventional petroleum geology[M]. Beijing:Geological Publishing House. (in Chinese)
    ZOU C N, DONG D Z, WANG Y M, et al., 2015. Shale gas in China:Characteristics, challenges and prospects(Ⅰ)[J]. Petroleum Exploration and Development, 42(6):689-701. (in Chinese with English abstract)
    ZOU C N, DONG D Z, WANG Y M, et al., 2016. Shale gas in China:Characteristics, challenges and prospects(Ⅱ)[J]. Petroleum Exploration and Development, 43(2):166-178. (in Chinese with English abstract)
    陈晓红, 2013.中国大中型气田源盖能力配置类型及其与储量丰度关系[J].大庆石油地质与开发, 32(2):10-15. doi: 10.3969/J.ISSN.1000-3754.2013.02.002
    董大忠, 王玉满, 李新景, 等, 2016.中国页岩气勘探开发新突破及发展前景思考[J].天然气工业, 36(1):19-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201601005.htm
    范明, 余凌杰, 徐二社, 等, 2018.页岩气保存机制探讨[J].石油实验地质, 40(1):126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201801019.htm
    方朝刚, 滕龙, 郑红军, 等, 2018.萍乐坳陷丰城地区茅口晚期"破裂台地"型沉积相与层序地层学特征[J].云南大学学报(自然科学版), 40(5):935-946. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ201805015.htm
    方朝刚, 徐振宇, 滕龙, 等, 2019.江西萍乐坳陷中部赣丰地1井上二叠统乐平组页岩气聚气条件[J].石油实验地质, 41(1):83-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201901012.htm
    方志雄, 2019.中国南方常压页岩气勘探开发面临的挑战及对策[J].油气藏评价与开发, 9(5):1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905001.htm
    付广, 庚琪, 王有功, 等, 2008.气藏盖储层压力配置类型及与储量丰度的关系[J].吉林大学学报(地球科学版), 38(4):587-593. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200804007.htm
    郭旭升, 2014.南方海相页岩气"二元富集"规律:四川盆地及周缘龙马溪组页岩气勘探实践认识[J].地质学报, 88(7):1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm
    郭旭升, 胡东风, 文治东, 等, 2014.四川盆地及周缘下古生界海相页岩气富集高产主控因素:以焦石坝地区五峰组-龙马溪组为例[J].中国地质, 41(3):893-901. doi: 10.3969/j.issn.1000-3657.2014.03.016
    何文军, 杨海波, 费李莹, 等, 2018.准噶尔盆地新光地区佳木河组致密砂岩气有利区资源潜力综合分析[J].天然气地球科学, 29(3):370-381. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201803008.htm
    何希鹏, 何贵松, 高玉巧, 等, 2018.渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J].天然气工业, 38(12):1-14. doi: 10.3787/j.issn.1000-0976.2018.12.001
    姜振学, 唐相路, 李卓, 等, 2016.川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J].地学前缘, 23(2):126-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602015.htm
    姜振学, 宋岩, 唐相路, 等, 2020.中国南方海相页岩气差异富集的控制因素[J].石油勘探与开发, 47(3):617-628. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003020.htm
    科瓦列夫斯基E B, 2014.基于地质统计学的地质建模[M].刘应如, 曹正林, 郑红军, 等, 译.北京: 石油工业出版社.
    李传亮, 孔祥言, 徐献芝, 等, 1999.多孔介质的双重有效应力[J].自然杂志, 21(5):288-292. doi: 10.3969/j.issn.0253-9608.1999.05.012
    马永生, 蔡勋育, 赵培荣, 2018.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发, 45(4):561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm
    潘继平, 乔德武, 李世臻, 等, 2011.下扬子地区古生界页岩气地质条件与勘探前景[J].地质通报, 30(2-3):337-343. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1020.htm
    滕龙, 方朝刚, 郑红军, 等, 2019.萍乐坳陷中部(赣丰地1井)二叠系乐平组获"三气"发现[J].中国地质, 46(1):203-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201901015.htm
    王修齐, 滕龙, 郑红军, 等, 2019.下扬子丰城-乐平地区二叠系乐平组页岩气潜力综合评价[J].吉林大学学报(地球科学版), 49(1):248-260. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201901024.htm
    王玉满, 李新景, 陈波, 等, 2018.海相页岩有机质炭化的热成熟度下限及勘探风险[J].石油勘探与开发, 45(3):385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803004.htm
    王宗秀, 李春麟, 李会军, 等, 2019.川东-武陵地区构造格局及其演化[J].地质力学学报, 25(5):827-839. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190512&journal_id=dzlxxb
    解习农, 郝芳, 陆永潮, 等, 2017.南方复杂地区页岩气差异富集机理及其关键技术[J].地球科学, 42(7):1045-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707001.htm
    翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测[J].地球科学, 42(7):1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htm
    张浩, 施刚, 巫虹, 等, 2020.上海地区浅部地应力测量及其构造地质意义分析[J].地质力学学报, 26(4):583-594. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200413&journal_id=dzlxxb
    张金川, 林腊梅, 李玉喜, 等, 2012.页岩气资源评价方法与技术:概率体积法[J].地学前缘, 19(2):184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202028.htm
    张林炎, 宋立才, 李会军, 等, 2019.地质力学理论对中国深层油气勘查的作用[J].地质力学学报, 25(6):1036-1047. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190604&journal_id=dzlxxb
    张敏强, 陆永潮, 2013.下扬子西部地区泥页岩特征及气源条件评价[J].中国海上油气, 25(2):9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201302001.htm
    赵文智, 汪泽成, 王红军, 等, 2008.中国中、低丰度大油气田基本特征及形成条件[J].石油勘探与开发, 35(6):641-650. doi: 10.3321/j.issn:1000-0747.2008.06.001
    赵文智, 李建忠, 杨涛, 等, 2016.中国南方海相页岩气成藏差异性比较与意义[J].石油勘探与开发, 43(4):499-510. doi: 10.11698/PED.2016.04.01
    郑红军, 曹正林, 阎存凤, 等, 2010.利用地震岩石物理模拟预测三湖地区生物气成藏单元[J].岩性油气藏, 22(4):20-24, 42. doi: 10.3969/j.issn.1673-8926.2010.04.004
    郑红军, 郑长龙, 田连玉, 等, 2011.横波岩石物理地震随机模拟预测天然气藏分布:以柴达木盆地三湖地区北斜坡为例[J].地球物理学进展, 26(5):1763-1770. doi: 10.3969/j.issn.1004-2903.2011.05.031
    郑红军, 2018.页岩气和油气到底什么关系-也谈构造复杂地区油气页岩气调查方向与勘探思路[J].写真地理, 14:20-21.
    郑红军, 周道容, 滕龙, 等, 2020.下扬子页岩气地质调查获得重要新发现[J].中国地质调查成果快讯, 6(1-2):32-36.
    邹才能, 董大忠, 王社教, 等, 2010.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发, 37(6):641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
    邹才能, 陶士振, 侯连华, 等, 2013.非常规油气地质[M].北京:地质出版社.
    邹才能, 董大忠, 王玉满, 等, 2015.中国页岩气特征、挑战及前景(一)[J].石油勘探与开发, 42(6):689-701. doi: 10.11698/PED.2015.06.01
    邹才能, 董大忠, 王玉满, 等, 2016.中国页岩气特征、挑战及前景(二)[J].石油勘探与开发, 43(2):166-178. doi: 10.11698/PED.2016.02.02
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  54
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-25
  • 修回日期:  2020-10-20
  • 刊出日期:  2020-12-28

目录

    /

    返回文章
    返回