Geochemical characteristics of gold-bearing minerals and its geological significance in the Ashawayi gold deposit in the southwestern Tianshan Orogen
-
摘要: 阿沙哇义金矿床是中国新疆西南天山目前探明的第二大金矿,是中亚造山带南缘"亚洲金腰带"的重要组成部位。野外构造调查表明,研究区在古生代期间经历了由挤压变形发展为走滑伸展两次构造作用,成矿发生在挤压变形到走滑伸展转换时期。运用矿相学、电子探针、扫描电镜及S同位素等方法确定矿床载金矿物、金的赋存状态、成矿物质来源等,结果表明:阿沙哇义金矿载金矿物主要为含砷黄铁矿、部分毒砂。含砷黄铁矿分为沉积成岩期(Py1)、成矿早期(Py2)、成矿期(Py3);Py2、Py3富As、Te,亏S、Fe,S、As呈明显负相关;Co/Ni比值显示黄铁矿属沉积-热液成因。Au以纳米级"可见"自然金(Au0)形式存在于含砷黄铁矿中。黄铁矿、辉锑矿δ34S为9.5‰~16.3‰,显示成矿流体中硫为海相硫酸盐热化学还原产物,成矿物质来自赋矿地层。矿床属典型的中浅成造山型金矿,矿床埋藏较浅,矿区深部具有很好的找矿潜力。Abstract: Ashawayi gold deposit, the second largest gold deposit in the southwestern Tianshan Orogen, NW China, is located at the southern margin of the Central Asian Orogenic Belt of the "Asian Golden Belt". Detailed field observations showed that the regional area experienced two tectonic processes from early compression to lately strike-slip extension during the Paleozoic, and the mineralization was related to the transition from compression to extension. By the methods of mineragraphy, EMPA, SEM and S isotope analysis, the gold-bearing minerals in the ore deposit, the occurrence state of gold, the source of ore-forming materials, were determined in this paper, suggesting that gold-bearing minerals should be mainly composed of arsenian pyrite and some arsenopyrite. The formation of arsenic pyrite can be divided into three stages, i.e. sedimentary diagenesis stage (Py1), early ore-forming stage (Py2), and main ore-forming stage (Py3). The Py2 and Py3 are rich of As-Te, and deficit of S-Fe, while the content of S and As is significantly negatively correlated. The ratio value of Co/Ni indicates that the pyrite should be the origin of deposit-hydrothermal. The gold is mostly hosted in arsenic pyrite as the form of nano-scale "visible" natural gold (Au0). The δ34S value of pyrite and stibnite changes from 9.5‰ to 16.3‰, suggesting that the sulfur in ore-forming fluid should be a thermochemical reduction product of marine sulfate and ore-forming material probably resourced from the stratum. Therefore, the Ashawayi gold deposit should be a typical medium-shallow orogenic-type gold deposit, and the buried depth of ore-bodies is relatively shallow, suggesting a favorable prospecting potential in the deep.
-
图 1 天山造山带构造简图和西南天山区域地质及矿产分布示意图
1—第四系;2—新近系—古近系;3—中生界;4—二叠系;5—石炭—泥盆系;6—下古生界;7—前寒武系;8—花岗岩
a—天山造山带构造简图(据Zhang et al., 2017修改);b—西南天山区域地质及矿产分布示意图Figure 1. Tectonic map of deposits in the Tianshan orogenic belt and geology and distribution of deposits in the southwestern Tianshan orogenic belt
图 11 阿沙哇义金矿床黄铁矿特征元素图解关系
a—Co-Ni图解(Ⅰ—沉积成因;Ⅱ—热液成因;Ⅲ—火山成因);b—含砷黄铁矿Au-As图解(据Reich et al., 2005)
Figure 11. Co-Ni of the pyrites and correlation of Au-As contents in the arsenian pyrites in the Ashawayi gold deposit
图 12 阿沙哇义金矿床S同位素组成(张宏飞和高山,2012)
Figure 12. S isotope composition in the Ashawayi gold deposit (Zhang and Gao, 2012)
图 13 造山型金矿矿床尺度地壳连续成矿模式
a—洋壳俯冲体制的造山型成矿系统元素垂向分带模式(据Groves et al., 1998修改);b—大陆碰撞体制的造山型成矿系统元素垂向分带模式(据陈衍景,2006修改)
Figure 13. Scale crust continuous metallogenic model for the orogenic-type gold deposit
表 1 阿沙哇义金矿床金属硫化物电子探针测试结果(wt%)
Table 1. EPMA test results of the metal sulphide in the Ashawayi gold deposit(wt%)
样品编号 测点 测试矿物 As Se Zn S Ge Fe Pb Ni Ag Co Sb Au Te Cu Bi 总量 期次 ZK16901-1 1 黄铁矿 0.19 / 0.12 52.03 / 46.04 / / / 0.39 0.03 0.22 0.11 0.10 / 99.23 Py1 BZK16901-2 1 黄铁矿 0.19 / / 52.70 / 46.22 / 0.16 / 0.00 / / 0.06 / / 99.33 Py1 ZK1602-3D 2 黄铁矿 0.00 / / 53.39 / 46.51 / / / 0.10 0.09 / 0.00 0.12 / 100.21 Py1 3 黄铁矿 0.02 0.03 0.12 53.00 / 46.21 / / / 0.13 0.10 / 0.05 / / 99.66 Py1 ZK1602-10 1 黄铁矿 0.28 0.04 / 53.33 / 46.15 0.10 / / 0.05 / / 0.00 / / 99.95 Py1 K16138-5 1 黄铁矿 0.34 0.03 / 52.94 / 43.97 / 2.06 / 0.81 / / 0.09 / / 100.24 Py1 K16143-1 1 黄铁矿 0.00 / / 52.76 / 45.75 0.11 0.30 / 0.15 / 0.23 0.08 / / 99.38 Py1 ZK1602-3D 4 黄铁矿 2.19 / / 51.21 0.06 45.06 0.16 / / 0.17 / / 0.11 / 0.14 99.10 Py2 ZK1602-3F 1 黄铁矿 1.54 / / 51.80 / 45.96 0.18 / / 0.14 / / 0.00 / / 99.62 Py2 ZK1602-3F 2 黄铁矿 1.97 0.04 / 51.19 / 45.71 0.18 / / 0.11 / / 0.00 / / 99.20 Py2 ZK1602-3F 5 黄铁矿 4.86 0.04 / 48.66 / 45.87 0.10 0.09 / 0.07 / / 0.00 / / 99.69 Py2 ZK1602-8 1 黄铁矿 2.47 / / 51.54 / 45.31 0.00 / 0.04 0.08 / 0.35 0.06 / / 99.85 Py2 ZK1602-9 2 黄铁矿 4.27 / / 49.64 / 45.24 0.26 / / 0.00 / / 0.16 / / 99.57 Py2 K16137-3 1 黄铁矿 3.03 / / 50.74 / 44.83 0.00 / / 0.06 / / 0.07 0.12 / 98.85 Py2 ZK1602-10 4 黄铁矿 0.92 / 0.11 52.26 / 45.93 0.00 / / 0.15 / / 0.07 / / 99.44 Py2 K16139-1 1 黄铁矿 2.15 / / 51.45 0.02 45.44 0.09 0.15 0.03 0.23 / / 0.00 / / 99.56 Py2 K16144-1A 2 黄铁矿 1.02 0.04 0.11 52.22 / 45.36 0.14 0.07 / 0.09 0.15 / 0.07 / / 99.27 Py2 ZK1602-3B 1 黄铁矿 2.61 0.06 0.11 50.82 / 44.96 / 0.09 / 0.11 / / 0.05 0.09 0.12 99.02 Py3 ZK1602-3D 1 黄铁矿 4.57 0.12 / 49.66 / 44.86 0.10 / / 0.08 0.04 / 0.09 / / 99.52 Py3 ZK1602-10 3 黄铁矿 5.50 / 0.11 49.25 / 44.32 0.09 0.32 / 0.09 / / 0.08 / 0.22 99.98 Py3 ZK1602-3B 2 毒砂 38.76 0.04 / 22.60 / 37.42 / / 0.05 0.14 / 0.81 / / 0.13 99.95 / ZK1602-3F 3 毒砂 40.41 0.08 / 21.47 / 36.20 / 0.46 / 0.20 / / / / / 98.82 / 6 毒砂 41.77 / / 21.18 / 35.47 / 0.22 / 0.07 / / / / 0.14 98.85 / ZK1602-8 2 毒砂 41.69 0.06 0.16 21.23 / 35.63 / / / 0.13 / / / / / 98.90 / 3 毒砂 39.48 0.03 0.13 22.85 / 37.30 0.09 / 0.04 0.11 / / 0.05 / / 100.08 / ZK1602-9 1 毒砂 40.89 / / 21.76 / 37.12 / / / 0.14 / / 0.10 / / 100.01 / ZK1602-10 2 毒砂 43.47 / / 20.61 0.04 35.95 / / / 0.09 / / / / / 100.16 / ZK1602-3B 3 褐铁矿 0.60 0.10 / 20.84 0.03 0.78 10.04 0.14 / / 19.86 / / 14.06 0.16 66.61 / ZK1602-3F 4 黝铜矿 1.80 / 4.45 25.51 / 5.43 / / 0.20 / 24.61 / / 37.67 / 99.67 / ZK1601-14 1 黄铜矿 / 0.04 / 34.34 / 30.75 / 0.06 / 0.10 / / 0.06 34.05 0.08 99.48 / ZK16901-5 1 黄铜矿 / 0.08 / 34.74 0.02 30.05 / / / 0.07 / / 0.05 34.01 / 99.02 / K16144-1A 1 辉锑矿 0.14 0.03 / 28.55 0.03 / / / / 0.13 71.22 / / / / 100.10 / K16144-1B 1 辉锑矿 0.18 0.04 0.10 28.00 / / 0.11 / / 0.14 70.16 / / / 0.11 98.84 / 表 2 阿沙哇义金矿金属硫化物硫同位素测试结果
Table 2. S isotope test results of the metal sulfides in the Ashawayi gold deposit
序号 样号 测试矿物 δ34SV-CDT/‰ 1 K16143-1 黄铁矿 9.4 2 K16144-1A 辉锑矿 16.3 3 K16144-1B 辉锑矿 15.4 -
CHANG Z S, LARGE R R, MASLENNIKOV V, 2008. Sulfur isotopes in sediment-hosted orogenic gold deposits:evidence for an early timing and a seawater sulfur source[J]. Geology, 36(12):971-974. doi: 10.1130/G25001A.1 CHEN H Y, CHEN Y J, BAKER M J, 2012a. Evolution of ore-forming fluids in the Sawayaerdun gold deposit in the Southwestern Chinese Tianshan metallogenic belt, Northwest China[J]. Journal of Asian Earth Sciences, 49:131-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=34e869ad0e7ed721a00dc014d39d3073 CHEN H Y, CHEN Y J, BAKER M J, 2012b. Isotopic geochemistry of the Sawayaerdun orogenic-type gold deposit, Tianshan, northwest China:Implications for ore genesis and mineral exploration[J]. Chemical Geology, 310-311:1-11. doi: 10.1016/j.chemgeo.2012.03.026 CHEN H Y, CHEN Y J, NI P, et al., 2007. Chemical composition of fluid inclusions of the Sawayardun gold deposit, Xinjiang:implications for oregenesis and prediction[J]. Acta Petrologica Sinica, 23(9):2189-2197. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200709017.htm CHEN X H, CHEN Z L, YANG N, 2009. Study on regional mineralizations and ore-field structures:Building of mineralizing tectonic systems[J]. Journal of Geomechanics, 15(1):1-19. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200901002.htm CHEN Y J, 2006. Orogenic-type deposits and their metallogenic model and exploration potential[J]. Geology in China, 33(6):1181-1196. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200606001 CHEN Y J, NI P, FAN H R, et al., 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits[J]. Acta Petrologica Sinica, 23(9):2085-2108. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200709009.htm CHEN Z L, HAN F B, ZHOU Z J, et al., 2019. Ore-controlling characteristics and prospecting potential of southwest Tianshan orogenic Au (Sb) Deposit[C]//Proceedings of the 9th national symposium on mineralization theory and prospecting methods. Nanjing: Professional Committee of Deposit Geochemistry, Chinese Society of Mineral and Rock Geochemistry, Professional Committee of Deposit Geology, Chinese Geological Society, State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy Of Sciences, 247. (in Chinese) https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD&filename=KWXB201912001166 CHEN Z L, LI L, LIU J, et al., 2008. Preliminary study on the uplifting-exhumation process of the western Tianshan range, northwestern China[J]. Acta Petrologica Sinica, 24(4):625-636. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200804001 CHEN Z L, WANG Z X, HAN F B, et al., 2017. Late cretaceous-cenozoic uplift, deformation, and erosion of the SW Tianshan mountains in kyrgyzstan and western China[J]. International Geology Review, 60(8):1019-1037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=92db532665b185f8eb1e54b40252b71b CHEN Z L, ZHOU Y G, HAN F B, et al., 2012. Exhumation degree of the Tianshan range and its implications for ore preservation[J]. Earth Science-Journal of China University of Geoscience, 37(5):903-916. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dqkx201205004 CLARK C, GRGURIC B, MUMM A S, 2004. Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences, northeastern South Australia[J]. Ore Geology Reviews, 25(3-4):237-257. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5dc19c5574893d6d5f864324ecac8585 COOK N J, 1996. Mineralogy of the sulphide deposits at Sulitjelma, northern Norway[J]. Ore Geology Reviews, 11(5):303-338. doi: 10.1016/S0169-1368(96)00009-1 COOK N J, CHRYSSOULIS S L, 1990. Concentrations of invisible gold in the common sulfides[J]. Canadian Mineralogist, 28(1):1-16. https://pubs.geoscienceworld.org/canmin/article-abstract/28/1/1/12149/Concentrations-of-invisible-gold-in-the-common?redirectedFrom=PDF CRAIG J R, VOKES F M, SOLBERG T N, 1998. Pyrite:physical and chemical textures[J]. Mineralium Deposita, 34(1):82-101. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201012047 DEDITIUS A P, UTSUNOMIYA S, RENOCK D, et al., 2008. A proposed new type of arsenian pyrite:composition, nanostructure and geological significance[J]. Geochimica et Cosmochimica Acta, 72(12):2919-2933. doi: 10.1016/j.gca.2008.03.014 DIXON G, DAVIDSON G J, 1996. Stable isotope evidence for thermochemical sulfate reduction in the Dugald river (Australia) strata-bound shale-hosted zinc lead deposit[J]. Chemical Geology, 129(3-4):227-246. https://www.sciencedirect.com/science/article/abs/pii/0009254195001778 FRIMMEL H E, 2008. Earth's continental crustal gold endowment[J]. Earth and Planetary Science Letters, 267(1-2):45-55. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025924159/ GAO Y W, WANG Z H, LI W L, et al., 2019. A review of pyrite mineralogy research in hydrothermal gold deposits[J]. Northwestern Geology, 52(3):58-69. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/xbdz201903006 GAO Z M, YANG Z S, LI H Y, et al., 2000. Genesis and Characteristics of gold hosted by pyrite[J]. Geological Journal of China Universities, 6(2):156-162. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201805016 GOLDFARB R J, GROVES D I, 2015. Orogenic gold:common or evolving fluid and metal sources through time[J]. Lithos, 233:2-26. doi: 10.1016/j.lithos.2015.07.011 GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al, 1998. Orogenic gold deposits:a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 13(1-5):7-27. doi: 10.1016-S0169-1368(97)00012-7/ HABICHT K S, CANFIELD D E, 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments[J]. Geochimica et Cosmochimica Acta, 61(24):5351-5361. doi: 10.1016-S0016-7037(97)00311-6/ HUO H L, 2019. Late Paleozoic tectonic evolution and magmatism of Southwest Tianshan, Northwest China[D]. Chinese Academy of Geological Sciences. (in Chinese with English abstract) https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2019&filename=1019146203.nh&v=MTE3NDJDVVI3cWZZT2RuRnlEa1U3elBWRjI2RjdLOEdOUE1ySkViUElSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnI= HUO H L, CHEN Z L, CHEN G M, et al., 2019. The U-Pb geochronology and geochemical characteristics of the Saergan mafic rocks in the Keping area, southwest Tianshan, China[J]. Journal of Geomechanics, 25(S1):60-65. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1011.htm LI N, 2013. Geochemistry of ore-forming processes in the Yangshan gold belt, west Qinling, Central China[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract) https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD1214&filename=1013267271.nh&v=Mjc5NjRIYkcrR2RQTHJwRWJQSVI4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUjdxZllPZG5GeURrVUw3QlZGMjY= LI N, ZHANG Z C, LIU X W, et al., 2018. The relationship between disseminated gold mineralization and vein-type gold-antimony mineralization:Example from the Yangshan gold belt, West Qinling[J]. Acta Petrologica Sinica, 34(5):1312-1326. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201805007 LIU B P, WANG Z Q, ZHANG C H, et al, 1996. Tectonic Framework and Evolution in Southwest Tianshan Mountains, China[M]. Wuhan:China University of Geosciences Press, 1-120. (in Chinese with English abstract) LIU J J, ZHENG M H, COOK N J, et al., 2007. Geological and geochemical characteristics of the Sawaya'erdun gold deposit, southwestern Chinese Tianshan[J]. Ore Geology Reviews, 32(1-2):125-156. doi: 10.1016-j.oregeorev.2006.11.003/ MAO J W, KONOPELKO D, SELTMANN R, et al., 2004. Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, kyrgyzstan[J]. Economic Geology, 99(8):1771-1780. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e5efdc13c06cb77fb3a6d2727d71e93 MAO S D, YANG R S, QIN Y, et al., 2009. Characteristics of gold-bearing mineral and occurrence of gold in the Yangshan gold field, Gansu province[J]. Acta Petrologica Sinica, 25(11):2776-2890. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200911008 OHMOTO H, 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 67(5):551-578. doi: 10.2113-gsecongeo.67.5.551/ OHMOTO H, RYE R O, 1979. Isotopes of sulfur and carbon[M]//BARNES H L. Geochemistry of hydrothermal ore deposits. New York:Wiley, 509-567. REICH M, KESLER S E, UTSUNOMIYA S, et al., 2005. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 69(11):2781-2796. doi: 10.1016/j.gca.2005.01.011 ŞENGÖR A M C, NATAL'IN B A, BURTMAN V S, 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364(6435):299-307. doi: 10.1038-364299a0/ SIMON G, KESLER S E, CHRYSSOULIS S, 1999. Geochemistry and textures of gold-bearing Arsenian pyrite, twin creeks, Nevada:implications for deposition of gold in Carlin-type deposits[J]. Economic Geology, 94(3):405-421. doi: 10.2113-gsecongeo.94.3.405/ WANG A D, WAN J J, LIU L, et al., 2015. Integrated SEM-EDS and XRD analyses for Huoqiu BIF and their geological implications[J]. Journal of East China Institute of Technology (Natural Science), 38(1):23-31. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb201501003 WANG K R, 1989. Earth and universe genesis mineralogy[M]. Hefei:Anhui Education Press. (in Chinese) WANG K R, ZHOU Y Q, SUN L G, et al., 1994. Study on the gold occurrence from several typical carlin-type gold deposits in China[M]. Heifei:University of Science and Technology of China Press. (in Chinese) WANG W, LI W Y, TANG X D, et al., 2018. Ore-forming fluid features and mineralization of the Dishui copper deposit in the northwest of Tarim block[J]. Geology and Exploration, 54(3):441-455. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzykt201803001 XU G F, 1987. Prospecting mineralogy of gold ore[J]. Geology and Prospecting, (2):30-34. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT198702007.htm XU G F, SHAO J L, 1980. On the type peculiarities of pyrite and their practical significance[J]. Geological Review, 26(6):541-546. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp198006017 XU S P, SONG J C, SONG H M, 2014. Gold deposit type and metallogenic model of the Bulong gold deposit in southwest Tianshan, Xinjiang[J]. Gold Science and Technology, 22(6):7-11. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxjs201406003 XUE C J, ZHAO X B, MO X X, et al., 2014a. Tectonic-metallogenic evolution of western Tianshan giant Au-Cu-Zn-Pb metallogenic belt and prospecting orietation[J]. Acta Geologica Sinica, 88(12):2490-2531. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201412025 XUE C J, ZHAO X B, MO X X, et al., 2014b. Asian Gold belt in western Tianshan and its dynamic setting, metallogenic control and exploration[J]. Earth Science Frontiers, 21(5):128-155. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201405011 YAN Y T, LI S R, JIA B J, et al., 2012. Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J]. Earth Science Frontiers, 19(4):214-226. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201204023 YANG B, CHEN Z L, ZHANG Q, et al., 2018. Geological characteristics and sulfur and lead isotopes of the Kanling lead-zinc deposit, Southern Tianshan Mountains[J]. Geology in China, 45(1):155-167. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201801013 YANG F Q, WANG Y T, MAO J W, et al., 2004. Geological features and S, He and Ar isotopic studies of the Bulong quartz-barite vein-type gold deposit in Akqi County, Xinjiang[J]. Geological Review, 50(1):87-98. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/OA000005351 YE Q T, WU Y P, FU X J, 1999. Ore-forming conditions and metallogenic prognosis of gold and nonferrous metallic resources in southwestern Tianshan mountain[M]. Beijing:Geological Publishing House, 1-202. (in Chinese) ZHANG G Z, XUE C J, CHI G X, et al, 2017. Multiple-stage mineralization in the Sawayaerdun orogenic gold deposit, western Tianshan, Xinjiang:constraints from paragenesis, EMPA analyses, Re-Os dating of pyrite (arsenopyrite) and U-Pb dating of zircon from the host rocks[J]. Ore Geology Reviews, 81:326-341. doi: 10.1016/j.oregeorev.2016.10.038 ZHANG H F, GAO S, 2012. Geochemistry[M]. Beijing:Geological Publishing House. (in Chinese with English abstract) ZHANG T, 2018. The characteristics of geological、geochemistry and genetic analysis of ashawayi gold deposit in southwest of Tianshan[D]. Nancang: East China University of Technology. (in Chinese with English abstract) https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201802&filename=1018839916.nh&v=MTQyNzREa1ViM0JWRjI2RnJ1N0Y5ak5xWkViUElSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVI3cWZZT2RuRnk= ZHANG W G, CHEN Z L, ZHANG Q, et al., 2018. Tectonic-sedimentary response of Cenozoic uplifting and exhumation in the southwestern Tianshan[J]. Geotectonica et Metallogenia, 42(5):822-831. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201805005 ZHANG Z C, DONG S Y, HUANG H, et al., 2009. Geology and geochemistry of the Permian intermediate-acid intrusions in the southwestern Tianshan, Xinjiang, China:implications for petrogenesis and tectonics[J]. Geological Bulletin of China, 28(12):1827-1839. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200912016.htm ZHAO H X, FRIMMEL H E, JIANG S Y, et al., 2011. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China:implications for ore genesis[J]. Ore Geology Reviews, 43(1):142-153. doi: 10.1590-S1519-566X2009000400023/ ZHENG YF, Hoefs J, 1993. Effects of mineral precipitation on the sulfur isotope composition of hydrothermal solutions[J]. Chemical Geology, 105(4):0-269. doi: 10.1016-0009-2541(93)90130-B/ ZHOU X W, SHAO J L, BIAN Q J, 1994. Study on typomorphic characteristics of pyrite from Dongbeizhai Gold Deposit, Sichuan Province[J]. Earth Science-Journal of China University of Geosciences, 19(1):52-59. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400042293 ZHOU Z J, CHEN Z L, HAN F B, et al., 2018. Fluid inclusion and isotope geochemistry of the Atebayue Sb deposit, South Tianshan Orogen, Kyrgyzstan[J]. Geological Journal, 53(3):1050-1060. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/gj.2943 ZHOU Z J, CHEN Z L, ZHANG W G, et al., 2019. Structural deformation and fluid evolution associated with the formation of the Sawayardun gold deposit in southwestern Tianshan orogen[J/OL]. Geology in China, [2019-12-19]. https://www.cnki.net/KCMS/detail/11.1167.P.20191218.1524.008.html. (in Chinese with English abstract) ZHU Y F, He G Q, An F, 2007a. Geological evolution and metallogeny in the core part of the Central Asian metallogenicdomain[J]. Geological Bulletin of China, 26(9):1167-1177. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200709018 ZHU Y F, WANG T, XU X, 2007b. Progress of geology study in Xinjiang and its adjacent regions[J]. Acta Petrologica Sinica, 23(8):1785-1794. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200708001 陈华勇, 陈衍景, 倪培, 等, 2007.新疆萨瓦亚尔顿金矿流体包裹体成分、矿床成因和成矿预测[J].岩石学报, 23(9):2189-2197. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200709017 陈宣华, 陈正乐, 杨农, 2009.区域成矿与矿田构造研究:构建成矿构造体系[J].地质力学学报, 15(1):1-19. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20090101&flag=1 陈衍景, 2006.造山型矿床、成矿模式及找矿潜力[J].中国地质, 33(6):1181-1196. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200606001 陈衍景, 倪培, 范洪瑞, 等, 2007.不同类型热液金矿系统的流体包裹体特征[J].岩石学报, 23(9):2085-2108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200709009 陈正乐, 李丽, 刘健, 等, 2008.西天山隆升-剥露过程初步研究[J].岩石学报, 24(4):625-636. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200804001 陈正乐, 周永贵, 韩凤彬, 等, 2012.天山山脉剥露程度与矿产保存关系初探[J].地球科学——中国地质大学学报, 37(5):903-916. http://d.old.wanfangdata.com.cn/Periodical/dqkx201205004 陈正乐, 韩凤彬, 周振菊, 等, 2019.西南天山造山型金(锑)矿床构造控矿特征与找矿潜力[C]//第九届全国成矿理论与找矿方法学术讨论会论文摘要集.南京: 中国矿物岩石地球化学学会矿床地球化学专业委员会, 中国地质学会矿床地质专业委员会, 中国科学院地球化学研究所矿床地球化学国家重点实验室, 247. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD&filename=KWXB201912001166 高永伟, 王志华, 黎卫亮, 等, 2019.热液型金矿床中的黄铁矿矿物学研究综述[J].西北地质, 52(3):58-69. http://d.old.wanfangdata.com.cn/Periodical/xbdz201903006 高振敏, 杨竹森, 李红阳, 等, 2000.黄铁矿载金的原因和特征[J].高校地质学报, 6(2):156-162. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200002007 霍海龙, 2019.西南天山晚古生代构造变形与岩浆作用[D].北京: 中国地质科学院. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&filename=1019146203.nh 霍海龙, 陈正乐, 陈贵民, 等, 2019.西南天山柯坪地区萨尔干基性岩脉U-Pb年代学及地球化学特征[J].地质力学学报, 25(S1):60-65. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2019S111&journal_id=dzlxxb 李楠, 2013.阳山金矿带成矿作用地球化学[D].北京: 中国地质大学(北京). http://cdmd.cnki.com.cn/Article/CDMD-11415-1013267271.htm 李楠, 张志超, 刘兴武, 等, 2018.微细浸染状金矿化与脉状金-锑矿化关系:西秦岭阳山金矿带例析[J].岩石学报, 34(5):1312-1326. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201805007 刘本培, 王自强, 张传恒, 等, 1996.西南天山构造格局与演化[M].武汉:中国地质大学出版社, 1-120. 毛世东, 杨荣生, 秦艳, 等, 2009.甘肃阳山金矿田载金矿物特征及金赋存状态研究[J].岩石学报, 25(11):2776-2890. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200911008 王安东, 万建军, 刘磊, 等, 2015.华北东南缘霍邱群BIF的SEM-EDS和XRD研究及其地质意义[J].东华理工大学学报(自然科学版), 38(1):23-31. http://d.old.wanfangdata.com.cn/Periodical/hddzxyxb201501003 王奎仁, 1989.地球与宇宙成因矿物学[M].合肥:安徽教育出版社. 王奎仁, 周有勤, 孙立广, 等, 1994.中国几个典型卡林型金矿床金的赋存状态研究[M].合肥:中国科学技术大学出版社. 王伟, 李文渊, 唐小东, 等, 2018.塔里木陆块西北缘滴水铜矿成矿流体特征与成矿作用[J].地质与勘探, 54(3):441-455. http://d.old.wanfangdata.com.cn/Periodical/dzykt201803001 徐国风, 邵洁涟, 1980.黄铁矿的标型特征及其实际意义[J].地质论评, 26(6):541-546. http://d.old.wanfangdata.com.cn/Periodical/OA000004549 徐国风, 1987.金矿找矿矿物学[J].地质与勘探, (2):30-34. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200403007 徐述平, 宋建潮, 宋贺民, 2014.新疆西南天山布隆金矿床类型与成矿模式[J].黄金科学技术, 22(6):7-11. http://d.old.wanfangdata.com.cn/Periodical/hjkxjs201406003 薛春纪, 赵晓波, 莫宣学, 等, 2014a.西天山巨型金铜铅锌成矿带构造成矿演化和找矿方向[J].地质学报, 88(12):2490-2531. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412025 薛春纪, 赵晓波, 莫宣学, 等, 2014b.西天山"亚洲金腰带"及其动力背景和成矿控制与找矿[J].地学前缘, 21(5):128-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201405011 严育通, 李胜荣, 贾宝剑, 等, 2012.中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J].地学前缘, 19(4):214-226. http://d.old.wanfangdata.com.cn/Periodical/dxqy201204023 杨斌, 陈正乐, 张青, 等, 2018.南天山坎岭铅锌矿矿床地质特征及S、Pb同位素特征研究[J].中国地质, 45(1):155-167. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201801013 杨富全, 王义天, 毛景文, 等, 2004.新疆阿合奇县布隆石英重晶石脉型金矿地质特征和硫、氦、氩同位素研究[J].地质论评, 50(1):87-98. http://d.old.wanfangdata.com.cn/Periodical/dzlp200401011 叶庆同, 吴一平, 傅旭杰, 1999.西南天山金和有色金属矿床成矿条件和成矿预测[M].北京:地质出版社, 1-202. 张宏飞, 高山, 2012.地球化学[M].北京:地质出版社. 张涛, 2018.西南天山阿沙哇义金矿床地质地球化学特征及成因初探[D].南昌: 东华理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10405-1018839916.htm 张文高, 陈正乐, 张青, 等, 2018.西南天山新生代隆升-剥露过程的沉积-构造响应[J].大地构造与成矿学, 42(5):822-831. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201805005 张招崇, 董书云, 黄河, 等, 2009.西南天山二叠纪中酸性侵入岩的地质学和地球化学:岩石成因和构造背景[J].地质通报, 28(12):1827-1839. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200912015 周学武, 邵洁涟, 边丘娟, 1994.四川松潘东北寨金矿黄铁矿标型特征研究[J].地球科学——中国地质大学学报, 19(1):52-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400042293 周振菊, 陈正乐, 张文高, 等, 2019.西南天山萨瓦亚尔顿金矿床构造-流体控矿作用研究[J/OL].中国地质, [2019-12-19]. https://www.cnki.net/KCMS/detail/11.1167.P.20191218.1524.008.html. 朱永峰, 何国琦, 安芳, 2007a.中亚成矿域核心地区地质演化与成矿规律[J].地质通报, 26(9):1167-1177. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200709018 朱永峰, 王涛, 徐新, 2007b.新疆及邻区地质与矿产研究进展[J].岩石学报, 23(8):1785-1794. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200708001